Development of a Simple Scoring System for Predicting Discharge Safety from the Medical ICU to Low-Acuity Wards: The Role of the Sequential Organ Failure Assessment Score, Albumin, and Red Blood Cell Distribution Width
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Patient Population
2.2. Data Collection and Clinical Outcomes
2.3. Model Development and Validation
2.4. Statistical Analysis
3. Results
3.1. Baseline Characteristics in the Development Cohort
3.2. Mortality-Related Factors
3.3. Development of a Discharge Scoring System
3.4. Validation of the Discharge Scoring System
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Azoulay, E.; Adrie, C.; De Lassence, A.; Pochard, F.; Moreau, D.; Thiery, G.; Cheval, C.; Moine, P.; Garrouste-Orgeas, M.; Alberti, C.; et al. Determinants of postintensive care unit mortality: A prospective multicenter study. Crit. Care Med. 2003, 31, 428–432. [Google Scholar] [CrossRef] [PubMed]
- Moreno, R.; Agthe, D. ICU discharge decision-making: Are we able to decrease post-ICU mortality? Intensive Care Med. 1999, 25, 1035–1036. [Google Scholar] [CrossRef] [PubMed]
- Ranzani, O.T.; Prada, L.F.; Zampieri, F.G.; Battaini, L.C.; Pinaffi, J.V.; Setogute, Y.C.; Salluh, J.I.; Povoa, P.; Forte, D.N.; Azevedo, L.C.; et al. Failure to reduce C-reactive protein levels more than 25% in the last 24 hours before intensive care unit discharge predicts higher in-hospital mortality: A cohort study. J. Crit. Care 2012, 27, 525.e9–525.e15. [Google Scholar] [CrossRef] [PubMed]
- Smith, L.; Orts, C.M.; O’Neil, I.; Batchelor, A.M.; Gascoigne, A.D.; Baudouin, S.V. TISS and mortality after discharge from intensive care. Intensive Care Med. 1999, 25, 1061–1065. [Google Scholar] [CrossRef] [PubMed]
- Zheng, P.; Afshin, A.; Biryukov, S.; Bisignano, C.; Brauer, M.; Bryazka, D.; Burkart, K.; Cercy, K.M.; Cornaby, L.; Dai, X.; et al. The Burden of Proof studies: Assessing the evidence of risk. Nat. Med. 2022, 28, 2038–2044. [Google Scholar] [CrossRef] [PubMed]
- Ewart, G.W.; Marcus, L.; Gaba, M.M.; Bradner, R.H.; Medina, J.L.; Chandler, E.B. The critical care medicine crisis: A call for federal action: A white paper from the critical care professional societies. Chest 2004, 125, 1518–1521. [Google Scholar] [CrossRef] [PubMed]
- Kelley, M.A.; Angus, D.; Chalfin, D.B.; Crandall, E.D.; Ingbar, D.; Johanson, W.; Medina, J.; Sessler, C.N.; Vender, J.S. The critical care crisis in the United States: A report from the profession. Chest 2004, 125, 1514–1517. [Google Scholar] [CrossRef] [PubMed]
- Selker, H.P.; Griffith, J.L.; Dorey, F.J.; D’Agostino, R.B. How do physicians adapt when the coronary care unit is full? A prospective multicenter study. Jama 1987, 257, 1181–1185. [Google Scholar] [CrossRef] [PubMed]
- Singer, D.E.; Carr, P.L.; Mulley, A.G.; Thibault, G.E. Rationing intensive care--physician responses to a resource shortage. N. Engl. J. Med. 1983, 309, 1155–1160. [Google Scholar] [CrossRef]
- Gajic, O.; Malinchoc, M.; Comfere, T.B.; Harris, M.R.; Achouiti, A.; Yilmaz, M.; Schultz, M.J.; Hubmayr, R.D.; Afessa, B.; Farmer, J.C. The Stability and Workload Index for Transfer score predicts unplanned intensive care unit patient readmission: Initial development and validation. Crit. Care Med. 2008, 36, 676–682. [Google Scholar] [CrossRef]
