Correlation between Genomic Variants and Worldwide COVID-19 Epidemiology
Abstract
:1. Introduction
2. Materials and Methods
2.1. Determination of SNPs
2.2. Epidemiological and Genetic Data
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hu, J.; Li, C.; Wang, S.; Li, T.; Zhang, H. Genetic variants are identified to increase risk of COVID-19 related mortality from UK Biobank data. Hum. Genom. 2021, 15, 10. [Google Scholar] [CrossRef] [PubMed]
- Harrison, A.G.; Lin, T.; Wang, P. Mechanisms of SARS-CoV-2 Transmission and Pathogenesis. Immunol. Tendencies 2020, 41, 1100–1115. [Google Scholar] [CrossRef] [PubMed]
- Karlsen, T.H. Understanding COVID-19 through genome-wide association studies. Nat. Genet. 2022, 54, 368–369. [Google Scholar] [CrossRef] [PubMed]
- Vetter, P.; Vu, D.L.; L’Huillier, A.G.; Schibler, M.; Kaiser, L.; Jacquerioz, F. Clinical features of COVID-19. BMJ 2020, 369, m1470. [Google Scholar] [CrossRef] [PubMed]
- Zhou, F.; Yu, T.; Du, R.; Fan, G.; Liu, Y.; Liu, Z.; Xiang, J.; Wang, Y.; Song, B.; Gu, X.; et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: A retrospective cohort study. Lancet 2020, 395, 1054–1062. [Google Scholar] [CrossRef] [PubMed]
- Leung, K.; Lau, E.H.Y.; Wong, C.K.H.; Leung, G.M.; Wu, J.T. Estimating the transmission dynamics of SARS-CoV-2 Omicron BF.7 in Beijing after adjustment of the zero-COVID policy in November–December 2022. Nat. Med. 2023, 29, 579–582. [Google Scholar] [CrossRef] [PubMed]
- Kousathanas, A.; Pairo-Castineira, E.; Rawlik, K.; Stuckey, A.; Odhams, C.A.; Walker, S.; Russell, C.D.; Malinauskas, T.; Wu, Y.; Millar, J.; et al. Whole-genome sequencing reveals host factors underlying critical COVID-19. Nature 2022, 607, 97–103. [Google Scholar] [PubMed]
- Sharif-Zak, M.; Abbasi-Jorjandi, M.; Asadikaram, G.; Ghoreshi, Z.-A.-S.; Rezazadeh-Jabalbarzi, M.; Afsharipur, A.; Rashidinejad, H.; Khajepour, F.; Jafarzadeh, A.; Arefinia, N.; et al. CCR2 and DPP9 expression in the peripheral blood of COVID-19 patients: Influences of the disease severity and gender. Immunobiology 2022, 227, 152184. [Google Scholar] [CrossRef] [PubMed]
- Rahimi, A.; Mirzazadeh, A.; Tavakolpour, S. Genetics and genomics of SARS-CoV-2: A review of the literature with the special focus on genetic diversity and SARS-CoV-2 genome detection. Genomics 2021, 113, 1221–1232. [Google Scholar] [CrossRef] [PubMed]
- WHO Coronavirus (COVID-19) Dashboard. Available online: https://covid19.who.int (accessed on 25 September 2023).
- 1000 Genomes|A Deep Catalog of Human Genetic Variation. Available online: https://www.internationalgenome.org/ (accessed on 20 August 2023).
- Intergenic Regions Genome.gov. Available online: https://www.genome.gov/genetics-glossary/Intergenic-Regions (accessed on 1 November 2023).
