Advancements in the Understanding of Small-Cell Neuroendocrine Cervical Cancer: Where We Stand and What Lies Ahead
Abstract
:1. Introduction
2. Unraveling the Complex Pathogenesis of Small-Cell Neuroendocrine Cervical Carcinoma (SCNCC)
2.1. The Role of Human Papillomavirus Infection: A Critical Pathogenic Factor
Method | Total Number | HPV18 Positive | HPV16 Positive | HPV18 and HPV16 Co-Infection | Integration Events | Reference |
---|---|---|---|---|---|---|
Short PCR fragment (SPF10) primer PCR and INNO-LiPA | 22 | 77.30% | 18.20% | 4.50% | - | [36] |
Quantitative multiplex PCR and the NGS genetic testing panel OncoScreen PlusTM (Burning Rock Dx Ltd., Guangzhou, China) | 51 | 92.16% | 43.14% | 35.29% | - | [37] |
PCR | 12 | 0% | 0% | 0% | - | [30] |
PCR and in situ hybridizations | 10 | 60% | 0% | 0% | - | [38] |
In situ hybridization | 18 | 77.78% | 5.56% | 0% | - | [39] |
In situ hybridization | 26 | 40% | 28% | 0% | - | [12] |
Whole-exome sequencing (WES) | 15 | 40% | 13% | 0% | 8q24.21, 14q13.2, 20q11.21 | [31] |
RNA sequencing | 1 | 100% | 0% | 0% | 8q24.21 | [32] |
WES | 10 | 50% | 20% | 0% | 2q24.1,17q12 | [33] |
2.2. Characteristics of Molecular Pathogenesis
2.2.1. Loss of Heterozygosity
2.2.2. Somatic Mutations in the PI3K/AKT Signaling Pathway
2.2.3. Somatic Mutations in the MAPK Signaling Pathway
2.2.4. Somatic Mutations in the TP53/BRCA Signaling Pathway
2.2.5. Somatic Mutations in the Wnt and Other Prominent Somatic Mutations
2.2.6. Structural Variations
2.2.7. MicroRNAs in SCNCC
3. Immunohistochemical Features
3.1. Oncogenes and Suppressor Genes
3.2. Immune and Damage Repair Markers
3.3. Other Potential Novel Markers
4. Prognostic Factors
5. Clinical Treatment
5.1. Which Is the Preferred Treatment for Early-Stage FIGO I Phase: Chemoradiation or Surgery?
5.2. Chemotherapy as the Cornerstone of SCNCC Treatment
5.3. Targeted Agents and Immune Checkpoint Inhibitors
5.4. Prophylactic Cranial Irradiation (PCI) for SCNCC?
6. Conclusions and Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lo Re, G.; Canzonieri, V.; Veronesi, A.; Dal Bo, V.; Barzan, L.; Zancanaro, C.; Trovò, M. Extrapulmonary small cell carcinoma: A single-institution experience and review of the literature. Ann. Oncol. 1994, 5, 909–913. [Google Scholar] [CrossRef] [PubMed]
- Cimino-Mathews, A.; Sharma, R.; Illei, P.B. Detection of human papillomavirus in small cell carcinomas of the anus and rectum. Am. J. Surg. Pathol. 2012, 36, 1087–1092. [Google Scholar] [CrossRef] [PubMed]
- Randall, M.E.; Kim, J.A.; Mills, S.E.; Hahn, S.S.; Constable, W.C. Uncommon variants of cervical carcinoma treated with radical irradiation. A clinicopathologic study of 66 cases. Cancer 1986, 57, 816–822. [Google Scholar] [CrossRef] [PubMed]
- Huntsman, D.G.; Clement, P.B.; Gilks, C.B.; Scully, R.E. Small-cell carcinoma of the endometrium. A clinicopathological study of sixteen cases. Am. J. Surg. Pathol. 1994, 18, 364–375. [Google Scholar] [CrossRef] [PubMed]
- Zivanovic, O.; Leitao, M.M., Jr.; Park, K.J.; Zhao, H.; Diaz, J.P.; Konner, J.; Alektiar, K.; Chi, D.S.; Abu-Rustum, N.R.; Aghajanian, C. Small cell neuroendocrine carcinoma of the cervix: Analysis of outcome, recurrence pattern and the impact of platinum-based combination chemotherapy. Gynecol. Oncol. 2009, 112, 590–593. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Macdonald, O.K.; Gaffney, D.K. Incidence, mortality, and prognostic factors of small cell carcinoma of the cervix. Obstet. Gynecol. 2008, 111, 1394–1402. [Google Scholar] [CrossRef] [PubMed]
- McCusker, M.E.; Coté, T.R.; Clegg, L.X.; Tavassoli, F.J. Endocrine tumors of the uterine cervix: Incidence, demographics, and survival with comparison to squamous cell carcinoma. Gynecol. Oncol. 2003, 88, 333–339. [Google Scholar] [CrossRef] [PubMed]
- Dongol, S.; Tai, Y.; Shao, Y.; Jiang, J.; Kong, B. A retrospective clinicopathological analysis of small-cell carcinoma of the uterine cervix. Mol. Clin. Oncol. 2014, 2, 71–75. [Google Scholar] [CrossRef]
- Lu, J.; Li, Y.; Wang, J. Small Cell (Neuroendocrine) Carcinoma of the Cervix: An Analysis for 19 Cases and Literature Review. Front. Cell Infect. Microbiol. 2022, 12, 916506. [Google Scholar] [CrossRef]
- Abbas, A.; Gruner, M.; Karohl, J.; Rose, P.G.; Joehlin-Price, A.; Stover, D.; Mahdi, H. Case Report: Circulating Tumor DNA Fraction Analysis Using Ultra-Low-Pass Whole-Genome Sequencing Correlates Response to Chemoradiation and Recurrence in Stage IV Small-Cell Carcinoma of the Cervix—A Longitudinal Study. Front. Oncol. 2021, 11, 652683. [Google Scholar] [CrossRef]
- Chu, T.; Meng, Y.; Wu, P.; Li, Z.; Wen, H.; Ren, F.; Zou, D.; Lu, H.; Wu, L.; Zhou, S.; et al. The prognosis of patients with small cell carcinoma of the cervix: A retrospective study of the SEER database and a Chinese multicentre registry. Lancet Oncol. 2023, 24, 701–708. [Google Scholar] [CrossRef] [PubMed]
- Abeler, V.M.; Holm, R.; Nesland, J.M.; Kjørstad, K.E. Small cell carcinoma of the cervix. A clinicopathologic study of 26 patients. Cancer 1994, 73, 672–677. [Google Scholar] [CrossRef] [PubMed]
- Satoh, T.; Takei, Y.; Treilleux, I.; Devouassoux-Shisheboran, M.; Ledermann, J.; Viswanathan, A.N.; Mahner, S.; Provencher, D.M.; Mileshkin, L.; Åvall-Lundqvist, E.; et al. Gynecologic Cancer InterGroup (GCIG) consensus review for small cell carcinoma of the cervix. Int. J. Gynecol. Cancer 2014, 24 (Suppl. S3), S102–S108. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.W.; Nam, J.H.; Kim, D.Y.; Kim, J.H.; Kim, K.R.; Kim, Y.M.; Kim, Y.T. Unfavorable prognosis of small cell neuroendocrine carcinoma of the uterine cervix: A retrospective matched case-control study. Int. J. Gynecol. Cancer 2010, 20, 411–416. [Google Scholar] [CrossRef] [PubMed]
