Advanced Sperm Selection Techniques for Assisted Reproduction
Abstract
:1. Introduction
2. Sperm Manipulation Techniques in IVF
2.1. Swim-Up and Density Gradient Centrifugation
2.2. Zeta Potential Method
2.3. Hyaluronic Acid Binding
2.4. Hemi-Zona Assay (HZA)
2.5. Magnetic-Activated Cell Sorting (MACS)
2.6. Hypo-Osmotic Swelling Test (HOST)
2.7. Laser-Assisted Immobile Sperm Selection (LAISS)
2.8. Microfluidics
2.9. Motile Sperm Organelle Morphology Examination (MSOME)
2.10. Additional Experimental Methods: Sperm Tail Flexibility Test (STFT), Birefringence and Artificial Intelligence
3. Sperm Selection Techniques and Reactive Oxygen Species
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Boitrelle, F.; Shah, R.; Saleh, R.; Henkel, R.; Kandil, H.; Chung, E.; Vogiatzi, P.; Zini, A.; Arafa, M.; Agarwal, A. The Sixth Edition of the WHO Manual for Human Semen Analysis: A Critical Review and SWOT Analysis. Life 2021, 11, 1368. [Google Scholar] [CrossRef] [PubMed]
- Carson, S.A.; Kallen, A.N. Diagnosis and Management of Infertility. JAMA 2021, 326, 65–76. [Google Scholar] [CrossRef] [PubMed]
- Sciorio, R.; Tramontano, L.; Adel, M.; Fleming, S. Decrease in Sperm Parameters in the 21st Century: Obesity, Lifestyle, or Environmental Factors? An Updated Narrative Review. J. Pers. Med. 2024, 14, 198. [Google Scholar] [CrossRef] [PubMed]
- Tvrda, E.; Agarwal, A.; Alkuhaimi, N. Male reproductive cancers and infertility: A mutual relationship. Int. J. Mol. Sci. 2015, 16, 7230–7260. [Google Scholar] [CrossRef] [PubMed]
- Odisho, A.Y.; Nangia, A.K.; Katz, P.P.; Smith, J.F. Temporal and geospatial trends in male factor infertility with assisted reproductive technology in the United States from 1999–2010. Fertil. Steril. 2014, 102, 469–475. [Google Scholar] [CrossRef] [PubMed]
- van der Steeg, J.W.; Steures, P.; Eijkemans, M.J.C.; Habbema, J.D.F.; Hompes, P.G.A.; Kremer, J.A.M.; van der Leeuw-Harmsen, L.; Bossuyt, P.M.M.; Repping, S.; Silber, S.J.; et al. Role of semen analysis in subfertile couples. Fertil. Steril. 2011, 95, 1013–1019. [Google Scholar] [CrossRef] [PubMed]
- Pagliuca, C.; Cariati, F.; Bagnulo, F.; Scaglione, E.; Carotenuto, C.; Farina, F.; D’Argenio, V.; Carraturo, F.; D’Aprile, P.; Vitiello, M.; et al. Microbiological Evaluation and Sperm DNA Fragmentation in Semen Samples of Patients Undergoing Fertility Investigation. Genes 2021, 12, 654. [Google Scholar] [CrossRef] [PubMed]
- Veneruso, I.; Cariati, F.; Alviggi, C.; Pastore, L.; Tomaiuolo, R.; D’Argenio, V. Metagenomics Reveals Specific Microbial Features in Males with Semen Alterations. Genes 2023, 14, 1228. [Google Scholar] [CrossRef]
- Tomaiuolo, R.; Veneruso, I.; Cariati, F.; D’Argenio, V. Microbiota and Human Reproduction: The Case of Male Infertility. High-Throughput 2020, 9, 10. [Google Scholar] [CrossRef]
- Conforti, A.; Longobardi, S.; Carbone, L.; Iorio, G.G.; Cariati, F.; Campitiello, M.R.; Strina, I.; Palese, M.; D’Hooghe, T.; Alviggi, C. Does Intrauterine Injection of hCG Improve IVF Outcome? A Systematic Review and a Meta-Analysis. Int. J. Mol. Sci. 2022, 23, 12193. [Google Scholar] [CrossRef]
- Calvert, J.K.; Fendereski, K.; Ghaed, M.; Bearelly, P.; Patel, D.P.; Hotaling, J.M. The male infertility evaluation still matters in the era of high efficacy assisted reproductive technology. Fertil. Steril. 2022, 118, 34–46. [Google Scholar] [CrossRef] [PubMed]
- Mazzilli, R.; Rucci, C.; Vaiarelli, A.; Cimadomo, D.; Ubaldi, F.M.; Foresta, C.; Ferlin, A. Male factor infertility and assisted reproductive technologies: Indications, minimum access criteria and outcomes. J. Endocrinol. Investig. 2023, 46, 1079–1085. [Google Scholar] [CrossRef] [PubMed]