- Rewa, O.G.; Stelfox, H.T.; Ingolfsson, A.; Zygun, D.A.; Featherstone, R.; Opgenorth, D.; Bagshaw, S.M. Indicators of intensive care unit capacity strain: A systematic review. Crit Care 2018, 22, 86. [Google Scholar] [CrossRef] [PubMed]
- Capuzzo, M.; Moreno, R.P.; Alvisi, R. Admission and discharge of critically ill patients. Curr. Opin. Crit. Care 2010, 16, 499–504. [Google Scholar] [CrossRef] [PubMed]
- Rousseau, A.-F.; Prescott, H.C.; Brett, S.J.; Weiss, B.; Azoulay, E.; Creteur, J.; Latronico, N.; Hough, C.L.; Weber-Carstens, S.; Vincent, J.-L.; et al. Long-term outcomes after critical illness: Recent insights. Critical Care 2021, 25, 108. [Google Scholar] [CrossRef] [PubMed]
- Litton, E.; Huckson, S.; Chavan, S.; Bucci, T.; Holley, A.; Everest, E.; Kelly, S.; McGloughlin, S.; Millar, J.; Nguyen, N.; et al. Increasing ICU capacity to accommodate higher demand during the COVID-19 pandemic. Med. J. Aust. 2021, 215, 513–517. [Google Scholar] [CrossRef] [PubMed]
- Wagner, J.; Gabler, N.B.; Ratcliffe, S.J.; Brown, S.E.; Strom, B.L.; Halpern, S.D. Outcomes among patients discharged from busy intensive care units. Ann. Intern. Med. 2013, 159, 447–455. [Google Scholar] [CrossRef] [PubMed]
- Kramer, A.A.; Higgins, T.L.; Zimmerman, J.E. Intensive care unit readmissions in U.S. hospitals: Patient characteristics, risk factors, and outcomes. Crit. Care Med. 2012, 40, 3–10. [Google Scholar] [CrossRef]
- Rosenberg, A.L.; Watts, C. Patients readmitted to ICUs: A systematic review of risk factors and outcomes. Chest 2000, 118, 492–502. [Google Scholar] [CrossRef]
- Bagshaw, S.M.; Wang, X.; Zygun, D.A.; Zuege, D.; Dodek, P.; Garland, A.; Scales, D.C.; Berthiaume, L.; Faris, P.; Chen, G.; et al. Association between strained capacity and mortality among patients admitted to intensive care: A path-analysis modeling strategy. J. Crit. Care 2018, 43, 81–87. [Google Scholar] [CrossRef] [PubMed]
- Nates, J.L.; Nunnally, M.; Kleinpell, R.; Blosser, S.; Goldner, J.; Birriel, B.; Fowler, C.S.; Byrum, D.; Miles, W.S.; Bailey, H.; et al. ICU Admission, Discharge, and Triage Guidelines: A Framework to Enhance Clinical Operations, Development of Institutional Policies, and Further Research. Crit. Care Med. 2016, 44, 1553–1602. [Google Scholar] [CrossRef]
- Plotnikoff, K.M.; Krewulak, K.D.; Hernández, L.; Spence, K.; Foster, N.; Longmore, S.; Straus, S.E.; Niven, D.J.; Parsons Leigh, J.; Stelfox, H.T.; et al. Patient discharge from intensive care: An updated scoping review to identify tools and practices to inform high-quality care. Crit. Care 2021, 25, 438. [Google Scholar] [CrossRef]
- Fernandez, R.; Serrano, J.M.; Umaran, I.; Abizanda, R.; Carrillo, A.; Lopez-Pueyo, M.J.; Rascado, P.; Balerdi, B.; Suberviola, B.; Hernandez, G. Ward mortality after ICU discharge: A multicenter validation of the Sabadell score. Intensive Care Med. 2010, 36, 1196–1201. [Google Scholar] [CrossRef] [PubMed]