- Sevin, B.U.; Method, M.W.; Nadji, M.; Lu, Y.; Averette, H.A. Efficacy of radical hysterectomy as treatment for patients with small cell carcinoma of the cervix. Cancer 1996, 77, 1489–1493. [Google Scholar] [CrossRef]
- Van Nagell, J.R., Jr.; Donaldson, E.S.; Wood, E.G.; Maruyama, Y.; Utley, J. Small cell cancer of the uterine cervix. Cancer 1977, 40, 2243–2249. [Google Scholar] [CrossRef]
- Tan, C.Y.; Yang, Q.L.; Xu, N.; Wang, H.J. Small cell neuroendocrine carcinoma of the cervix: An analysis for 5 cases and literature review. Asian J. Surg. 2024, S1015-9584(24)00137-4. [Google Scholar] [CrossRef] [PubMed]
- Zhou, C.; Hayes, M.M.; Clement, P.B.; Thomson, T.A. Small cell carcinoma of the uterine cervix: Cytologic findings in 13 cases. Cancer 1998, 84, 281–288. [Google Scholar] [CrossRef]
- Yang, D.H.; Kim, J.K.; Kim, K.W.; Bae, S.J.; Kim, K.H.; Cho, K.S. MRI of small cell carcinoma of the uterine cervix with pathologic correlation. AJR Am. J. Roentgenol. 2004, 182, 1255–1258. [Google Scholar] [CrossRef]
- Ambros, R.A.; Park, J.S.; Shah, K.V.; Kurman, R.J. Evaluation of histologic, morphometric, and immunohistochemical criteria in the differential diagnosis of small cell carcinomas of the cervix with particular reference to human papillomavirus types 16 and 18. Mod. Pathol. 1991, 4, 586–593. [Google Scholar]
- Wistuba, I.I.; Thomas, B.; Behrens, C.; Onuki, N.; Lindberg, G.; Albores-Saavedra, J.; Gazdar, A.F. Molecular abnormalities associated with endocrine tumors of the uterine cervix. Gynecol. Oncol. 1999, 72, 3–9. [Google Scholar] [CrossRef] [PubMed]
- Albores-Saavedra, J.; Gersell, D.; Gilks, C.B.; Henson, D.E.; Lindberg, G.; Santiago, H.; Scully, R.E.; Silva, E.; Sobin, L.H.; Tavassoli, F.J.; et al. Terminology of endocrine tumors of the uterine cervix: Results of a workshop sponsored by the College of American Pathologists and the National Cancer Institute. Arch. Pathol. Lab. Med. 1997, 121, 34–39. [Google Scholar] [PubMed]
- Paraghamian, S.E.; Longoria, T.C.; Eskander, R.N. Metastatic small cell neuroendocrine carcinoma of the cervix treated with the PD-1 inhibitor, nivolumab: A case report. Gynecol. Oncol. Res. Pract. 2017, 4, 3. [Google Scholar] [CrossRef] [PubMed]
- Abu-Rustum, N.R.; Yashar, C.M.; Arend, R.; Barber, E.; Bradley, K.; Brooks, R.; Campos, S.M.; Chino, J.; Chon, H.S.; Chu, C.; et al. National Comprehensive Cancer Network (NCCN) Guidelines: Cervical Cancer, Version 1. 2023. Available online: https://www.nccn.org (accessed on 20 March 2024).
- Huang, R.; Yu, L.; Zheng, C.; Liang, Q.; Suye, S.; Yang, X.; Yin, H.; Ren, Z.; Shi, L.; Zhang, Z.; et al. Diagnostic value of four neuroendocrine markers in small cell neuroendocrine carcinomas of the cervix: A meta-analysis. Sci. Rep. 2020, 10, 14975. [Google Scholar] [CrossRef] [PubMed]
- Kuji, S.; Endo, A.; Kubota, M.; Uekawa, A.; Kawakami, F.; Mikami, Y.; Koike, J.; Suzuki, N. Immunosensitivity and specificity of insulinoma-associated protein 1 (INSM1) for neuroendocrine neoplasms of the uterine cervix. J. Gynecol. Oncol. 2023, 34, e1. [Google Scholar] [CrossRef] [PubMed]
- Kim, G.; Kim, M.; Nam, E.J.; Lee, J.Y.; Park, E. Application of Small Cell Lung Cancer Molecular Subtyping Markers to Small Cell Neuroendocrine Carcinoma of the Cervix: NEUROD1 as a Poor Prognostic Factor. Am. J. Surg. Pathol. 2023, 48, 364–372. [Google Scholar] [CrossRef] [PubMed]
- Baedyananda, F.; Sasivimolrattana, T.; Chaiwongkot, A.; Varadarajan, S.; Bhattarakosol, P. Role of HPV16 E1 in cervical carcinogenesis. Front. Cell Infect. Microbiol. 2022, 12, 955847. [Google Scholar] [CrossRef]
- Quadrivalent vaccine against human papillomavirus to prevent high-grade cervical lesions. N. Engl. J. Med. 2007, 356, 1915–1927. [CrossRef]
- Pao, C.C.; Lin, C.Y.; Chang, Y.L.; Tseng, C.J.; Hsueh, S. Human papillomaviruses and small cell carcinoma of the uterine cervix. Gynecol. Oncol. 1991, 43, 206–210. [Google Scholar] [CrossRef]
- Hillman, R.T.; Cardnell, R.; Fujimoto, J.; Lee, W.C.; Zhang, J.; Byers, L.A.; Ramalingam, P.; Leitao, M.; Swisher, E.; Futreal, P.A.; et al. Comparative genomics of high grade neuroendocrine carcinoma of the cervix. PLoS ONE 2020, 15, e0234505. [Google Scholar] [CrossRef] [PubMed]
- Kusakabe, M.; Taguchi, A.; Tanikawa, M.; Hoshi, D.; Tsuchimochi, S.; Qian, X.; Toyohara, Y.; Kawata, A.; Wagatsuma, R.; Yamaguchi, K.; et al. Application of organoid culture from HPV18-positive small cell carcinoma of the uterine cervix for precision medicine. Cancer Med. 2023, 12, 8476–8489. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Zhang, F.; Li, Y.; Chen, B.; Gu, Y.; Shan, Y.; Li, Y.; Chen, W.; Jin, Y.; Pan, L. Whole exome sequencing identifies common mutational landscape of cervix and endometrium small cell neuroendocrine carcinoma. Front. Oncol. 2023, 13, 1182029. [Google Scholar] [CrossRef] [PubMed]
- Rusan, M.; Li, Y.Y.; Hammerman, P.S. Genomic landscape of human papillomavirus-associated cancers. Clin. Cancer Res. 2015, 21, 2009–2019. [Google Scholar] [CrossRef] [PubMed]
- Ojesina, A.I.; Lichtenstein, L.; Freeman, S.S.; Pedamallu, C.S.; Imaz-Rosshandler, I.; Pugh, T.J.; Cherniack, A.D.; Ambrogio, L.; Cibulskis, K.; Bertelsen, B.; et al. Landscape of genomic alterations in cervical carcinomas. Nature 2014, 506, 371–375. [Google Scholar] [CrossRef]
- Wang, H.L.; Lu, D.W. Detection of human papillomavirus DNA and expression of p16, Rb, and p53 proteins in small cell carcinomas of the uterine cervix. Am. J. Surg. Pathol. 2004, 28, 901–908. [Google Scholar] [CrossRef] [PubMed]
- Masumoto, N.; Fujii, T.; Ishikawa, M.; Saito, M.; Iwata, T.; Fukuchi, T.; Susumu, N.; Mukai, M.; Kubushiro, K.; Tsukazaki, K.; et al. P16 overexpression and human papillomavirus infection in small cell carcinoma of the uterine cervix. Hum. Pathol. 2003, 34, 778–783. [Google Scholar] [CrossRef] [PubMed]