- Cissen, M.; Bensdorp, A.; Cohlen, B.J.; Repping, S.; de Bruin, J.P.; van Wely, M. Assisted reproductive technologies for male subfertility. Cochrane Database Syst. Rev. 2016, 2, CD000360. [Google Scholar] [CrossRef] [PubMed]
- Anderson, J.E.; Farr, S.L.; Jamieson, D.J.; Warner, L.; Macaluso, M. Infertility services reported by men in the United States: National survey data. Fertil. Steril. 2009, 91, 2466–2470. [Google Scholar] [CrossRef] [PubMed]
- Van Steirteghem, A.C.; Liu, J.; Joris, H.; Nagy, Z.; Janssenswillen, C.; Tournaye, H.; Derde, M.P.; Van Assche, E.; Devroey, P. Higher success rate by intracytoplasmic sperm injection than by subzonal insemination. Report of a second series of 300 consecutive treatment cycles. Hum. Reprod. 1993, 8, 1055–1060. [Google Scholar] [CrossRef] [PubMed]
- Mazzilli, R.; Vaiarelli, A.; Dovere, L.; Cimadomo, D.; Ubaldi, N.; Ferrero, S.; Rienzi, L.; Lombardo, F.; Lenzi, A.; Tournaye, H.; et al. Severe male factor in in vitro fertilization: Definition, prevalence, and treatment. An update. Asian J. Androl. 2022, 24, 125–134. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Zhu, Y.; Di, L.; Osterberg, E.C.; Liu, F.; He, L.; Hu, H.; Huang, Y.; Li, P.S.; Li, Z. Raman spectroscopy as an ex vivo noninvasive approach to distinguish complete and incomplete spermatogenesis within human seminiferous tubules. Fertil. Steril. 2014, 102, 54–60.e2. [Google Scholar] [CrossRef] [PubMed]
- Mittal, S.; Mielnik, A.; Bolyakov, A.; Schlegel, P.; Paduch, D. PD68-01 pilot study results using fluorescence activated cell sorting of spermatozoa from testis tissue: A novel method for sperm isolation after tese. J. Urol. 2017, 197, e1339. [Google Scholar] [CrossRef]
- Funaro, M.G.; Kim, H.H.; Mazel, S.; Bolyakov, A.; Goldstein, M.; Schlegel, P.N.; Paduch, D.A. A novel sorting technology allows for highly efficient selection of sperm without chromatin damage. Syst. Biol. Reprod. Med. 2013, 59, 172–177. [Google Scholar] [CrossRef]
- Strassburger, D.; Friedler, S.; Raziel, A.; Schachter, M.; Kasterstein, E.; Ron-el, R. Very low sperm count affects the result of intracytoplasmic sperm injection. J. Assist. Reprod. Genet. 2000, 17, 431–436. [Google Scholar] [CrossRef]
- Mazzilli, R.; Cimadomo, D.; Vaiarelli, A.; Capalbo, A.; Dovere, L.; Alviggi, E.; Dusi, L.; Foresta, C.; Lombardo, F.; Lenzi, A.; et al. Effect of the male factor on the clinical outcome of intracytoplasmic sperm injection combined with preimplantation aneuploidy testing: Observational longitudinal cohort study of 1219 consecutive cycles. Fertil. Steril. 2017, 108, 961–972.e3. [Google Scholar] [CrossRef] [PubMed]
- Tavalaee, M.; Naderi, N.; Esfandiari, N.; Nasr-Esfahani, M.H. Assisted Oocyte Activation following Intracytoplasmic Sperm Injection: A Sensible Option for Infertile Couples with Severe Teratozoospermia. Int. J. Fertil. Steril. 2023, 17, 92–98. [Google Scholar] [CrossRef] [PubMed]
- Tavalaee, M.; Nasr-Esfahani, M.H. Expression profile of PLCζ, PAWP, and TR-KIT in association with fertilization potential, embryo development, and pregnancy outcomes in globozoospermic candidates for intra-cytoplasmic sperm injection and artificial oocyte activation. Andrology 2016, 4, 850–856. [Google Scholar] [CrossRef] [PubMed]
- Campos, G.; Sciorio, R.; Esteves, S.C. Total fertilization failure after ICSI: Insights into pathophysiology, diagnosis, and management through artificial oocyte activation. Hum. Reprod. Update 2023, 29, 369–394. [Google Scholar] [CrossRef] [PubMed]
- Henkel, R.R.; Schill, W.-B. Sperm preparation for ART. Reprod. Biol. Endocrinol. 2003, 1, 108. [Google Scholar] [CrossRef]
