Therapeutic Apheresis Using a β2-Microglobulin Removal Column Reduces Circulating Tumor Cell Count
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patient Cohort
2.2. Therapeutic Apheresis
2.3. Statistical Analysis
3. Results
3.1. CTC Removal Using Therapeutic Apheresis with Filtor for Sinonasal Neuroendocrine Arcinoma
3.2. CTC Removal Using Therapeutic Apheresis with Filtor for Colorectal Cancer
3.3. CTC Removal Using Therapeutic Apheresis with Filtor for Pancreatic Ductal Adenocarcinoma
3.4. Serum β2M and CTC Counts
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sivanathan, P.C.; Ooi, K.S.; Mohammad Haniff, M.A.S.; Ahmadipour, M.; Dee, C.F.; Mokhtar, N.M.; Hamzah, A.A.; Chang, E.Y. Lifting the veil: Characteristics, clinical significance, and application of β-2-microglobulin as biomarkers and its detection with biosensors. ACS Biomater. Sci. Eng. 2022, 8, 3142–3161. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Zheng, H.; Cao, X.; Meng, P.; Liu, J.; Zheng, C.; Zuo, H.; Wang, Z.; Zhang, T. β2-microglobulin and colorectal cancer among inpatients: A case–control study. Sci. Rep. 2023, 13, 12222. [Google Scholar] [CrossRef] [PubMed]
- Azuma, J.; Yamamoto, T.; Sakurai, M.; Amou, R.; Yamada, C.; Hashimoto, K.; Kajita, S.; Yamamoto, K.; Kijima, E.; Mizoguchi, Y.; et al. Urinary β2-microglobulin as an early marker of infantile enterovirus and human Parechovirus infections. Medicine 2018, 97, e12930. [Google Scholar] [CrossRef]
- Zumrutdal, A. Role of β2-microglobulin in uremic patients may be greater than originally suspected. World J. Nephrol. 2015, 4, 98–104. [Google Scholar] [CrossRef]
- Kyrtsonis, M.C.; Maltezas, D.; Tzenou, T.; Koulieris, E.; Bradwell, A.R. Staging systems and prognostic factors as a guide to therapeutic decisions in multiple myeloma. Semin. Hematol. 2009, 46, 110–117. [Google Scholar] [CrossRef]
- Shi, C.; Zhu, Y.; Su, Y.; Chung, L.W.; Cheng, T. β2-microglobulin: Emerging as a promising cancer therapeutic target. Drug Discov. Today 2009, 14, 25–30. [Google Scholar] [CrossRef]
- Lambert, A.W.; Weinberg, R.A. Linking EMT programmes to normal and neoplastic epithelial stem cells. Nat. Rev. Cancer 2021, 21, 325–338. [Google Scholar] [CrossRef] [PubMed]
- Nomura, T.; Huang, W.C.; Zhau, H.E.; Josson, S.; Mimata, H.; Chung, L.W. β2-microglobulin-mediated signaling as a target for cancer therapy. Anticancer Agents Med. Chem. 2014, 14, 343–352. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.; Kornmann, M.; Traub, B. Role of epithelial to mesenchymal transition in colorectal cancer. Int. J. Mol. Sci. 2023, 24, 14815. [Google Scholar] [CrossRef]
- Harper, K.L.; Sosa, M.S.; Entenberg, D.; Hosseini, H.; Cheung, J.F.; Nobre, R.; Avivar-Valderas, A.; Nagi, C.; Girnius, N.; Davis, R.J.; et al. Mechanism of early dissemination and metastasis in Her2+ mammary cancer. Nature 2016, 540, 588–592. [Google Scholar] [CrossRef]
- Danila, D.C.; Pantel, K.; Fleisher, M.; Scher, H.I. Circulating tumors cells as biomarkers: Progress toward biomarker qualification. Cancer J. 2011, 17, 438–450. [Google Scholar] [CrossRef] [PubMed]
- Lin, D.; Shen, L.; Luo, M.; Zhang, K.; Li, J.; Yang, Q.; Zhu, F.; Zhou, D.; Zheng, S.; Chen, Y.; et al. Circulating tumor cells: Biology and clinical significance. Signal Transduct. Target. Ther. 2021, 6, 404. [Google Scholar] [CrossRef] [PubMed]
- Marrugo-Ramírez, J.; Mir, M.; Samitier, J. Blood-based cancer biomarkers in liquid biopsy: A promising non-invasive alternative to tissue biopsy. Int. J. Mol. Sci. 2018, 19, 2877. [Google Scholar] [CrossRef] [PubMed]
- Aouad, P.; Quinn, H.M.; Berger, A.; Brisken, C. Tumor dormancy: EMT beyond invasion and metastasis. Genesis 2023, 62, e23552. [Google Scholar] [CrossRef] [PubMed]
- Chang, Y.W.; Hsieh, P.W.; Chang, Y.T.; Lu, M.H.; Huang, T.F.; Chong, K.Y.; Liao, H.R.; Cheng, J.C.; Tseng, C.P. Identification of a novel platelet antagonist that binds to CLEC-2 and suppresses podoplanin-induced platelet aggregation and cancer metastasis. Oncotarget 2015, 6, 42733–42748. [Google Scholar] [CrossRef] [PubMed]