- Xing, D.; Zheng, G.; Schoolmeester, J.K.; Li, Z.; Pallavajjala, A.; Haley, L.; Conner, M.G.; Vang, R.; Hung, C.F.; Wu, T.C.; et al. Next-generation Sequencing Reveals Recurrent Somatic Mutations in Small Cell Neuroendocrine Carcinoma of the Uterine Cervix. Am. J. Surg. Pathol. 2018, 42, 750–760. [Google Scholar] [CrossRef] [PubMed]
- Stoler, M.H.; Mills, S.E.; Gersell, D.J.; Walker, A.N. Small-cell neuroendocrine carcinoma of the cervix. A human papillomavirus type 18-associated cancer. Am. J. Surg. Pathol. 1991, 15, 28–32. [Google Scholar] [CrossRef]
- Ordulu, Z.; Mino-Kenudson, M.; Young, R.H.; Van de Vijver, K.; Zannoni, G.F.; Félix, A.; Burandt, E.; Wong, A.; Nardi, V.; Oliva, E. Morphologic and Molecular Heterogeneity of Cervical Neuroendocrine Neoplasia: A Report of 14 Cases. Am. J. Surg. Pathol. 2022, 46, 1670–1681. [Google Scholar] [CrossRef]
- Albrecht, L.V.; Tejeda-Muñoz, N.; De Robertis, E.M. Cell Biology of Canonical Wnt Signaling. Annu. Rev. Cell Dev. Biol. 2021, 37, 369–389. [Google Scholar] [CrossRef] [PubMed]
- Eskander, R.N.; Elvin, J.; Gay, L.; Ross, J.S.; Miller, V.A.; Kurzrock, R. Unique Genomic Landscape of High-Grade Neuroendocrine Cervical Carcinoma: Implications for Rethinking Current Treatment Paradigms. JCO Precis. Oncol. 2020, 4, PO.19.00248. [Google Scholar] [CrossRef] [PubMed]
- Ishida, G.M.; Kato, N.; Hayasaka, T.; Saito, M.; Kobayashi, H.; Katayama, Y.; Sasou, S.; Yaegashi, N.; Kurachi, H.; Motoyama, T. Small cell neuroendocrine carcinomas of the uterine cervix: A histological, immunohistochemical, and molecular genetic study. Int. J. Gynecol. Pathol. 2004, 23, 366–372. [Google Scholar] [CrossRef] [PubMed]
- Mannion, C.; Park, W.S.; Man, Y.G.; Zhuang, Z.; Albores-Saavedra, J.; Tavassoli, F.A. Endocrine tumors of the cervix: Morphologic assessment, expression of human papillomavirus, and evaluation for loss of heterozygosity on 1p,3p, 11q, and 17p. Cancer 1998, 83, 1391–1400. [Google Scholar] [CrossRef]
- Frumovitz, M.; Burzawa, J.K.; Byers, L.A.; Lyons, Y.A.; Ramalingam, P.; Coleman, R.L.; Brown, J. Sequencing of mutational hotspots in cancer-related genes in small cell neuroendocrine cervical cancer. Gynecol. Oncol. 2016, 141, 588–591. [Google Scholar] [CrossRef] [PubMed]
- Cho, S.Y.; Choi, M.; Ban, H.J.; Lee, C.H.; Park, S.; Kim, H.; Kim, Y.S.; Lee, Y.S.; Lee, J.Y. Cervical small cell neuroendocrine tumor mutation profiles via whole exome sequencing. Oncotarget 2017, 8, 8095–8104. [Google Scholar] [CrossRef] [PubMed]
- Lyons, Y.A.; Frumovitz, M.; Soliman, P.T. Response to MEK inhibitor in small cell neuroendocrine carcinoma of the cervix with a KRAS mutation. Gynecol. Oncol. Rep. 2014, 10, 28–29. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Lin, J.X.; Yu, Y.H.; Zhang, M.Y.; Wang, H.Y.; Zheng, M. Downregulation of six microRNAs is associated with advanced stage, lymph node metastasis and poor prognosis in small cell carcinoma of the cervix. PLoS ONE 2012, 7, e33762. [Google Scholar] [CrossRef] [PubMed]
- Watkins, T.B.K.; Lim, E.L.; Petkovic, M.; Elizalde, S.; Birkbak, N.J.; Wilson, G.A.; Moore, D.A.; Grönroos, E.; Rowan, A.; Dewhurst, S.M.; et al. Pervasive chromosomal instability and karyotype order in tumour evolution. Nature 2020, 587, 126–132. [Google Scholar] [CrossRef]
- Pei, X.; Xiang, L.; Chen, W.; Jiang, W.; Yin, L.; Shen, X.; Zhou, X.; Yang, H. The next generation sequencing of cancer-related genes in small cell neuroendocrine carcinoma of the cervix. Gynecol. Oncol. 2021, 161, 779–786. [Google Scholar] [CrossRef]
- Zhang, S.W.; Luo, R.Z.; Sun, X.Y.; Yang, X.; Yang, H.X.; Xiong, S.P.; Liu, L.L. Co-expression of SOX2 and HR-HPV RISH predicts poor prognosis in small cell neuroendocrine carcinoma of the uterine cervix. BMC Cancer 2021, 21, 332. [Google Scholar] [CrossRef]
- Dubois, F.; Sidiropoulos, N.; Weischenfeldt, J.; Beroukhim, R. Structural variations in cancer and the 3D genome. Nat. Rev. Cancer 2022, 22, 533–546. [Google Scholar] [CrossRef]
- Leardini, D.; Messelodi, D.; Muratore, E.; Baccelli, F.; Bertuccio, S.N.; Anselmi, L.; Pession, A.; Masetti, R. Role of CBL Mutations in Cancer and Non-Malignant Phenotype. Cancers 2022, 14, 839. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Y.; Chen, Y.; Peng, A.; Dong, J. The phosphatase CTDSPL2 is phosphorylated in mitosis and a target for restraining tumor growth and motility in pancreatic cancer. Cancer Lett. 2022, 526, 53–65. [Google Scholar] [CrossRef]
- Yang, B.; Wu, A.; Hu, Y.; Tao, C.; Wang, J.M.; Lu, Y.; Xing, R. Mucin 17 inhibits the progression of human gastric cancer by limiting inflammatory responses through a MYH9-p53-RhoA regulatory feedback loop. J. Exp. Clin. Cancer Res. 2019, 38, 283. [Google Scholar] [CrossRef]
- Berindan-Neagoe, I.; Monroig Pdel, C.; Pasculli, B.; Calin, G.A. MicroRNAome genome: A treasure for cancer diagnosis and therapy. CA Cancer J. Clin. 2014, 64, 311–336. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.C.; Huang, H.J.; Wang, T.Y.; Yang, L.Y.; Chen, C.H.; Cheng, Y.M.; Liou, W.H.; Hsu, S.T.; Wen, K.C.; Ou, Y.C.; et al. Primary surgery versus primary radiation therapy for FIGO stages I-II small cell carcinoma of the uterine cervix: A retrospective Taiwanese Gynecologic Oncology Group study. Gynecol. Oncol. 2015, 137, 468–473. [Google Scholar] [CrossRef] [PubMed]
- Tangjitgamol, S.; Ramirez, P.T.; Sun, C.C.; See, H.T.; Jhingran, A.; Kavanagh, J.J.; Deavers, M.T. Expression of HER-2/neu, epidermal growth factor receptor, vascular endothelial growth factor, cyclooxygenase-2, estrogen receptor, and progesterone receptor in small cell and large cell neuroendocrine carcinoma of the uterine cervix: A clinicopathologic and prognostic study. Int. J. Gynecol. Cancer 2005, 15, 646–656. [Google Scholar] [CrossRef]