- Pairo-Castineira, E.; Rawlik, K.; Bretherick, A.D.; Qi, T.; Wu, Y.; Nassiri, I.; McConkey, G.A.; Zechner, M.; Klaric, L.; Griffiths, F.; et al. GWAS and meta-analysis identifies 49 genetic variants underlying critical COVID-19. Nature 2023, 617, 764–768. [Google Scholar] [CrossRef] [PubMed]
- COVID-19 Host Genetics Initiative. A second update on mapping the human genetic architecture of COVID-19. Nature 2023, 621, E7–E26. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Hilgenfeld, R.; Whitley, R.; De Clercq, E. Therapeutic strategies for COVID-19: Progress and lessons learned. Nat. Rev. Drug Discov. 2023, 22, 449–475. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, L.C.; Gomes, C.E.M.; Rodrigues-Neto, J.F.; Jeronimo, S.M.B. Genome-wide association studies of COVID-19: Connecting the dots. Infection. Genet. Evol. 2022, 106, 105379. [Google Scholar] [CrossRef] [PubMed]
- Qin, S.; Yao, X.; Li, W.; Wang, C.; Xu, W.; Gan, Z.; Yang, Y.; Zhong, A.; Wang, B.; He, Z.; et al. Novel insight into the underlying dysregulation mechanisms of immune cell-to-cell communication by analyzing multitissue single-cell atlas of two COVID-19 patients. Cell Death Dis. 2023, 14, 286. [Google Scholar] [CrossRef] [PubMed]
- Yao, Y.; Ye, F.; Li, K.; Xu, P.; Tan, W.; Feng, Q.; Rao, S. Genome and epigenome editing identify CCR9 and SLC6A20 as target genes at the 3p21.31 locus associated with severe COVID-19. Signal Transduct. Target. Ther. 2021, 6, 85. [Google Scholar] [CrossRef] [PubMed]
- Acar, A. Pan-Cancer Analysis of the COVID-19 Causal Gene SLC6A20. ACS Omega 2023, 8, 13153–13161. [Google Scholar] [CrossRef] [PubMed]
- Pairo-Castineira, E.; Clohisey, S.; Klaric, L.; Bretherick, A.D.; Rawlik, K.; Pasko, D.; Walker, S.; Parkinson, N.; Fourman, M.H.; Russell, C.D.; et al. Genetic mechanisms of critical illness in COVID-19. Nature 2021, 591, 92–98. [Google Scholar] [CrossRef]
- SLC22A31 Solute Carrier Family 22 Member 31 [Homo Sapiens (Human)]—Gene—NCBI. Available online: https://www.ncbi.nlm.nih.gov/gene?Db=gene&Cmd=DetailsSearch&Term=146429 (accessed on 2 December 2023).
- Luo, S.; Liang, Y.; Wong, T.H.T.; Schooling, C.M.; Au Yeung, S.L. Identifying factors contributing to increased susceptibility to COVID-19 risk: A systematic review of Mendelian randomization studies. Int. J. Epidemiol. 2022, 51, 1088–1105. [Google Scholar] [CrossRef] [PubMed]
- Parikh, V.N.; Ioannidis, A.G.; Jimenez-Morales, D.; Gorzynski, J.E.; De Jong, H.N.; Liu, X.; Roque, J.; Cepeda-Espinoza, V.P.; Osoegawa, K.; Hughes, C.; et al. Deconvoluting complex correlates of COVID-19 severity with a multi-omic pandemic tracking strategy. Nat. Commun. 2022, 13, 5107. [Google Scholar] [CrossRef]
- Barturen, G.; Carnero-Montoro, E.; Martínez-Bueno, M.; Rojo-Rello, S.; Sobrino, B.; Porras-Perales, Ó.; Alcántara-Domínguez, C.; Bernardo, D.; Alarcón-Riquelme, M.E. Whole blood DNA methylation analysis reveals respiratory environmental traits involved in COVID-19 severity following SARS-CoV-2 infection. Nat. Commun. 2022, 13, 4597. [Google Scholar] [CrossRef]
- Amraei, R.; Yin, W.; Napoleon, M.A.; Suder, E.L.; Berrigan, J.; Zhao, Q.; Olejnik, J.; Chandler, K.B.; Xia, C.; Feldman, J.; et al. CD209L/L-SIGN and CD209/DC-SIGN act as receptors for SARS-CoV-2. bioRxiv 2021. 2020.06.22.165803. [Google Scholar] [CrossRef] [PubMed]