- Miyashita, T.; Tajima, H.; Gabata, R.; Okazaki, M.; Shimbashi, H.; Ohbatake, Y.; Okamoto, K.; Nakanuma, S.; Sakai, S.; Makino, I.; et al. Impact of extravasated platelet activation and podoplanin-positive cancer-associated fibroblasts in pancreatic cancer stroma. Anticancer Res. 2019, 39, 5565–5572. [Google Scholar] [CrossRef] [PubMed]
- Sasano, T.; Gonzalez-Delgado, R.; Muñoz, N.M.; Carlos-Alcade, W.; Cho, M.S.; Sheth, R.A.; Sood, A.K.; Afshar-Kharghan, V. Podoplanin promotes tumor growth, platelet aggregation, and venous thrombosis in murine models of ovarian cancer. J. Thromb. Haemost. 2022, 20, 104–114. [Google Scholar] [CrossRef]
- Astarita, J.L.; Acton, S.E.; Turley, S.J. Podoplanin: Emerging functions in development, the immune system, and cancer. Front. Immunol. 2012, 3, 283. [Google Scholar] [CrossRef]
- Suzuki, H.; Kaneko, M.K.; Kato, Y. Roles of podoplanin in malignant progression of tumor. Cells 2022, 11, 575. [Google Scholar] [CrossRef]
- Ikoma, Y.; Kijima, H.; Masuda, R.; Tanaka, M.; Inokuchi, S.; Iwazaki, M. Podoplanin expression is correlated with the prognosis of lung squamous cell carcinoma. Biomed. Res. 2015, 36, 393–402. [Google Scholar] [CrossRef]
- Tanaka, M.; Kijima, H.; Shimada, H.; Makuuchi, H.; Ozawa, S.; Inokuchi, S. Expression of podoplanin and vimentin is correlated with prognosis in esophageal squamous cell carcinoma. Mol. Med. Rep. 2015, 12, 4029–4036. [Google Scholar] [CrossRef] [PubMed]
- Grzegrzolka, J.; Wojtyra, P.; Biala, M.; Piotrowska, A.; Gomulkiewicz, A.; Rys, J.; Podhorska-Okolow, M.; Dziegiel, P. Correlation between expression of Twist and podoplanin in ductal breast carcinoma. Anticancer Res. 2017, 37, 5485–5493. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.; Lu, J.; Wang, C.; Xue, X. The prognostic values of the expression of vimentin, TP53, and podoplanin in patients with cervical cancer. Cancer Cell Int. 2017, 17, 80. [Google Scholar] [CrossRef] [PubMed]
- Uchiumi, N.; Sakuma, K.; Sato, S.; Matsumoto, Y.; Kobayashi, H.; Toriyabe, K.; Hayashi, K.; Kawasaki, T.; Watanabe, T.; Itohisa, A.; et al. The clinical evaluation of novel polymethyl methacrylate membrane with a modified membrane surface: A multicenter pilot study. Ren. Replace. Ther. 2018, 4, 1–9. [Google Scholar] [CrossRef]
- Brash, J.L.; Horbett, T.A.; Latour, R.A.; Tengvall, P. The blood compatibility challenge. Part 2: Protein adsorption phenomena governing blood reactivity. Acta Biomater. 2019, 94, 11–24. [Google Scholar] [CrossRef]
- Losappio, V.; Franzin, R.; Infante, B.; Godeas, G.; Gesualdo, L.; Fersini, A.; Castellano, G.; Stallone, G. Molecular mechanisms of premature aging in hemodialysis: The complex interplay between innate and adaptive immune dysfunction. Int. J. Mol. Sci. 2020, 21, 3422. [Google Scholar] [CrossRef]
Cancer Type | Sinonasal Neuroendocrine Carcinoma | Colorectal Cancer | Ductal Adenocarcinoma |
---|---|---|---|
Stage | T2N0M0 | T1N0M0 | Postoperative follow-up |
Age (years) | 58 | 53 | 69 |
Sex | Male | Female | Female |
Weight (kg) | 60 | 50 | 52.8 |
Circulating blood volume (mL) | 6000 | 4500 | 4500 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Komura, Y.; Kimura, S.; Takaura, A.; Hirasawa, Y.; Segawa, K.; Muranishi, H.; Imataki, O.; Kumayama, Y.; Homma, K. Therapeutic Apheresis Using a β2-Microglobulin Removal Column Reduces Circulating Tumor Cell Count. J. Pers. Med. 2024, 14, 640. https://doi.org/10.3390/jpm14060640
Komura Y, Kimura S, Takaura A, Hirasawa Y, Segawa K, Muranishi H, Imataki O, Kumayama Y, Homma K. Therapeutic Apheresis Using a β2-Microglobulin Removal Column Reduces Circulating Tumor Cell Count. Journal of Personalized Medicine. 2024; 14(6):640. https://doi.org/10.3390/jpm14060640
Chicago/Turabian StyleKomura, Yasuo, Shintarou Kimura, Ayana Takaura, Yumi Hirasawa, Katsunori Segawa, Hiromi Muranishi, Osamu Imataki, Yoshihisa Kumayama, and Koichiro Homma. 2024. "Therapeutic Apheresis Using a β2-Microglobulin Removal Column Reduces Circulating Tumor Cell Count" Journal of Personalized Medicine 14, no. 6: 640. https://doi.org/10.3390/jpm14060640