- Inzani, F.; Santoro, A.; Angelico, G.; Feraco, A.; Spadola, S.; Arciuolo, D.; Valente, M.; Carlino, A.; Piermattei, A.; Scaglione, G.; et al. Neuroendocrine Carcinoma of the Uterine Cervix: A Clinicopathologic and Immunohistochemical Study with Focus on Novel Markers (Sst2-Sst5). Cancers 2020, 12, 1211. [Google Scholar] [CrossRef]
- Qiu, H.; Su, N.; Wang, J.; Yan, S.; Li, J. Quantitative proteomics analysis in small cell carcinoma of cervix reveals novel therapeutic targets. Clin. Proteomics 2023, 20, 18. [Google Scholar] [CrossRef]
- Sherr, C.J. Cancer cell cycles. Science 1996, 274, 1672–1677. [Google Scholar] [CrossRef] [PubMed]
- Herrington, C.S.; Graham, D.; Southern, S.A.; Bramdev, A.; Chetty, R. Loss of retinoblastoma protein expression is frequent in small cell neuroendocrine carcinoma of the cervix and is unrelated to HPV type. Hum. Pathol. 1999, 30, 906–910. [Google Scholar] [CrossRef] [PubMed]
- Sherr, C.J.; McCormick, F. The RB and p53 pathways in cancer. Cancer Cell 2002, 2, 103–112. [Google Scholar] [CrossRef] [PubMed]
- Straughn, J.M., Jr.; Richter, H.E.; Conner, M.G.; Meleth, S.; Barnes, M.N. Predictors of outcome in small cell carcinoma of the cervix--a case series. Gynecol. Oncol. 2001, 83, 216–220. [Google Scholar] [CrossRef] [PubMed]
- Zarka, T.A.; Han, A.C.; Edelson, M.I.; Rosenblum, N.G. Expression of cadherins, p53, and BCL2 in small cell carcinomas of the cervix: Potential tumor suppressor role for N-cadherin. Int. J. Gynecol. Cancer 2003, 13, 240–243. [Google Scholar] [CrossRef]
- Yamaguchi, H.; Hsu, J.M.; Yang, W.H.; Hung, M.C. Mechanisms regulating PD-L1 expression in cancers and associated opportunities for novel small-molecule therapeutics. Nat. Rev. Clin. Oncol. 2022, 19, 287–305. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Yang, F.; Feng, T.; Wu, S.; Li, K.; Pang, J.; Shi, X.; Liang, Z. PD-L1, Mismatch Repair Protein, and NTRK Immunohistochemical Expression in Cervical Small Cell Neuroendocrine Carcinoma. Front. Oncol. 2021, 11, 752453. [Google Scholar] [CrossRef]
- Morgan, S.; Slodkowska, E.; Parra-Herran, C.; Mirkovic, J. PD-L1, RB1 and mismatch repair protein immunohistochemical expression in neuroendocrine carcinoma, small cell type, of the uterine cervix. Histopathology 2019, 74, 997–1004. [Google Scholar] [CrossRef]
- Sun, X.; Liu, L.; Wan, T.; Huang, Q.; Chen, J.; Luo, R.; Liu, J. The prognostic impact of the immune microenvironment in small-cell neuroendocrine carcinoma of the uterine cervix: PD-L1 and immune cell subtypes. Cancer Cell Int. 2022, 22, 348. [Google Scholar] [CrossRef]
- Zandarashvili, L.; Langelier, M.F.; Velagapudi, U.K.; Hancock, M.A.; Steffen, J.D.; Billur, R.; Hannan, Z.M.; Wicks, A.J.; Krastev, D.B.; Pettitt, S.J.; et al. Structural basis for allosteric PARP-1 retention on DNA breaks. Science 2020, 368, eaax6367. [Google Scholar] [CrossRef]
- Carroll, M.R.; Ramalingam, P.; Salvo, G.; Fujimoto, J.; Solis Soto, L.M.; Phoolcharoen, N.; Hillman, R.T.; Cardnell, R.; Byers, L.; Frumovitz, M. Evaluation of PARP and PDL-1 as potential therapeutic targets for women with high-grade neuroendocrine carcinomas of the cervix. Int. J. Gynecol. Cancer 2020, 30, 1303–1307. [Google Scholar] [CrossRef] [PubMed]
- Quinn, A.M.; Blackhall, F.; Wilson, G.; Danson, S.; Clamp, A.; Ashcroft, L.; Brierley, J.; Hasleton, P. Extrapulmonary small cell carcinoma: A clinicopathological study with identification of potential diagnostic mimics. Histopathology 2012, 61, 454–464. [Google Scholar] [CrossRef] [PubMed]
- Margolis, B.; Tergas, A.I.; Chen, L.; Hou, J.Y.; Burke, W.M.; Hu, J.C.; Ananth, C.V.; Neugut, A.I.; Hershman, D.L.; Wright, J.D. Natural history and outcome of neuroendocrine carcinoma of the cervix. Gynecol. Oncol. 2016, 141, 247–254. [Google Scholar] [CrossRef] [PubMed]
- Sykes, A.J.; Shanks, J.H.; Davidson, S.E. Small cell carcinoma of the uterine cervix: A clinicopathological review. Int. J. Oncol. 1999, 14, 381–386. [Google Scholar] [CrossRef] [PubMed]
- Cohen, J.G.; Kapp, D.S.; Shin, J.Y.; Urban, R.; Sherman, A.E.; Chen, L.M.; Osann, K.; Chan, J.K. Small cell carcinoma of the cervix: Treatment and survival outcomes of 188 patients. Am. J. Obstet. Gynecol. 2010, 203, 347.e1–347.e6. [Google Scholar] [CrossRef]
- Kawamura, M.; Koide, Y.; Murai, T.; Ishihara, S.; Takase, Y.; Murao, T.; Okazaki, D.; Yamaguchi, T.; Uchiyama, K.; Itoh, Y.; et al. The importance of choosing the right strategy to treat small cell carcinoma of the cervix: A comparative analysis of treatments. BMC Cancer 2021, 21, 1046. [Google Scholar] [CrossRef]
- Kuji, S.; Hirashima, Y.; Nakayama, H.; Nishio, S.; Otsuki, T.; Nagamitsu, Y.; Tanaka, N.; Ito, K.; Teramoto, N.; Yamada, T. Diagnosis, clinicopathologic features, treatment, and prognosis of small cell carcinoma of the uterine cervix; Kansai Clinical Oncology Group/Intergroup study in Japan. Gynecol. Oncol. 2013, 129, 522–527. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Liao, L.M.; Liu, A.W.; Wu, J.B.; Cheng, X.L.; Lin, J.X.; Zheng, M. Analysis of the impact of platinum-based combination chemotherapy in small cell cervical carcinoma: A multicenter retrospective study in Chinese patients. BMC Cancer 2014, 14, 140. [Google Scholar] [CrossRef]
- Li, X.; Yang, R.; Jia, Y.; Zhou, J.; Ma, D.; Li, S. Prognostic risk factors for small cell carcinoma of the cervix and impact of platinum-based neoadjuvant chemotherapy. Int. J. Gynaecol. Obstet. 2015, 130, 31–35. [Google Scholar] [CrossRef]
- Li, J.; Ouyang, Y.; Tao, Y.; Wang, L.; Li, M.; Gao, L.; Cao, X. Small cell carcinoma of the uterine cervix: A multi-institutional experience. Int. J. Gynecol. Cancer 2020, 30, 174–180. [Google Scholar] [CrossRef]
