F10 Gene Expression and Ethnic Disparities Present in Papillary Thyroid Carcinoma
Abstract
:1. Introduction
2. Materials and Methods
2.1. Gene Expression Data
2.2. Statistical Analysis
3. Results
3.1. Analysis of Gene Expression Differences in Disease-Free and Recurrent Papillary Thyroid Carcinoma
3.2. Ethnic Disparities in Gene Expression Profiles
3.3. Comparison of Overall Survival Curves
3.4. Comparison of Recurrence-Free Survival Curves
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer Statistics, 2022. CA Cancer J. Clin. 2022, 72, 7–33. [Google Scholar] [CrossRef]
- Pizzato, M.; Li, M.; Vignat, J.; Laversanne, M.; Singh, D.; La Vecchia, C.; Vaccarella, S. The Epidemiological Landscape of Thyroid Cancer Worldwide: GLOBOCAN Estimates for Incidence and Mortality Rates in 2020. Lancet Diabetes Endocrinol. 2022, 10, 264–272. [Google Scholar] [CrossRef]
- Grant, C.S. Recurrence of Papillary Thyroid Cancer after Optimized Surgery. Gland. Surg. 2015, 4, 52–62. [Google Scholar] [PubMed]
- Papaleontiou, M.; Evron, J.M.; Esfandiari, N.H.; Reyes-Gastelum, D.; Ward, K.C.; Hamilton, A.S.; Worden, F.; Haymart, M.R. Patient Report of Recurrent and Persistent Thyroid Cancer. Thyroid 2020, 30, 1297–1305. [Google Scholar] [CrossRef]
- Bonner, A.; Herring, B.; Wang, R.; Gillis, A.; Zmijewski, P.; Lindeman, B.; Fazendin, J.; Chen, H. The Association of Socioeconomic Factors and Well-Differentiated Thyroid Cancer. J. Surg. Res. 2023, 283, 973–981. [Google Scholar] [CrossRef] [PubMed]
- Guo, K.; Wang, Z. Risk Factors Influencing the Recurrence of Papillary Thyroid Carcinoma: A Systematic Review and Meta-Analysis. Int. J. Clin. Exp. Pathol. 2014, 7, 5393–5403. [Google Scholar] [PubMed]
- Li, Y.; Tian, J.; Jiang, K.; Wang, Z.; Gao, S.; Wei, K.; Yang, A.; Li, Q. Risk Factors and Predictive Model for Recurrence in Papillary Thyroid Carcinoma: A Single-Center Retrospective Cohort Study Based on 955 Cases. Front. Endocrinol. 2023, 14, 1268282. [Google Scholar] [CrossRef]
- Ywata de Carvalho, A.; Kohler, H.F.; Gomes, C.C.; Vartanian, J.G.; Kowalski, L.P. Predictive Factors for Recurrence of Papillary Thyroid Carcinoma: Analysis of 4,085 Patients. Acta Otorhinolaryngol. Ital. 2021, 41, 236–242. [Google Scholar] [CrossRef]
- Mazzaferri, E.L.; Jhiang, S.M. Long-Term Impact of Initial Surgical and Medical Therapy on Papillary and Follicular Thyroid Cancer. Am. J. Med. 1994, 97, 418–428. [Google Scholar] [CrossRef]
- Zhang, C.; Li, Y.; Li, J.; Chen, X. Total Thyroidectomy versus Lobectomy for Papillary Thyroid Cancer. Medicine 2020, 99, e19073. [Google Scholar] [CrossRef]
- Nieto, H.R.; Thornton, C.E.M.; Brookes, K.; Nobre de Menezes, A.; Fletcher, A.; Alshahrani, M.; Kocbiyik, M.; Sharma, N.; Boelaert, K.; Cazier, J.-B.; et al. Recurrence of Papillary Thyroid Cancer: A Systematic Appraisal of Risk Factors. J. Clin. Endocrinol. Metab. 2021, 107, 1392–1406. [Google Scholar] [CrossRef] [PubMed]
- Galmiche, A.; Rak, J.; Roumenina, L.T.; Saidak, Z. Coagulome and the Tumor Microenvironment: An Actionable Interplay. Trends Cancer 2022, 8, 369–383. [Google Scholar] [CrossRef] [PubMed]