- Ouanes, I.; Schwebel, C.; Français, A.; Bruel, C.; Philippart, F.; Vesin, A.; Soufir, L.; Adrie, C.; Garrouste-Orgeas, M.; Timsit, J.F.; et al. A model to predict short-term death or readmission after intensive care unit discharge. J. Crit. Care 2012, 27, 422.e1–422.e9. [Google Scholar] [CrossRef]
- Rosa, R.G.; Roehrig, C.; Oliveira, R.P.; Maccari, J.G.; Antônio, A.C.; Castro Pde, S.; Neto, F.L.; Balzano Pde, C.; Teixeira, C. Comparison of Unplanned Intensive Care Unit Readmission Scores: A Prospective Cohort Study. PLoS ONE 2015, 10, e0143127. [Google Scholar] [CrossRef] [PubMed]
- Kareliusson, F.; De Geer, L.; Tibblin, A.O. Risk prediction of ICU readmission in a mixed surgical and medical population. J. Intensive Care 2015, 3, 30. [Google Scholar] [CrossRef]
- Brown, S.E.S.; Ratcliffe, S.J.; Halpern, S.D. Assessing the utility of ICU readmissions as a quality metric: An analysis of changes mediated by residency work-hour reforms. Chest 2015, 147, 626–636. [Google Scholar] [CrossRef] [PubMed]
- van Sluisveld, N.; Bakhshi-Raiez, F.; de Keizer, N.; Holman, R.; Wester, G.; Wollersheim, H.; van der Hoeven, J.G.; Zegers, M. Variation in rates of ICU readmissions and post-ICU in-hospital mortality and their association with ICU discharge practices. BMC Health Serv. Res. 2017, 17, 281. [Google Scholar] [CrossRef]
- Daly, K.; Beale, R.; Chang, R.W. Reduction in mortality after inappropriate early discharge from intensive care unit: Logistic regression triage model. Bmj 2001, 322, 1274–1276. [Google Scholar] [CrossRef] [PubMed]
- Tiruvoipati, R.; Botha, J.; Fletcher, J.; Gangopadhyay, H.; Majumdar, M.; Vij, S.; Paul, E.; Pilcher, D. Intensive care discharge delay is associated with increased hospital length of stay: A multicentre prospective observational study. PLoS ONE 2017, 12, e0181827. [Google Scholar] [CrossRef]
- Vincent, J.L.; Bihari, D.J.; Suter, P.M.; Bruining, H.A.; White, J.; Nicolas-Chanoin, M.H.; Wolff, M.; Spencer, R.C.; Hemmer, M. The prevalence of nosocomial infection in intensive care units in Europe. Results of the European Prevalence of Infection in Intensive Care (EPIC) Study. EPIC International Advisory Committee. Jama 1995, 274, 639–644. [Google Scholar] [CrossRef]
- Wahl, B.; Cossy-Gantner, A.; Germann, S.; Schwalbe, N.R. Artificial intelligence (AI) and global health: How can AI contribute to health in resource-poor settings? BMJ Glob. Health 2018, 3, e000798. [Google Scholar] [CrossRef]
- Bonaque, J.C.; Pascual-Figal, D.A.; Manzano-Fernandez, S.; Gonzalez-Canovas, C.; Vidal, A.; Munoz-Esparza, C.; Garrido, I.P.; Pastor-Perez, F.; Valdes, M. Red blood cell distribution width adds prognostic value for outpatients with chronic heart failure. Rev. Esp. Cardiol. (Engl. Ed.) 2012, 65, 606–612. [Google Scholar] [CrossRef] [PubMed]
- Perlstein, T.S.; Weuve, J.; Pfeffer, M.A.; Beckman, J.A. Red blood cell distribution width and mortality risk in a community-based prospective cohort. Arch. Intern. Med. 2009, 169, 588–594. [Google Scholar] [CrossRef] [PubMed]
- Pierce, C.N.; Larson, D.F. Inflammatory cytokine inhibition of erythropoiesis in patients implanted with a mechanical circulatory assist device. Perfusion 2005, 20, 83–90. [Google Scholar] [CrossRef] [PubMed]