- Wang, K.L.; Chang, T.C.; Jung, S.M.; Chen, C.H.; Cheng, Y.M.; Wu, H.H.; Liou, W.S.; Hsu, S.T.; Ou, Y.C.; Yeh, L.S.; et al. Primary treatment and prognostic factors of small cell neuroendocrine carcinoma of the uterine cervix: A Taiwanese Gynecologic Oncology Group study. Eur. J. Cancer 2012, 48, 1484–1494. [Google Scholar] [CrossRef] [PubMed]
- Song, T.; Wan, Q.; Fang, M.; Zhan, W.; Xu, H.; Shou, H. Trends and predictors of survival for small cell carcinoma of the cervix uteri: A SEER population study. Eur. J. Obstet. Gynecol. Reprod. Biol. 2020, 253, 35–41. [Google Scholar] [CrossRef]
- Zhang, Q.; Xiong, Y.; Ye, J.; Zhang, L.; Li, L. Influence of clinicopathological characteristics and comprehensive treatment models on the prognosis of small cell carcinoma of the cervix: A systematic review and meta-analysis. PLoS ONE 2018, 13, e0192784. [Google Scholar] [CrossRef] [PubMed]
- Liao, L.M.; Zhang, X.; Ren, Y.F.; Sun, X.Y.; Di, N.; Zhou, N.; Pan, R.K.; Ma, S.H.; Zhou, L.X. Chromogranin A (CgA) as poor prognostic factor in patients with small cell carcinoma of the cervix: Results of a retrospective study of 293 patients. PLoS ONE 2012, 7, e33674. [Google Scholar] [CrossRef]
- Chang, T.C.; Lai, C.H.; Tseng, C.J.; Hsueh, S.; Huang, K.G.; Chou, H.H. Prognostic factors in surgically treated small cell cervical carcinoma followed by adjuvant chemotherapy. Cancer 1998, 83, 712–718. [Google Scholar] [CrossRef]
- Hoskins, P.J.; Swenerton, K.D.; Pike, J.A.; Lim, P.; Aquino-Parsons, C.; Wong, F.; Lee, N. Small-cell carcinoma of the cervix: Fourteen years of experience at a single institution using a combined-modality regimen of involved-field irradiation and platinum-based combination chemotherapy. J. Clin. Oncol. 2003, 21, 3495–3501. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.M.; Lee, K.B.; Nam, J.H.; Ryu, S.Y.; Bae, D.S.; Park, J.T.; Kim, S.C.; Cha, S.D.; Kim, K.R.; Song, S.Y.; et al. Prognostic factors in FIGO stage IB-IIA small cell neuroendocrine carcinoma of the uterine cervix treated surgically: Results of a multi-center retrospective Korean study. Ann. Oncol. 2008, 19, 321–326. [Google Scholar] [CrossRef] [PubMed]
- Viswanathan, A.N.; Deavers, M.T.; Jhingran, A.; Ramirez, P.T.; Levenback, C.; Eifel, P.J. Small cell neuroendocrine carcinoma of the cervix: Outcome and patterns of recurrence. Gynecol. Oncol. 2004, 93, 27–33. [Google Scholar] [CrossRef]
- Chan, J.K.; Loizzi, V.; Burger, R.A.; Rutgers, J.; Monk, B.J. Prognostic factors in neuroendocrine small cell cervical carcinoma: A multivariate analysis. Cancer 2003, 97, 568–574. [Google Scholar] [CrossRef]
- Huang, C.Y.; Chen, Y.L.; Chu, T.C.; Cheng, W.F.; Hsieh, C.Y.; Lin, M.C. Prognostic factors in women with early stage small cell carcinoma of the uterine cervix. Oncol. Res. 2009, 18, 279–286. [Google Scholar] [CrossRef]
- Wang, P.H.; Liu, Y.C.; Lai, C.R.; Chao, H.T.; Yuan, C.C.; Yu, K.J. Small cell carcinoma of the cervix: Analysis of clinical and pathological findings. Eur. J. Gynaecol. Oncol. 1998, 19, 189–192. [Google Scholar]
- Shen, T.; Jiang, Y.H.; Zou, Y.Y.; Qiu, F.F.; Qiu, X.S.; You, K.Y. Postoperative adjuvant radiation improves local control in surgically treated FIGO stage I-II small cell carcinoma of the cervix. Radiat. Oncol. 2019, 14, 203. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.L.; Yang, Y.C.; Wang, T.Y.; Chen, J.R.; Chen, T.C.; Chen, H.S.; Su, T.H.; Wang, K.G. Neuroendocrine carcinoma of the uterine cervix: A clinicopathologic retrospective study of 31 cases with prognostic implications. J. Chemother. 2006, 18, 209–216. [Google Scholar] [CrossRef]
- Chen, Y.; Chen, J.; Lin, X.; Zheng, J.; Li, S.; Zheng, X. A Prognostic Nomogram for Predicting Overall Survival in Patients With Small-Cell Carcinoma of the Uterine Cervix: A SEER Population-Based Study. Technol. Cancer Res. Treat. 2022, 21, 15330338221110673. [Google Scholar] [CrossRef]
- Intaraphet, S.; Kasatpibal, N.; Siriaunkgul, S.; Chandacham, A.; Sukpan, K.; Patumanond, J. Prognostic factors for small cell neuroendocrine carcinoma of the uterine cervix: An institutional experience. Int. J. Gynecol. Cancer 2014, 24, 272–279. [Google Scholar] [CrossRef] [PubMed]
- Gadducci, A.; Carinelli, S.; Aletti, G. Neuroendrocrine tumors of the uterine cervix: A therapeutic challenge for gynecologic oncologists. Gynecol. Oncol. 2017, 144, 637–646. [Google Scholar] [CrossRef]
- Gennigens, C.; De Cuypere, M.; Hermesse, J.; Kridelka, F.; Jerusalem, G. Optimal treatment in locally advanced cervical cancer. Expert. Rev. Anticancer. Ther. 2021, 21, 657–671. [Google Scholar] [CrossRef]
- Uwins, C.; Patel, H.; Prakash Bhandoria, G.; Butler-Manuel, S.; Tailor, A.; Ellis, P.; Chatterjee, J. Laparoscopic and Robotic Surgery for Endometrial and Cervical Cancer. Clin. Oncol. R. Coll. Radiol. 2021, 33, e372–e382. [Google Scholar] [CrossRef] [PubMed]
- O’Hanlan, K.A.; Goldberg, G.L.; Jones, J.G.; Runowicz, C.D.; Ehrlich, L.; Rodriguez-Rodriguez, L. Adjuvant therapy for neuroendocrine small cell carcinoma of the cervix: Review of the literature. Gynecol. Oncol. 1991, 43, 167–172. [Google Scholar] [CrossRef]
- Hoskins, P.J.; Wong, F.; Swenerton, K.D.; Pike, J.A.; Manji, M.; McMurtrie, E.; Acker, B.; Le Riche, J. Small cell carcinoma of the cervix treated with concurrent radiotherapy, cisplatin, and etoposide. Gynecol. Oncol. 1995, 56, 218–225. [Google Scholar] [CrossRef]
- Pei, X.; Xiang, L.; Ye, S.; He, T.; Cheng, Y.; Yang, W.; Wu, X.; Yang, H. Cycles of cisplatin and etoposide affect treatment outcomes in patients with FIGO stage I-II small cell neuroendocrine carcinoma of the cervix. Gynecol. Oncol. 2017, 147, 589–596. [Google Scholar] [CrossRef] [PubMed]
- Allen, J.W.; Moon, J.; Redman, M.; Gadgeel, S.M.; Kelly, K.; Mack, P.C.; Saba, H.M.; Mohamed, M.K.; Jahanzeb, M.; Gandara, D.R. Southwest Oncology Group S0802: A randomized, phase II trial of weekly topotecan with and without ziv-aflibercept in patients with platinum-treated small-cell lung cancer. J. Clin. Oncol. 2014, 32, 2463–2470. [Google Scholar] [CrossRef] [PubMed]