- Soto-Heras, S.; Sakkas, D.; Miller, D.J. Sperm selection by the oviduct: Perspectives for male fertility and assisted reproductive technologies. Biol. Reprod. 2023, 108, 538–552. [Google Scholar] [CrossRef] [PubMed]
- Talevi, R.; Gualtieri, R. Biologia e Tecnologie della Riproduzione Umana, 1st ed.; Piccin: Padova, Italy, 2019; Volume 1, ISBN 978-88-299-2965-8. [Google Scholar]
- Pedrosa, M.L.; Furtado, M.H.; Ferreira, M.C.F.; Carneiro, M.M. Sperm selection in IVF: The long and winding road from bench to bedside. JBRA Assist. Reprod. 2020, 24, 332–339. [Google Scholar] [CrossRef] [PubMed]
- Carbone, L.; Cariati, F.; Sarno, L.; Conforti, A.; Bagnulo, F.; Strina, I.; Pastore, L.; Maruotti, G.M.; Alviggi, C. Non-Invasive Prenatal Testing: Current Perspectives and Future Challenges. Genes 2020, 12, 15. [Google Scholar] [CrossRef] [PubMed]
- Cariati, F.; D’Argenio, V.; Tomaiuolo, R. The evolving role of genetic tests in reproductive medicine. J. Transl. Med. 2019, 17, 267. [Google Scholar] [CrossRef]
- Yang, H.; Li, G.; Jin, H.; Guo, Y.; Sun, Y. The effect of sperm DNA fragmentation index on assisted reproductive technology outcomes and its relationship with semen parameters and lifestyle. Transl. Androl. Urol. 2019, 8, 356–365. [Google Scholar] [CrossRef]
- Villeneuve, P.; Saez, F.; Hug, E.; Chorfa, A.; Guiton, R.; Schubert, B.; Force, A.; Drevet, J.R. Spermatozoa isolation with FelixTM outperforms conventional density gradient centrifugation preparation in selecting cells with low DNA damage. Andrology 2023, 11, 1593–1604. [Google Scholar] [CrossRef] [PubMed]
- Eberhardt, M.; Prochowska, S.; Duszewska, A.M.; Van Soom, A.; Olech, W.; Niżański, W. The influence of Percoll® density gradient centrifugation before cryopreservation on the quality of frozen wisent (Bison bonasus) epididymal spermatozoa. BMC Vet. Res. 2022, 18, 305. [Google Scholar] [CrossRef] [PubMed]
- Baldini, D.; Ferri, D.; Baldini, G.M.; Lot, D.; Catino, A.; Vizziello, D.; Vizziello, G. Sperm Selection for ICSI: Do We Have a Winner? Cells 2021, 10, 3566. [Google Scholar] [CrossRef]
- Harrison, R.A. A highly efficient method for washing mammalian spermatozoa. J. Reprod. Fertil. 1976, 48, 347–353. [Google Scholar] [CrossRef]
- Enciso, M.; Iglesias, M.; Galán, I.; Sarasa, J.; Gosálvez, A.; Gosálvez, J. The ability of sperm selection techniques to remove single- or double-strand DNA damage. Asian J. Androl. 2011, 13, 764–768. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Silva, G.; López-Torres, A.S.; Maldonado-Rosas, I.; Mata-Martínez, E.; Larrea, F.; Torres-Flores, V.; Treviño, C.L.; Chirinos, M. Effects of Semen Processing on Sperm Function: Differences between Swim-Up and Density Gradient Centrifugation. World J. Mens Health 2021, 39, 740–749. [Google Scholar] [CrossRef] [PubMed]
- Raad, G.; Bakos, H.W.; Bazzi, M.; Mourad, Y.; Fakih, F.; Shayya, S.; Mchantaf, L.; Fakih, C. Differential impact of four sperm preparation techniques on sperm motility, morphology, DNA fragmentation, acrosome status, oxidative stress, and mitochondrial activity: A prospective study. Andrology 2021, 9, 1549–1559. [Google Scholar] [CrossRef] [PubMed]
- Menkveld, R.; Swanson, R.J.; Kotze, T.J.; Kruger, T.F. Comparison of a discontinuous Percoll gradient method versus a swim-up method: Effects on sperm morphology and other semen parameters. Andrologia 1990, 22, 152–158. [Google Scholar] [CrossRef] [PubMed]
- Rao, M.; Tang, L.; Wang, L.; Chen, M.; Yan, G.; Zhao, S. Cumulative live birth rates after IVF/ICSI cycles with sperm prepared by density gradient centrifugation vs. swim-up: A retrospective study using a propensity score-matching analysis. Reprod. Biol. Endocrinol. RBE 2022, 20, 60. [Google Scholar] [CrossRef]