- Tekin, C.; Shi, K.; Daalhuisen, J.B.; ten Brink, M.S.; Bijlsma, M.F.; Spek, C.A. PAR1 Signaling on Tumor Cells Limits Tumor Growth by Maintaining a Mesenchymal Phenotype in Pancreatic Cancer. Oncotarget 2018, 9, 32010–32023. [Google Scholar] [CrossRef] [PubMed]
- Flynn, A.N.; Buret, A.G. Proteinase-Activated Receptor 1 (PAR-1) and Cell Apoptosis. Apoptosis 2004, 9, 729–737. [Google Scholar] [CrossRef] [PubMed]
- Arce, M.; Pinto, M.P.; Galleguillos, M.; Muñoz, C.; Lange, S.; Ramirez, C.; Erices, R.; Gonzalez, P.; Velasquez, E.; Tempio, F.; et al. Coagulation Factor Xa Promotes Solid Tumor Growth, Experimental Metastasis and Endothelial Cell Activation. Cancers 2019, 11, 1103. [Google Scholar] [CrossRef] [PubMed]
- Zhong, L.-K.; Gan, X.-X.; Deng, X.-Y.; Shen, F.; Feng, J.-H.; Cai, W.-S.; Liu, Q.-Y.; Miao, J.-H.; Zheng, B.-X.; Xu, B. Potential Five-mRNA Signature Model for the Prediction of Prognosis in Patients with Papillary Thyroid Carcinoma. Oncol. Lett. 2020, 20, 2302–2310. [Google Scholar] [CrossRef] [PubMed]
- Sierko, E.; Wojtukiewicz, M.Z.; Zimnoch, L.; Tokajuk, P.; Ostrowska-Cichocka, K.; Kisiel, W. Co-Localization of Protein Z, Protein Z-Dependent Protease Inhibitor and Coagulation Factor X in Human Colon Cancer Tissue: Implications for Coagulation Regulation on Tumor Cells. Thromb. Res. 2012, 129, e112–e118. [Google Scholar] [CrossRef]
- Borensztajn, K.; Bijlsma, M.F.; Reitsma, P.H.; Peppelenbosch, M.P.; Spek, C.A. Coagulation Factor Xa Inhibits Cancer Cell Migration via Protease-Activated Receptor-1 Activation. Thromb. Res. 2009, 124, 219–225. [Google Scholar] [CrossRef] [PubMed]
- Cerami, E.; Gao, J.; Dogrusoz, U.; Gross, B.E.; Sumer, S.O.; Aksoy, B.A.; Jacobsen, A.; Byrne, C.J.; Heuer, M.L.; Larsson, E.; et al. The cBio Cancer Genomics Portal: An Open Platform for Exploring Multidimensional Cancer Genomics Data. Cancer Discov. 2012, 2, 401–404. [Google Scholar] [CrossRef]
- Gao, J.; Aksoy, B.A.; Dogrusoz, U.; Dresdner, G.; Gross, B.; Sumer, S.O.; Sun, Y.; Jacobsen, A.; Sinha, R.; Larsson, E.; et al. Integrative Analysis of Complex Cancer Genomics and Clinical Profiles Using the cBioPortal. Sci. Signal 2013, 6, p11. [Google Scholar] [CrossRef]
- Serrano-Gomez, S.J.; Sanabria-Salas, M.C.; Fejerman, L. Breast Cancer Health Disparities in Hispanics/Latinas. Curr. Breast Cancer Rep. 2020, 12, 175–184. [Google Scholar] [CrossRef]
- Miller, K.D.; Ortiz, A.P.; Pinheiro, P.S.; Bandi, P.; Minihan, A.; Fuchs, H.E.; Martinez Tyson, D.; Tortolero-Luna, G.; Fedewa, S.A.; Jemal, A.M.; et al. Cancer Statistics for the US Hispanic/Latino Population, 2021. CA Cancer J. Clin. 2021, 71, 466–487. [Google Scholar] [CrossRef] [PubMed]
- Adams, G.N.; Sharma, B.K.; Rosenfeldt, L.; Frederick, M.; Flick, M.J.; Witte, D.P.; Mosnier, L.O.; Harmel-Laws, E.; Steinbrecher, K.A.; Palumbo, J.S. Protease-Activated Receptor-1 Impedes Prostate and Intestinal Tumor Progression in Mice. J. Thromb. Haemost. 2018, 16, 2258–2269. [Google Scholar] [CrossRef] [PubMed]