- Qiu, H.; Su, N.; Yan, S.; Li, J. Real-world Efficacy Data on Anti-Angiogenic Drugs in Recurrent Small Cell Cervical Carcinoma: A Retrospective Study. Technol. Cancer Res. Treat. 2023, 22, 15330338231160393. [Google Scholar] [CrossRef] [PubMed]
- Frumovitz, M.; Chisholm, G.B.; Jhingran, A.; Ramalingam, P.; Flores-Legarreta, A.; Bhosale, P.; Gonzales, N.R.; Hillman, R.T.; Salvo, G. Combination therapy with topotecan, paclitaxel, and bevacizumab improves progression-free survival in patients with recurrent high-grade neuroendocrine cervical cancer: A Neuroendocrine Cervical Tumor Registry (NeCTuR) study. Am. J. Obstet. Gynecol. 2023, 228, 445.e1–445.e8. [Google Scholar] [CrossRef] [PubMed]
- Frumovitz, M.; Munsell, M.F.; Burzawa, J.K.; Byers, L.A.; Ramalingam, P.; Brown, J.; Coleman, R.L. Combination therapy with topotecan, paclitaxel, and bevacizumab improves progression-free survival in recurrent small cell neuroendocrine carcinoma of the cervix. Gynecol. Oncol. 2017, 144, 46–50. [Google Scholar] [CrossRef]
- Lopez-Chavez, A.; Thomas, A.; Rajan, A.; Raffeld, M.; Morrow, B.; Kelly, R.; Carter, C.A.; Guha, U.; Killian, K.; Lau, C.C.; et al. Molecular profiling and targeted therapy for advanced thoracic malignancies: A biomarker-derived, multiarm, multihistology phase II basket trial. J. Clin. Oncol. 2015, 33, 1000–1007. [Google Scholar] [CrossRef] [PubMed]
- Pietanza, M.C.; Waqar, S.N.; Krug, L.M.; Dowlati, A.; Hann, C.L.; Chiappori, A.; Owonikoko, T.K.; Woo, K.M.; Cardnell, R.J.; Fujimoto, J.; et al. Randomized, Double-Blind, Phase II Study of Temozolomide in Combination With Either Veliparib or Placebo in Patients With Relapsed-Sensitive or Refractory Small-Cell Lung Cancer. J. Clin. Oncol. 2018, 36, 2386–2394. [Google Scholar] [CrossRef] [PubMed]
- de Bono, J.; Ramanathan, R.K.; Mina, L.; Chugh, R.; Glaspy, J.; Rafii, S.; Kaye, S.; Sachdev, J.; Heymach, J.; Smith, D.C.; et al. Phase I, Dose-Escalation, Two-Part Trial of the PARP Inhibitor Talazoparib in Patients with Advanced Germline BRCA1/2 Mutations and Selected Sporadic Cancers. Cancer Discov. 2017, 7, 620–629. [Google Scholar] [CrossRef]
- Thomas, A.; Redon, C.E.; Sciuto, L.; Padiernos, E.; Ji, J.; Lee, M.J.; Yuno, A.; Lee, S.; Zhang, Y.; Tran, L.; et al. Phase I Study of ATR Inhibitor M6620 in Combination With Topotecan in Patients With Advanced Solid Tumors. J. Clin. Oncol. 2018, 36, 1594–1602. [Google Scholar] [CrossRef]
- Jones, R.; Plummer, R.; Moreno, V.; Carter, L.; Roda, D.; Garralda, E.; Kristeleit, R.; Sarker, D.; Arkenau, T.; Roxburgh, P.; et al. A Phase I/II Trial of Oral SRA737 (a Chk1 Inhibitor) Given in Combination with Low-Dose Gemcitabine in Patients with Advanced Cancer. Clin. Cancer Res. 2023, 29, 331–340. [Google Scholar] [CrossRef]
- Bauer, T.M.; Moore, K.N.; Rader, J.S.; Simpkins, F.; Mita, A.C.; Beck, J.T.; Hart, L.; Chu, Q.; Oza, A.; Tinker, A.V.; et al. A Phase Ib Study Assessing the Safety, Tolerability, and Efficacy of the First-in-Class Wee1 Inhibitor Adavosertib (AZD1775) as Monotherapy in Patients with Advanced Solid Tumors. Target. Oncol. 2023, 18, 517–530. [Google Scholar] [CrossRef] [PubMed]
- Beltran, H.; Oromendia, C.; Danila, D.C.; Montgomery, B.; Hoimes, C.; Szmulewitz, R.Z.; Vaishampayan, U.; Armstrong, A.J.; Stein, M.; Pinski, J.; et al. A Phase II Trial of the Aurora Kinase A Inhibitor Alisertib for Patients with Castration-resistant and Neuroendocrine Prostate Cancer: Efficacy and Biomarkers. Clin. Cancer Res. 2019, 25, 43–51. [Google Scholar] [CrossRef] [PubMed]
- Chiappori, A.A.; Williams, C.C.; Gray, J.E.; Tanvetyanon, T.; Haura, E.B.; Creelan, B.C.; Thapa, R.; Chen, D.T.; Simon, G.R.; Bepler, G.; et al. Randomized-controlled phase II trial of salvage chemotherapy after immunization with a TP53-transfected dendritic cell-based vaccine (Ad.p53-DC) in patients with recurrent small cell lung cancer. Cancer Immunol. Immunother. 2019, 68, 517–527. [Google Scholar] [CrossRef] [PubMed]
- Bauer, T.M.; Besse, B.; Martinez-Marti, A.; Trigo, J.M.; Moreno, V.; Garrido, P.; Ferron-Brady, G.; Wu, Y.; Park, J.; Collingwood, T.; et al. Phase I, Open-Label, Dose-Escalation Study of the Safety, Pharmacokinetics, Pharmacodynamics, and Efficacy of GSK2879552 in Relapsed/Refractory SCLC. J. Thorac. Oncol. 2019, 14, 1828–1838. [Google Scholar] [CrossRef] [PubMed]
- Rudin, C.M.; Awad, M.M.; Navarro, A.; Gottfried, M.; Peters, S.; Csőszi, T.; Cheema, P.K.; Rodriguez-Abreu, D.; Wollner, M.; Yang, J.C.; et al. Pembrolizumab or Placebo Plus Etoposide and Platinum as First-Line Therapy for Extensive-Stage Small-Cell Lung Cancer: Randomized, Double-Blind, Phase III KEYNOTE-604 Study. J. Clin. Oncol. 2020, 38, 2369–2379. [Google Scholar] [CrossRef] [PubMed]
- Luke, J.J.; Patel, M.R.; Blumenschein, G.R.; Hamilton, E.; Chmielowski, B.; Ulahannan, S.V.; Connolly, R.M.; Santa-Maria, C.A.; Wang, J.; Bahadur, S.W.; et al. The PD-1- and LAG-3-targeting bispecific molecule tebotelimab in solid tumors and hematologic cancers: A phase 1 trial. Nat. Med. 2023, 29, 2814–2824. [Google Scholar] [CrossRef] [PubMed]
- Marchocki, Z.; Swift, B.; Covens, A. Small Cell and Other Rare Histologic Types of Cervical Cancer. Curr. Oncol. Rep. 2022, 24, 1531–1539. [Google Scholar] [CrossRef]
- Ngoi, N.Y.; Sundararajan, V.; Tan, D.S. Exploiting replicative stress in gynecological cancers as a therapeutic strategy. Int. J. Gynecol. Cancer 2020, 30, 1224–1238. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, N.S.; Moore, D.; Parker, C.J.; Broker, T.R.; Chow, L.T. Targeting DNA Damage Response as a Strategy to Treat HPV Infections. Int. J. Mol. Sci. 2019, 20, 5455. [Google Scholar] [CrossRef]