- Scharte, M.; Fink, M.P. Red blood cell physiology in critical illness. Crit. Care Med. 2003, 31, S651–S657. [Google Scholar] [CrossRef] [PubMed]
- Chiari, M.M.; Bagnoli, R.; De Luca, P.D.; Monti, M.; Rampoldi, E.; Cunietti, E. Influence of acute inflammation on iron and nutritional status indexes in older inpatients. J. Am. Geriatr. Soc. 1995, 43, 767–771. [Google Scholar] [CrossRef] [PubMed]
- Weiss, G.; Goodnough, L.T. Anemia of chronic disease. N. Engl. J. Med. 2005, 352, 1011–1023. [Google Scholar] [CrossRef] [PubMed]
- Jung, C.; Fujita, B.; Lauten, A.; Kiehntopf, M.; Kuthe, F.; Ferrari, M.; Figulla, H.R. Red blood cell distribution width as useful tool to predict long-term mortality in patients with chronic heart failure. Int. J. Cardiol. 2011, 152, 417–418. [Google Scholar] [CrossRef] [PubMed]
- Fava, C.; Cattazzo, F.; Hu, Z.-D.; Lippi, G.; Montagnana, M. The role of red blood cell distribution width (RDW) in cardiovascular risk assessment: Useful or hype? Ann. Transl. Med. 2019, 7, 581. [Google Scholar] [CrossRef] [PubMed]
- Jia, L.; Cui, S.; Yang, J.; Jia, Q.; Hao, L.; Jia, R.; Zhang, H. Red blood cell distribution width predicts long-term mortality in critically ill patients with acute kidney injury: A retrospective database study. Sci. Rep. 2020, 10, 4563. [Google Scholar] [CrossRef]
- Katsaros, M.; Paschos, P.; Giouleme, O. Red cell distribution width as a marker of activity in inflammatory bowel disease: A narrative review. Ann. Gastroenterol. 2020, 33, 348–354. [Google Scholar] [CrossRef]
- Polat, V.; Iscan, S.; Etli, M.; El Kilic, H.; Gursu, O.; Eker, E.; Ozdemir, F. Red cell distribution width as a prognostic indicator in pediatric heart disease and after surgery. Biomed. Res. Int. 2014, 2014, 681679. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Yu, C.-h.; Guo, K.-p.; Huang, C.-z.; Mo, L.-y. Prognostic role of red blood cell distribution width in patients with sepsis: A systematic review and meta-analysis. BMC Immunol. 2020, 21, 40. [Google Scholar] [CrossRef] [PubMed]
- Sadaka, F.; O’Brien, J.; Prakash, S. Red cell distribution width and outcome in patients with septic shock. J. Intensive Care Med. 2013, 28, 307–313. [Google Scholar] [CrossRef] [PubMed]
- Lorente, L.; Martin, M.M.; Abreu-Gonzalez, P.; Sole-Violan, J.; Ferreres, J.; Labarta, L.; Diaz, C.; Gonzalez, O.; Garcia, D.; Jimenez, A.; et al. Red blood cell distribution width during the first week is associated with severity and mortality in septic patients. PLoS ONE 2014, 9, e105436. [Google Scholar] [CrossRef] [PubMed]
- Fujita, B.; Franz, M.; Figulla, H.R.; Pfeifer, R.; Kabisch, B.; Fritzenwanger, M.; Jung, C. Red cell distribution width and survival in patients hospitalized on a medical ICU. Clin. Biochem. 2015, 48, 1048–1052. [Google Scholar] [CrossRef] [PubMed]
- Fernandez, R.; Cano, S.; Catalan, I.; Rubio, O.; Subira, C.; Masclans, J.; Rognoni, G.; Ventura, L.; Macharete, C.; Winfield, L.; et al. High red blood cell distribution width as a marker of hospital mortality after ICU discharge: A cohort study. J. Intensive Care 2018, 6, 74. [Google Scholar] [CrossRef] [PubMed]