- Su, W.; Lin, X.-T.; Zhao, S.; Zheng, X.-Q.; Zhou, Y.-Q.; Xiao, L.-L.; Chen, H.; Zhang, Z.-Y.; Zhang, L.-J.; Wu, X.-X. Tripartite motif-containing protein 46 accelerates influenza A H7N9 virus infection by promoting K48-linked ubiquitination of TBK1. Virol. J. 2022, 19, 176. [Google Scholar] [CrossRef] [PubMed]
- Tantai, J.; Pan, X.; Chen, Y.; Shen, Y.; Ji, C. TRIM46 activates AKT/HK2 signaling by modifying PHLPP2 ubiquitylation to promote glycolysis and chemoresistance of lung cancer cells. Cell Death Dis. 2022, 13, 285. [Google Scholar] [CrossRef]
- Anisul, M.; Shilts, J.; Schwartzentruber, J.; Hayhurst, J.; Buniello, A.; Mohammed, E.S.E.; Zheng, J.; Holmes, M.; Ochoa, D.; Carmona, M.; et al. A proteome-wide genetic investigation identifies several SARS-CoV-2-exploited host targets of clinical relevance. eLife 2021, 10, e69719. [Google Scholar] [CrossRef] [PubMed]
- Horowitz, J.E.; Kosmicki, J.A.; Damask, A.; Sharma, D.; Roberts, G.H.L.; Justice, A.E.; Banerjee, N.; Coignet, M.; Yadav, A.; Leader, J.B.; et al. Genome-wide analysis provides genetic evidence that ACE2 influences COVID-19 risk and yields risk scores associated with severe disease. Nat. Genet. 2022, 54, 382–392. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Ke, Y.; Xia, X.; Wang, Y.; Cheng, F.; Liu, X.; Jin, X.; Li, B.; Xie, C.; Liu, S.; et al. Genome-wide association study of COVID-19 severity among the Chinese population. Cell Discov. 2021, 7, 1–16. [Google Scholar] [CrossRef]
- Smatti, M.K.; Al-Sarraj, Y.A.; Albagha, O.; Yassine, H.M. Host Genetic Variants Potentially Associated With SARS-CoV-2: A Multi-Population Analysis. Front. Genet. 2020, 11, 578523. [Google Scholar] [CrossRef] [PubMed]
- Cruz, R.; Almeida, S.D.-D.; de Heredia, M.L.; Quintela, I.; Ceballos, F.C.; Pita, G.; Lorenzo-Salazar, J.M.; González-Montelongo, R.; Gago-Domínguez, M.; Porras, M.S.; et al. Novel genes and sex differences in COVID-19 severity. Hum. Mol. Genet. 2022, 31, 3789–3806. [Google Scholar] [CrossRef] [PubMed]
- Eshetie, S.; Jullian, P.; Benyamin, B.; Lee, S.H. Host genetic determinants of COVID-19 susceptibility and severity: A systematic review and meta-analysis. Rev. Med Virol. 2023, 33, e2466. [Google Scholar] [CrossRef] [PubMed]
- Chamnanphon, M.; Pongpanich, M.; Suttichet, T.B.; Jantarabenjakul, W.; Torvorapanit, P.; Putcharoen, O.; Sodsai, P.; Phokaew, C.; Hirankarn, N.; Chariyavilaskul, P.; et al. Host genetic factors of COVID-19 susceptibility and disease severity in a Thai population. J. Hum. Genet. 2022, 67, 295–301. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Peng, H.; Chen, F.; Liu, C.; Zheng, Q.; Wang, M.; Wang, J.; Yu, H.; Xue, E.; Chen, X.; et al. Identification of genetic loci jointly influencing COVID-19 and coronary heart diseases. Hum. Genom. 2023, 17, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Asteris, P.G.; Gavriilaki, E.; Touloumenidou, T.; Koravou, E.; Koutra, M.; Papayanni, P.G.; Pouleres, A.; Karali, V.; Lemonis, M.E.; Mamou, A.; et al. Genetic prediction of ICU hospitalization and mortality in COVID-19 patients using artificial neural networks. J. Cell. Mol. Med. 2022, 26, 1445–1455. [Google Scholar] [CrossRef] [PubMed]