- Tung, H.J.; Wang, C.C.; Liu, F.Y.; Lai, C.H. Complete remission of advanced and recurrent cervical cancer with pembrolizumab treatment- 3 case reports. Taiwan. J. Obstet. Gynecol. 2021, 60, 938–941. [Google Scholar] [CrossRef]
- Paterniti, T.A.; Dorr, K.; Ullah, A.; White, J.; Williams, H.; Ghamande, S. Complete Response to Combination Nivolumab and Ipilimumab in Recurrent Neuroendocrine Carcinoma of the Cervix. Obstet. Gynecol. 2021, 138, 813–816. [Google Scholar] [CrossRef] [PubMed]
- Frumovitz, M.; Westin, S.N.; Salvo, G.; Zarifa, A.; Xu, M.; Yap, T.A.; Rodon, A.J.; Karp, D.D.; Abonofal, A.; Jazaeri, A.A.; et al. Phase II study of pembrolizumab efficacy and safety in women with recurrent small cell neuroendocrine carcinoma of the lower genital tract. Gynecol. Oncol. 2020, 158, 570–575. [Google Scholar] [CrossRef] [PubMed]
- Sato, H.; Niimi, A.; Yasuhara, T.; Permata, T.B.M.; Hagiwara, Y.; Isono, M.; Nuryadi, E.; Sekine, R.; Oike, T.; Kakoti, S.; et al. DNA double-strand break repair pathway regulates PD-L1 expression in cancer cells. Nat. Commun. 2017, 8, 1751. [Google Scholar] [CrossRef] [PubMed]
- Naidoo, J.; Teo, M.Y.; Deady, S.; Comber, H.; Calvert, P. Should patients with extrapulmonary small-cell carcinoma receive prophylactic cranial irradiation? J. Thorac. Oncol. 2013, 8, 1215–1221. [Google Scholar] [CrossRef] [PubMed]
- Weed, J.C., Jr.; Graff, A.T.; Shoup, B.; Tawfik, O. Small cell undifferentiated (neuroendocrine) carcinoma of the uterine cervix. J. Am. Coll. Surg. 2003, 197, 44–51. [Google Scholar] [CrossRef] [PubMed]
- Rehman, A.U.; Khan, P.; Maurya, S.K.; Siddiqui, J.A.; Santamaria-Barria, J.A.; Batra, S.K.; Nasser, M.W. Liquid biopsies to occult brain metastasis. Mol. Cancer 2022, 21, 113. [Google Scholar] [CrossRef]
- De Mattos-Arruda, L.; Mayor, R.; Ng, C.K.Y.; Weigelt, B.; Martínez-Ricarte, F.; Torrejon, D.; Oliveira, M.; Arias, A.; Raventos, C.; Tang, J.; et al. Cerebrospinal fluid-derived circulating tumour DNA better represents the genomic alterations of brain tumours than plasma. Nat. Commun. 2015, 6, 8839. [Google Scholar] [CrossRef]
- Tanaka, M.; Kondo, J.; Kaneko, K.; Endo, H.; Onuma, K.; Coppo, R.; Masuda, M.; Kamiura, S.; Yoshino, K.; Ueda, Y.; et al. Heterogenous chemosensitivity of a panel of organoid lines derived from small cell neuroendocrine carcinoma of the uterine cervix. Hum. Cell 2021, 34, 889–900. [Google Scholar] [CrossRef] [PubMed]
- Nakajima, A.; Endo, H.; Okuyama, H.; Kiyohara, Y.; Kimura, T.; Kamiura, S.; Hiraoka, M.; Inoue, M. Radiation sensitivity assay with a panel of patient-derived spheroids of small cell carcinoma of the cervix. Int. J. Cancer 2015, 136, 2949–2960. [Google Scholar] [CrossRef]
- Tang, F.; Xu, D.; Wang, S.; Wong, C.K.; Martinez-Fundichely, A.; Lee, C.J.; Cohen, S.; Park, J.; Hill, C.E.; Eng, K.; et al. Chromatin profiles classify castration-resistant prostate cancers suggesting therapeutic targets. Science 2022, 376, eabe1505. [Google Scholar] [CrossRef]
- Gay, C.M.; Stewart, C.A.; Park, E.M.; Diao, L.; Groves, S.M.; Heeke, S.; Nabet, B.Y.; Fujimoto, J.; Solis, L.M.; Lu, W.; et al. Patterns of transcription factor programs and immune pathway activation define four major subtypes of SCLC with distinct therapeutic vulnerabilities. Cancer Cell 2021, 39, 346–360.e7. [Google Scholar] [CrossRef] [PubMed]
Types | PI3K/AKT Signaling Pathway | MAPK Signaling Pathway | TP53/BRCA Signaling Pathway | Wnt Signaling Pathway | Other Signaling Pathways |
---|---|---|---|---|---|
LOH | 3p14–p21 [21,43,44], INT-2 (11q13) [44] | 3p14–p21 [21,43,44], THRB (3p24) [44], INT-2 (11q13) [44] | 3p14–p21 [21,43,44], TP53 (17p13) [43,44], CDKN2 (9p21) [21], | 3p14–p21 [21,43,44], APC-MCC (5q21–q22) [21] | RB (13q14) [21,43,44] |
Somatic Mutations | PIK3CA (p.E545K) [31,38,45], PIK3CA (p.G106A, p.N345T, p.E545D) [38], PIK3CA (p.E542K, p.H1047Y, p.R88Q, p.H1047R) [45], AKT1 (p.E17K) [45], PTEN (p.G106A, p.F241S)[38], PTEN (p.V53A, p.H64Y) [46] | KRAS (p.G12V) [38,45], KRAS (p.G12D) [45,47], KRAS (p.G13D) [45], Erbb2 (p.R663Q) [38], c-Myc (p.A199T) [38], NRAS (p.E137D, p.Q61K) [45], MET (p.M1247V, p.E168D) [45] | TP53 (p.C238W, p.E271Q, p.C275Y, p.80fs, p.P80L) [38], TP53 (p.C275F, p.C176W, p.R110H, p.S241Y, p.A355V) [45], BRCA1 (p.T367I) [38], BRCA2 (p.Q1187fs) [38], RB1 (p.E137D) [45] | CTNNB1 (p.G34E, p.S45P, p.T41I) [45] | NCOA3(p.Q1239_1241del) [38], RB1 (p.S751fs) [38], NOTCH1 (p.Q2315*nonsense) [38], BCL6 (p.W375C) [38], ARID1B (p.K2043fs) [38], GNAS (p.R201S, p.R201C, p.R201H) [45], SMAD4 (p.E330K, p.N316S) [45], SMARCB1 (p.A203T) [45], FBXW7 (p.R479Q) [45], |
Structural Variations | Homology recombination of CBL (NM_005188.4) [33], | Fusing the genes CTDSPL2 (NM_016396.3) and SPG11 (NM_025137.4) [33], Deletion of TREH (NM_007180.3) intron 4 [33], Deletion of MUC17 (NM_00104015.2) exon 3 [33] | |||
microRNAs | has-let-7c [48], has-miR-125b [48] | has-miR-199a-5p [48] | has-miR-100 [48], has-miR-143 [48], has-miR-145 [48] | has-miR-10b [48] |
Target | Agent | Condition or Disease | Phase | Recruitment Status | ClinicalTrials.gov Identifier | Efficacy |
---|---|---|---|---|---|---|
PI3K | BKM120 | Extensive Stage SCLC | Phase 1 | Completed | NCT02194049 | - |
PI3K and mTOR | PF-05212384 | Advanced SCLC | Phase 1 | Completed | NCT02069158 | |
Akt1/2/3 | MK-2206 | Advanced SCLC | Phase 2 | Active, not recruiting | NCT01306045 | 2 cases PD (100%) [106] |
MEK | AZD6244 (Selumetinib) | Advanced SCLC | Phase 2 | Active, not recruiting | NCT01306045 | 1 case PD (100%) [106] |
ERBB2 | Lapatinib | Advanced SCLC | Phase 2 | Active, not recruiting | NCT01306045 | 1 case SD (100%) [106] |
EGFR/ERBB | Afatinib | Stage IV SCLC | Phase 2 | Withdrawn (medical decision) | NCT02876081 | |
MET | ARQ197 | Extended SCLC | Phase 2 | Terminated (Safety results) | NCT02608411 | |