- Aqbi, H.F.; Tyutyunyk-Massey, L.; Keim, R.C.; Butler, S.E.; Thekkudan, T.; Joshi, S.; Smith, T.M.; Bandyopadhyay, D.; Idowu, M.O.; Bear, H.D.; et al. Autophagy-Deficient Breast Cancer Shows Early Tumor Recurrence and Escape from Dormancy. Oncotarget 2018, 9, 22113–22122. [Google Scholar] [CrossRef]
- Lange, S.; Gonzalez, I.; Pinto, M.P.; Arce, M.; Valenzuela, R.; Aranda, E.; Elliot, M.; Alvarez, M.; Henriquez, S.; Velasquez, E.V.; et al. Independent Anti-Angiogenic Capacities of Coagulation Factors X and Xa. J. Cell. Physiol. 2014, 229, 1673–1680. [Google Scholar] [CrossRef] [PubMed]
- Frank, R.E.; Saclarides, T.J.; Leurgans, S.; Speziale, N.J.; Drab, E.A.; Rubin, D.B. Tumor Angiogenesis as a Predictor of Recurrence and Survival in Patients with Node-Negative Colon Cancer. Ann. Surg. 1995, 222, 695–699. [Google Scholar] [CrossRef]
- Agrawal, U.; Mishra, A.K.; Salgia, P.; Verma, S.; Mohanty, N.K.; Saxena, S. Role of Tumor Suppressor and Angiogenesis Markers in Prediction of Recurrence of Non Muscle Invasive Bladder Cancer. Pathol. Oncol. Res. 2011, 17, 91–101. [Google Scholar] [CrossRef] [PubMed]
- Yuan, S.-X.; Yang, F.; Yang, Y.; Tao, Q.-F.; Zhang, J.; Huang, G.; Yang, Y.; Wang, R.-Y.; Yang, S.; Huo, X.-S.; et al. Long Noncoding RNA Associated with Microvascular Invasion in Hepatocellular Carcinoma Promotes Angiogenesis and Serves as a Predictor for Hepatocellular Carcinoma Patients’ Poor Recurrence-Free Survival after Hepatectomy. Hepatology 2012, 56, 2231–2241. [Google Scholar] [CrossRef]
- Gacche, R.N. Compensatory Angiogenesis and Tumor Refractoriness. Oncogenesis 2015, 4, e153. [Google Scholar] [CrossRef]
- Majidpoor, J.; Mortezaee, K. Angiogenesis as a Hallmark of Solid Tumors—Clinical Perspectives. Cell. Oncol. 2021, 44, 715–737. [Google Scholar] [CrossRef]
- Folkman, J. Role of Angiogenesis in Tumor Growth and Metastasis. Semin. Oncol. 2002, 29 (Suppl. 16), 15–18. [Google Scholar] [CrossRef] [PubMed]
- Esnaola, N.F.; Ford, M.E. Racial Differences and Disparities in Cancer Care and Outcomes: Where’s the Rub? Surg. Oncol. Clin. N. Am. 2012, 21, 417–437. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Porter, T.; Kucheryavykh, L. F10 Gene Expression and Ethnic Disparities Present in Papillary Thyroid Carcinoma. J. Pers. Med. 2024, 14, 524. https://doi.org/10.3390/jpm14050524
Porter T, Kucheryavykh L. F10 Gene Expression and Ethnic Disparities Present in Papillary Thyroid Carcinoma. Journal of Personalized Medicine. 2024; 14(5):524. https://doi.org/10.3390/jpm14050524
Chicago/Turabian StylePorter, Tyrel, and Lilia Kucheryavykh. 2024. "F10 Gene Expression and Ethnic Disparities Present in Papillary Thyroid Carcinoma" Journal of Personalized Medicine 14, no. 5: 524. https://doi.org/10.3390/jpm14050524
APA StylePorter, T., & Kucheryavykh, L. (2024). F10 Gene Expression and Ethnic Disparities Present in Papillary Thyroid Carcinoma. Journal of Personalized Medicine, 14(5), 524. https://doi.org/10.3390/jpm14050524