- Degenhardt, F.; Ellinghaus, D.; Juzenas, S.; Lerga-Jaso, J.; Wendorff, M.; Maya-Miles, D.; Uellendahl-Werth, F.; ElAbd, H.; Ruehlemann, M.C.; Arora, J.; et al. Detailed stratified GWAS analysis for severe COVID-19 in four European populations. Hum. Mol. Genet. 2022, 31, 3945–3966. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Ke, Y.; Shen, W.; Shi, S.; Wang, Y.; Lin, K.; Guo, X.; Wang, C.; Zhang, Y.; Zhao, Z. Targeted screening of genetic associations with COVID-19 susceptibility and severity. Front. Genet. 2022, 13, 1073880. [Google Scholar] [CrossRef] [PubMed]
- Fadista, J.; Kraven, L.M.; Karjalainen, J.; Andrews, S.J.; Geller, F.; Baillie, J.K.; Wain, L.; Jenkins, R.G.; Feenstra, B. Shared genetic etiology between idiopathic pulmonary fibrosis and COVID-19 severity. EBioMedicine 2021, 65, 103277. [Google Scholar] [CrossRef] [PubMed]
- Du, M.; Garcia, J.G.N.; Christie, J.D.; Xin, J.; Cai, G.; Meyer, N.J.; Zhu, Z.; Yuan, Q.; Zhang, Z.; Su, L.; et al. Integrative omics provide biological and clinical insights into acute respiratory distress syndrome. Intensiv. Care Med. 2021, 47, 761–771. [Google Scholar] [CrossRef] [PubMed]
- Gavriilaki, E.; Asteris, P.G.; Touloumenidou, T.; Koravou, E.-E.; Koutra, M.; Papayanni, P.G.; Karali, V.; Papalexandri, A.; Varelas, C.; Chatzopoulou, F.; et al. Genetic justification of severe COVID-19 using a rigorous algorithm. Clin. Immunol. 2021, 226, 108726. [Google Scholar] [CrossRef] [PubMed]
- di Flora, D.C.; Dionizio, A.; Pereira, H.A.B.S.; Garbieri, T.F.; Grizzo, L.T.; Dionisio, T.J.; Leite, A.d.L.; Silva-Costa, L.C.; Buzalaf, N.R.; Reis, F.N.; et al. Analysis of Plasma Proteins Involved in Inflammation, Immune Response/Complement System, and Blood Coagulation upon Admission of COVID-19 Patients to Hospital May Help to Predict the Prognosis of the Disease. Cells 2023, 12, 1601. [Google Scholar] [CrossRef] [PubMed]
- Udomsinprasert, W.; Nontawong, N.; Saengsiwaritt, W.; Panthan, B.; Jiaranai, P.; Thongchompoo, N.; Santon, S.; Runcharoen, C.; Sensorn, I.; Jittikoon, J.; et al. Host genetic polymorphisms involved in long-term symptoms of COVID-19. Emerg. Microbes Infect. 2023, 12, 2239952. [Google Scholar] [CrossRef] [PubMed]
- Verma, A.; Minnier, J.; Wan, E.S.; Huffman, J.E.; Gao, L.; Joseph, J.; Ho, Y.-L.; Wu, W.-C.; Cho, K.; Gorman, B.R.; et al. A MUC5B Gene Polymorphism, rs35705950-T, Confers Protective Effects Against COVID-19 Hospitalization but Not Severe Disease or Mortality. Am. J. Respir. Crit. Care Med. 2022, 206, 1220–1229. [Google Scholar] [CrossRef] [PubMed]
- Velavan, T.P.; Pallerla, S.R.; Rüter, J.; Augustin, Y.; Kremsner, P.G.; Krishna, S.; Meyer, C.G. Host genetic factors determining COVID-19 susceptibility and severity. EBioMedicine 2021, 72, 103629. [Google Scholar] [CrossRef] [PubMed]
- Pathak, G.A.; Polimanti, R.; Karjalainen, J.; Daly, M.; Ganna, A.; Daly, M.J.; Stevens, C.; Kanai, M.; Liao, R.G.; Trankiem, A.; et al. A first update on mapping the human genetic architecture of COVID-19. Nature 2022, 608, E1–E10. [Google Scholar] [CrossRef] [PubMed]
- Huffman, J.E.; Butler-Laporte, G.; Khan, A.; Pairo-Castineira, E.; Drivas, T.G.; Peloso, G.M.; Nakanishi, T.; Ganna, A.; Verma, A.; Baillie, J.K.; et al. Multi-ancestry fine mapping implicates OAS1 splicing in risk of severe COVID-19. Nat. Genet. 2022, 54, 125–127. [Google Scholar] [CrossRef] [PubMed]