Plk1 | BI 2536 | Sensitive- Relapse SCLC | Phase 2 | Completed | NCT00412880 | No PR or CR |
BET | PLX2853 | Advanced SCLC | Phase 1 | Completed | NCT03297424 | |
PARP1/2 | Veliparib | Relapsed or Refractory SCLC | Phase 2 | Completed | NCT01638546 | Improved ORR [107] |
PARP1/2 | Talazoparib | Advanced or Recurrent SCLC | Phase 1 | Completed | NCT01286987 | 2 cases PR (9%) and 4 cases SD (18%) [108] |
PARP1/2 | Veliparib | Persistent or Recurrent Carcinoma of the Cervix | Phase 2 | Completed | NCT01266447 | |
PARP1/2 | niraparib | SCLC and other High-Grade Neuroendocrine Carcinomas (NEC) | Phase 2 | Active, not recruiting | NCT04701307 | |
PARP1/2 | Olaparib | Newly Diagnosed Treatment-Naïve Limited-Stage SCLC | Phase 3 | Recruiting | NCT04624204 | |
PARP1/2 | Olaparib | Relapsed SCLC Harboring HR Pathway Gene Mutations | Phase 2 | Completed | NCT03009682 | |
ATR | Berzosertib | Relapsed Platinum-Resistant SCLC | Phase 2 | Completed | NCT04768296 | |
ATR | SC0245 | Relapsed Extensive-stage SCLC | Phase 1 and Phase 2 | recruiting | NCT05731518 | |
ATR | M6620 | SCLC (n = 5) and SCNCC (n = 1) | Phase 1 and Phase 2 | Active, not recruiting | Olaparib | Tolerable and active; one SCNCC case PD (100%) [109] |
ATR | AZD6738 | Relapsed SCLC | Phase 2 | Completed | NCT03428607 | |
Chk1 | SRA737 | Advanced SCLC | Phase 1 and Phase 2 | Completed | NCT02797977 | 11.1% cases PR [110] |
Wee1 | AZD1775 | Advanced SCLC | Phase 1 | Completed | NCT02482311 | Tolerated, with 33.3% disease control rate (DCR) [111] |
Wee1 | AZD1775 | Relapsed SCLC | Phase 2 | Completed | NCT02593019 | |
Aurora A | MLN8237 | Metastatic Castrate Resistant and Neuroendocrine Prostate Cancer | Phase 2 | Completed | NCT01799278 | Exceptional responders were with tumors suggestive of N-myc and Aurora-A overactivity [112]. |
Aurora A | JAB-2485 | Advanced SCLC | Phase 1 and Phase 2 | Recruiting | NCT05490472 | |
Aurora A | Alisertib | Extensive-stage SCLC | Phase 2 | Recruiting | NCT06095505 | |
Aurora B | AZD2811 | Relapsed SCLC | Phase 2 | Terminated | NCT03366675 | |
CDK4/6 | Trilaciclib | Extensive-stage SCLC | Phase 1 and Phase 2 | Completed | NCT02499770 | |
CDK7 | SY-5609 | Advanced SCLC | Phase 1 | Completed | NCT04247126 | |
VEGFR2, VEGFR1, VEGFR3, PDGFRa and c-Kit | Chiauranib | Relapsed or Refractory SCLC | Phase 1 | Completed | NCT03216343 | |
VEGF-A, B and PlGF | ziv-aflibercept | Extensive-stage SCLC | Phase 2 | Completed | NCT00828139 | Improved PFS [102] |
Abl, Src and c-Kit | Dasatinib | Chemo-Sensitive Relapsed SCLC | Phase 2 | Completed | NCT00470054 | 28 cases PD (65.12%) |
Wilms Tumor1(WT1) | Galinpepimut-S | Advanced SCLC | Phase 1 and Phase 2 | Unknown | NCT03761914 | |
TP53 | Ad.p53-DC vaccines | Extensive-stage SCLC | Phase 2 | Completed | NCT00617409 | Safe but failed to improve ORRs [113] |
TP53 | Autologous dendritic cell-adenovirus p53 vaccine | Extensive-stage SCLC | Phase 1 and Phase 2 | Completed | NCT00049218 | |
LSD1 | GSK2879552 | Relapsed/Refractory SCLC | Phase 1 | Terminated | NCT02034123 | Poor disease control and an adverse events (AEs) rate [114] |
LSD1 | Bomedemstat | Extensive-stage SCLC | Phase 1 and Phase 2 | Recruiting | NCT05191797 | |
GSPT1 | MRT-2359 | SCLC and High Grade NEC | Phase 1 and Phase 2 | Recruiting | NCT05546268 | |
CD3 and DLL3 | ZG006 | SCLC and NEC | Phase 1 and Phase 2 | Recruiting | NCT05978284 | |
DLL3 | Rovalpituzumab tesirine | Advanced or Metastatic SCLC | Phase 3 | Completed | NCT03061812 | |
DLL3 | hu3S193 | SCLC | Phase 1 | Completed | NCT00084799 | 5 cases PD (100%) |
PD-L1 and TGFβ 1 | M7824 | Relapsed SCLC | Phase 1 and Phase 2 | Recruiting | NCT03554473 | |
PD-1 | Pembrolizumab | Small-Cell Ovarian Carcinoma | Phase 2 | Recruiting | NCT04602377 | |
PD-1 | Pembrolizumab | Extensive-stage SCLC | Phase 3 | Completed | NCT03066778 | Improved PFS [115] |
PD-1 | Pembrolizumab | Extensive-stage SCLC | Phase 1 and Phase 2 | Terminated (PI no longer at site) | NCT02331251 | |
PD-1 | Pembrolizumab | Newly Diagnosed Treatment-Naïve Limited-Stage SCLC | Phase 3 | Recruiting | NCT04624204 | |
PD-1 and LAG-3 | MGD013 (Tebotelimab) | Extensive-stage SCLC | Phase 1 | Completed | NCT03219268 | Safe and active (600 mg IV Q2W) [116] |
PD1 | Dostarlima | SCLC and other High-Grade NEC | Phase 2 | Active, not recruiting | NCT04701307 | |
PD-L1 and CD274 | SHR-1316 (Adebrelimab) | Limited-Stage SCLC | Phase 3 | Not yet recruiting | NCT05496166 | |
BET Bromodomain and PD-1 | ZEN-3694 Pembrolizumab | Metastatic Prostate Small-Cell Carcinoma | Phase 2 | Recruiting | NCT04471974 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Qiu, H.; Lin, R.; Hong, W.; Lu, J.; Ling, H.; Sun, X.; Yang, C. Advancements in the Understanding of Small-Cell Neuroendocrine Cervical Cancer: Where We Stand and What Lies Ahead. J. Pers. Med. 2024, 14, 462. https://doi.org/10.3390/jpm14050462
Wang Y, Qiu H, Lin R, Hong W, Lu J, Ling H, Sun X, Yang C. Advancements in the Understanding of Small-Cell Neuroendocrine Cervical Cancer: Where We Stand and What Lies Ahead. Journal of Personalized Medicine. 2024; 14(5):462. https://doi.org/10.3390/jpm14050462
Chicago/Turabian StyleWang, Yan, Hui Qiu, Rongjie Lin, Weiwei Hong, Jiahao Lu, Huan Ling, Xiaoge Sun, and Chunxu Yang. 2024. "Advancements in the Understanding of Small-Cell Neuroendocrine Cervical Cancer: Where We Stand and What Lies Ahead" Journal of Personalized Medicine 14, no. 5: 462. https://doi.org/10.3390/jpm14050462
APA StyleWang, Y., Qiu, H., Lin, R., Hong, W., Lu, J., Ling, H., Sun, X., & Yang, C. (2024). Advancements in the Understanding of Small-Cell Neuroendocrine Cervical Cancer: Where We Stand and What Lies Ahead. Journal of Personalized Medicine, 14(5), 462. https://doi.org/10.3390/jpm14050462