- Otero, T.M.N.; Yeh, D.D.; Bajwa, E.K.; Azocar, R.J.; Tsai, A.L.; Belcher, D.M.; Quraishi, S.A. Elevated Red Cell Distribution Width Is Associated With Decreased Ventilator-Free Days in Critically Ill Patients. J. Intensive Care Med. 2018, 33, 241–247. [Google Scholar] [CrossRef] [PubMed]
- Otero, T.M.; Canales, C.; Yeh, D.D.; Hou, P.C.; Belcher, D.M.; Quraishi, S.A. Elevated red cell distribution width at initiation of critical care is associated with mortality in surgical intensive care unit patients. J. Crit. Care 2016, 34, 7–11. [Google Scholar] [CrossRef] [PubMed]
- Safdar, S.A.; Modi, T.; Sriramulu, L.D.; Shaaban, H.; Sison, R.; Modi, V.; Adelman, M.; Guron, G. The Role of Red Cell Distribution Width as a Predictor of Mortality for Critically Ill Patients in an Inner-city Hospital. J. Nat. Sci. Biol. Med. 2017, 8, 154–158. [Google Scholar] [CrossRef]
- Zhang, Z.; Xu, X.; Ni, H.; Deng, H. Red cell distribution width is associated with hospital mortality in unselected critically ill patients. J. Thorac. Dis. 2013, 5, 730–736. [Google Scholar] [CrossRef]
- Nicholson, J.P.; Wolmarans, M.R.; Park, G.R. The role of albumin in critical illness. Br. J. Anaesth. 2000, 85, 599–610. [Google Scholar] [CrossRef] [PubMed]
- Vincent, J.L. Relevance of albumin in modern critical care medicine. Best. Pract. Res. Clin. Anaesthesiol. 2009, 23, 183–191. [Google Scholar] [CrossRef]
- Komáromi, A.; Estenberg, U.; Hammarqvist, F.; Rooyackers, O.; Wernerman, J.; Norberg, Å. Simultaneous assessment of the synthesis rate and transcapillary escape rate of albumin in inflammation and surgery. Crit. Care 2016, 20, 370. [Google Scholar] [CrossRef] [PubMed]
- Kendall, H.; Abreu, E.; Cheng, A.L. Serum Albumin Trend Is a Predictor of Mortality in ICU Patients With Sepsis. Biol. Res. Nurs. 2019, 21, 237–244. [Google Scholar] [CrossRef]
- Finfer, S.; Bellomo, R.; McEvoy, S.; Lo, S.K.; Myburgh, J.; Neal, B.; Norton, R. Effect of baseline serum albumin concentration on outcome of resuscitation with albumin or saline in patients in intensive care units: Analysis of data from the saline versus albumin fluid evaluation (SAFE) study. Bmj 2006, 333, 1044. [Google Scholar] [CrossRef] [PubMed]
- Vincent, J.L.; Dubois, M.J.; Navickis, R.J.; Wilkes, M.M. Hypoalbuminemia in acute illness: Is there a rationale for intervention? A meta-analysis of cohort studies and controlled trials. Ann. Surg. 2003, 237, 319–334. [Google Scholar] [CrossRef]
- Arques, S.; Roux, E.; Stolidi, P.; Gelisse, R.; Ambrosi, P. Usefulness of serum albumin and serum total cholesterol in the prediction of hospital death in older patients with severe, acute heart failure. Arch. Cardiovasc. Dis. 2011, 104, 502–508. [Google Scholar] [CrossRef]
- Vincent, J.L.; De Backer, D.; Wiedermann, C.J. Fluid management in sepsis: The potential beneficial effects of albumin. J. Crit. Care 2016, 35, 161–167. [Google Scholar] [CrossRef]
- Jin, X.; Li, J.; Sun, L.; Zhang, J.; Gao, Y.; Li, R.; Ren, J.; Hou, Y.; Su, D.; Liu, J.; et al. Prognostic Value of Serum Albumin Level in Critically Ill Patients: Observational Data From Large Intensive Care Unit Databases. Front. Nutr. 2022, 9, 770674. [Google Scholar] [CrossRef]