Gene | SNP ID/Association | Most Severe Consequence | Alleles | Ancestral | Clinical Impact | p Value | Frequences | |||
---|---|---|---|---|---|---|---|---|---|---|
AFR | AMR | EUR | SAS + EAS | |||||||
C3 | rs2547438/ Incidence | Intron Variant | T/C/G | G | Benign | 0.0436 | 0.042 | 0.205 | 0.257 | 0.166 |
SLC6A20 | rs2271616/ Incidence | 5′ UTR Variant | G/T | G | Benign | 0.0497 | 0.011 | 0.108 | 0.135 | 0.09 |
DPP9 | rs12610495/ Incidence | Intron Variant | A/G/T | A | Not Reported in ClinVar | 0.0498 | 0.128 | 0.203 | 0.294 | 0.157 |
MUC5B | rs35705950/ Incidence | None | G/A/T | G | Benign; risk factor | 0.0221 | 0.003 | 0.056 | 0.107 | 0.0425 |
- * | rs2176724/ Incidence | Intergenic Variant | G/A | G | Not Reported in ClinVar | 0.0494 | 0.411 | 0.102 | 0.11 | 0.046 |
OAS1 | rs10774671/ Mortality | Splice Acceptor Variant | G/A/C | G | Benign | 0.0105 | 0.64 | 0.274 | 0.352 | 0.272 |
CD209 | rs4804803/ Mortality | 2 KB Upstream Variant | A/G | G | protective; risk factor | 0.046 | 0.445 | 0.157 | 0.216 | 0.129 |
JAK1 | rs12046291/ Incidence | Intron Variant | A/G | A | Not Reported in ClinVar | 0.021 | 0.126 | 0.451 | 0.710 | 0.379 |
SLC22A31 | rs117169628/ Incidence | Missense Variant | G/A | G | Benign | 0.042 | 0.006 | 0.115 | 0.161 | 0.057 |
- * | rs1073165/ Incidence | Intergenic Variant | A/G | A | Not Reported in ClinVar | 0.019 | 0.203 | 0.376 | 0.403 | 0.2165 |
TRIM46 | rs7528026/ Mortality | Intron Variant | G/A | G | Not Reported in ClinVar | 0.049 | 0.003 | 0.030 | 0.020 | 0.009 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Costa, A.C.A.d.; Albarello Gellen, L.P.; Fernandes, M.R.; Coelho, R.d.C.C.; Monte, N.; Moraes, F.C.A.d.; Calderaro, M.C.L.; Freitas, L.M.d.; Matos, J.A.; Fernandes, T.F.d.S.; et al. Correlation between Genomic Variants and Worldwide COVID-19 Epidemiology. J. Pers. Med. 2024, 14, 579. https://doi.org/10.3390/jpm14060579
Costa ACAd, Albarello Gellen LP, Fernandes MR, Coelho RdCC, Monte N, Moraes FCAd, Calderaro MCL, Freitas LMd, Matos JA, Fernandes TFdS, et al. Correlation between Genomic Variants and Worldwide COVID-19 Epidemiology. Journal of Personalized Medicine. 2024; 14(6):579. https://doi.org/10.3390/jpm14060579
Chicago/Turabian StyleCosta, Ana Caroline Alves da, Laura Patrícia Albarello Gellen, Marianne Rodrigues Fernandes, Rita de Cássia Calderaro Coelho, Natasha Monte, Francisco Cezar Aquino de Moraes, Maria Clara Leite Calderaro, Lilian Marques de Freitas, Juliana Aires Matos, Thamara Fernanda da Silva Fernandes, and et al. 2024. "Correlation between Genomic Variants and Worldwide COVID-19 Epidemiology" Journal of Personalized Medicine 14, no. 6: 579. https://doi.org/10.3390/jpm14060579
APA StyleCosta, A. C. A. d., Albarello Gellen, L. P., Fernandes, M. R., Coelho, R. d. C. C., Monte, N., Moraes, F. C. A. d., Calderaro, M. C. L., Freitas, L. M. d., Matos, J. A., Fernandes, T. F. d. S., Aguiar, K. E. C., Vinagre, L. W. M. S., dos Santos, S. E. B., & dos Santos, N. P. C. (2024). Correlation between Genomic Variants and Worldwide COVID-19 Epidemiology. Journal of Personalized Medicine, 14(6), 579. https://doi.org/10.3390/jpm14060579