- Vincent, J.L.; Moreno, R.; Takala, J.; Willatts, S.; De Mendonca, A.; Bruining, H.; Reinhart, C.K.; Suter, P.M.; Thijs, L.G. The SOFA (Sepsis-related Organ Failure Assessment) score to describe organ dysfunction/failure. On behalf of the Working Group on Sepsis-Related Problems of the European Society of Intensive Care Medicine. Intensive Care Med. 1996, 22, 707–710. [Google Scholar] [CrossRef]
- Lambden, S.; Laterre, P.F.; Levy, M.M.; Francois, B. The SOFA score-development, utility and challenges of accurate assessment in clinical trials. Crit. Care 2019, 23, 374. [Google Scholar] [CrossRef] [PubMed]
- Raith, E.P.; Udy, A.A.; Bailey, M.; McGloughlin, S.; MacIsaac, C.; Bellomo, R.; Pilcher, D.V. Prognostic Accuracy of the SOFA Score, SIRS Criteria, and qSOFA Score for In-Hospital Mortality Among Adults With Suspected Infection Admitted to the Intensive Care Unit. Jama 2017, 317, 290–300. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, F.L.; Bota, D.P.; Bross, A.; Melot, C.; Vincent, J.L. Serial evaluation of the SOFA score to predict outcome in critically ill patients. Jama 2001, 286, 1754–1758. [Google Scholar] [CrossRef] [PubMed]
- Fuchs, P.A.; Czech, I.J.; Krzych, Ł.J. Mortality Prediction Using SOFA Score in Critically Ill Surgical and Non-Surgical Patients: Which Parameter Is the Most Valuable? Medicina 2020, 56, 273. [Google Scholar] [CrossRef] [PubMed]
Variables | Survivors after ICU Discharge (n = 480) | Non-Survivors after ICU Discharge (n = 42) | p-Value |
---|---|---|---|
Age (year) | 65.0 ± 14.5 | 66.8 ± 10.9 | 0.431 |
Sex (male) | 299 (62.2%) | 29 (69.0%) | 0.294 |
BMI | 22.5 ± 5.5 | 22.7 ± 3.6 | 0.773 |
Charlson comorbidity index at ICU admission | 2.98 ± 2.3 | 3.7 ± 3.0 | 0.055 |
Comorbidity at ICU admission | |||
Congestive heart failure | 35 (7.3%) | 6(14.3%) | 0.127 |
Coronary arterial disease | 68 (14.2%) | 9 (21.4%) | 0.253 |
Chronic pulmonary disease | 53 (11.0%) | 3 (7.1%) | 0.605 |
Chronic kidney disease | 115 (24.0%) | 10 (23.8%) | 1.000 |
Chronic liver disease | 64 (13.3%) | 13 (31.0%) | <0.005 |
Cerebrovascular disease | 77 (16.0%) | 4 (9.5%) | 0.373 |
Solid cancer | 122 (23.4%) | 17 (40.5%) | 0.044 |
Hematologic malignancy | 22 (4.6%) | 3 (7.1%) | 0.442 |
ICU length of stay (days) | 10.2 ± 11.7 | 13.3 ± 12.5 | 0.100 |
at ICU admission | |||
ARDS, n (%) | 33 (6.9%) | 3 (7.1%) | 1.000 |
AKI, n (%) | 108 (22.5%) | 9 (21.4%) | 1.000 |
Septic shock, n (%) | 125 (23.9%) | 8 (19.0%) | 0.362 |
Treatment during ICU stay | |||
Ventilator, n (%) | 268 (55.8%) | 24 (57.1%) | 1.000 |
Tracheostomy, n (%) | 87 (18.1%) | 4 (9.5%) | 0.204 |
ECMO, n (%) | 11 (2.3%) | 2 (4.8%) | 0.281 |
CRRT, n (%) | 116 (24.2%) | 21 (50.0%) | 0.001 |
SOFA score | |||
At admission | 7.5 ± 3.5 | 8.7 ± 3.2 | 0.028 |
At discharge | 5.1 ± 3.1 | 8.0 ± 3.3 | <0.001 |
Laboratory (at admission) | |||
WBC (103/µL) | 14.3 ± 11.1 | 13.8 ± 10.1 | 0.774 |
CRP | 126.6 ± 113.3 | 105.5 ± 113.5 | 0.279 |
Albumin (g/dL) | 2.9 ± 6.5 | 2.6 ± 0.5 | 0.698 |
DNI (%) | 7.4 ± 12.1 | 5.0 ± 7.8 | 0.203 |
RDW (%) | 15.2 ± 2.5 | 16.4 ± 2.7 | 0.001 |
Laboratory (at discharge) | |||
WBC (103/µL) | 9.8 ± 7.4 | 11.3 ± 7.3 | 0.203 |
CRP | 66.6 ± 70.4 | 79.7 ± 68.1 | 0.247 |
Albumin (g/dL) | 2.7 ± 0.4 | 2.5 ± 0.4 | 0.006 |
DNI (%) | 2.5 ± 4.0 | 3.5 ± 4.4 | 0.111 |
RDW (%) | 15.6 ± 2.3 | 17.4 ± 2.8 | <0.001 |
Variables | OR (95% CI) | p-Value |
---|---|---|
SOFA at discharge | 1.26 (1.13–1.41) | <0.001 |
RDW at discharge | 1.20 (1.07–1.36) | 0.003 |
Albumin at discharge | 0.37 (0.16–0.84) | 0.017 |
Variables. | Survivors (n = 310) | Non-Survivors (n = 33) | p-Value |
---|---|---|---|
Age (year) | 67.8 ± 13.6 | 71.1 ± 12.1 | 0.177 |
Sex (male) | 206 (66.5%) | 25 (75.8%) | 0.332 |
ICU admission from ER | 214 (69.0%) | 21 (63.6%) | 0.556 |
SOFA at admission | 8.1 ± 3.7 | 9.6 ± 4.1 | 0.032 |
Discharge Parameter | |||
Total SOFA | 4.1 ± 2.6 | 6.9 ± 3.8 | <0.001 |
Respiratory SOFA | 1.3 ± 0.9 | 2.2 ± 0.9 | <0.001 |
Coagulation SOFA | 0.7 ± 1.0 | 1.1 ± 1.1 | 0.041 |
Hepatic SOFA | 0.4 ± 0.9 | 0.9 ± 1.4 | 0.003 |
Cardiac SOFA | 0.3 ± 1.0 | 1.3 ± 1.7 | <0.001 |
CNS SOFA | 0.6 ± 0.9 | 0.7 ± 0.9 | 0.163 |
Renal SOFA | 0.7 ± 1.1 | 0.7 ± 1.1 | 0.341 |
Glasgow coma scale | 14.0 ± 1.9 | 13.7 ± 1.8 | 0.566 |
ICU length of stay | 26.2 ± 73.0 | 38.0 ± 117.6 | 0.407 |
Laboratory at discharge | |||
Albumin (g/dL) | 3.0 ± 0.4 | 2.8 ± 0.4 | 0.042 |
RDW (%) | 16.0 ± 2.6 | 17.5 ± 3.1 | 0.002 |
P/F ratio | 324.4 ± 106.2 | 235.6 ± 87.3 | <0.001 |
PaCO2 | 36.2 ± 7.6 | 38.6 ± 11.6 | 0.244 |
SWIFT score | 20.8 ± 9.9 | 24.4 ± 8.9 | 0.043 |
Discharge score | 0.052 ± 0.063 | 0.139 ± 0.176 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Seol, C.H.; Sung, M.D.; Chang, S.; Yoon, B.R.; Roh, Y.H.; Park, J.E.; Chung, K.S. Development of a Simple Scoring System for Predicting Discharge Safety from the Medical ICU to Low-Acuity Wards: The Role of the Sequential Organ Failure Assessment Score, Albumin, and Red Blood Cell Distribution Width. J. Pers. Med. 2024, 14, 643. https://doi.org/10.3390/jpm14060643
Seol CH, Sung MD, Chang S, Yoon BR, Roh YH, Park JE, Chung KS. Development of a Simple Scoring System for Predicting Discharge Safety from the Medical ICU to Low-Acuity Wards: The Role of the Sequential Organ Failure Assessment Score, Albumin, and Red Blood Cell Distribution Width. Journal of Personalized Medicine. 2024; 14(6):643. https://doi.org/10.3390/jpm14060643
Chicago/Turabian StyleSeol, Chang Hwan, Min Dong Sung, Shihwan Chang, Bo Ra Yoon, Yun Ho Roh, Ji Eun Park, and Kyung Soo Chung. 2024. "Development of a Simple Scoring System for Predicting Discharge Safety from the Medical ICU to Low-Acuity Wards: The Role of the Sequential Organ Failure Assessment Score, Albumin, and Red Blood Cell Distribution Width" Journal of Personalized Medicine 14, no. 6: 643. https://doi.org/10.3390/jpm14060643
APA StyleSeol, C. H., Sung, M. D., Chang, S., Yoon, B. R., Roh, Y. H., Park, J. E., & Chung, K. S. (2024). Development of a Simple Scoring System for Predicting Discharge Safety from the Medical ICU to Low-Acuity Wards: The Role of the Sequential Organ Failure Assessment Score, Albumin, and Red Blood Cell Distribution Width. Journal of Personalized Medicine, 14(6), 643. https://doi.org/10.3390/jpm14060643