- Ord, T.; Patrizio, P.; Marello, E.; Balmaceda, J.P.; Asch, R.H. Mini-Percoll: A new method of semen preparation for IVF in severe male factor infertility. Hum. Reprod. 1990, 5, 987–989. [Google Scholar] [CrossRef]
- Boomsma, C.M.; Cohlen, B.J.; Farquhar, C. Semen preparation techniques for intrauterine insemination. Cochrane Database Syst. Rev. 2019, 10, CD004507. [Google Scholar] [CrossRef] [PubMed]
- Kheirollahi-Kouhestani, M.; Razavi, S.; Tavalaee, M.; Deemeh, M.R.; Mardani, M.; Moshtaghian, J.; Nasr-Esfahani, M.H. Selection of sperm based on combined density gradient and Zeta method may improve ICSI outcome. Hum. Reprod. 2009, 24, 2409–2416. [Google Scholar] [CrossRef] [PubMed]
- Kirkman-Brown, J.; Pavitt, S.; Khalaf, Y.; Lewis, S.; Hooper, R.; Bhattacharya, S.; Coomarasamy, A.; Sharma, V.; Brison, D.; Forbes, G.; et al. Sperm Selection for Assisted Reproduction by Prior Hyaluronan Binding: The HABSelect RCT; Efficacy and Mechanism Evaluation; NIHR Journals Library: Southampton, UK, 2019. [Google Scholar]
- Arslan, M.; Morshedi, M.; Arslan, E.O.; Taylor, S.; Kanik, A.; Duran, H.E.; Oehninger, S. Predictive value of the hemizona assay for pregnancy outcome in patients undergoing controlled ovarian hyperstimulation with intrauterine insemination. Fertil. Steril. 2006, 85, 1697–1707. [Google Scholar] [CrossRef] [PubMed]
- Ahmadi, A.; Sobhani, A.; Khalili, M.A.; Agha-Rahimi, A.; Nabi, A.; Findikli, N. Comparison of the Efficiency of Magnetic-Activated Cell Sorting (MACS) and Physiological Intracytoplasmic Sperm Injection (PICSI) for Sperm Selection in Cases with Unexplained Infertility. J. Reprod. Infertil. 2022, 23, 184–191. [Google Scholar] [CrossRef] [PubMed]
- Pacheco, A.; Blanco, A.; Bronet, F.; Cruz, M.; García-Fernández, J.; García-Velasco, J.A. Magnetic-Activated Cell Sorting (MACS): A Useful Sperm-Selection Technique in Cases of High Levels of Sperm DNA Fragmentation. J. Clin. Med. 2020, 9, 3976. [Google Scholar] [CrossRef] [PubMed]
- Bibi, R.; Jahan, S.; Afsar, T.; Almajwal, A.; Hammadeh, M.E.; Amor, H.; Abusharha, A.; Razak, S. Analyzing the Differential Impact of Semen Preparation Methods on the Outcomes of Assisted Reproductive Techniques. Biomedicines 2023, 11, 467. [Google Scholar] [CrossRef]
- Esteves, S.C.; Sharma, R.K.; Thomas, A.J.; Agarwal, A. Suitability of the hypo-osmotic swelling test for assessing the viability of cryopreserved sperm. Fertil. Steril. 1996, 66, 798–804. [Google Scholar] [CrossRef]
- Nordhoff, V. How to select immotile but viable spermatozoa on the day of intracytoplasmic sperm injection? An embryologist’s view. Andrology 2015, 3, 156–162. [Google Scholar] [CrossRef] [PubMed]
- Keskin, M.; Pabuçcu, E.G.; Arslanca, T.; Demirkıran, Ö.D.; Pabuçcu, R. Does Microfluidic Sperm Sorting Affect Embryo Euploidy Rates in Couples with High Sperm DNA Fragmentation? Reprod. Sci. 2022, 29, 1801–1808. [Google Scholar] [CrossRef]
- Setti, A.S.; Paes de Almeida Ferreira Braga, D.; Iaconelli, A.; Aoki, T.; Borges, E. Twelve years of MSOME and IMSI: A review. Reprod. Biomed. Online 2013, 27, 338–352. [Google Scholar] [CrossRef]
- Leandri, R.D.; Gachet, A.; Pfeffer, J.; Celebi, C.; Rives, N.; Carre-Pigeon, F.; Kulski, O.; Mitchell, V.; Parinaud, J. Is intracytoplasmic morphologically selected sperm injection (IMSI) beneficial in the first ART cycle? a multicentric randomized controlled trial. Andrology 2013, 1, 692–697. [Google Scholar] [CrossRef] [PubMed]
- Magli, M.C.; Crippa, A.; Perruzza, D.; Azzena, S.; Graziosi, S.; Coppola, F.; Tabanelli, C.; Ferraretti, A.P.; Gianaroli, L. Birefringence properties of human immotile spermatozoa and ICSI outcome. Reprod. Biomed. Online 2023, 46, 597–606. [Google Scholar] [CrossRef] [PubMed]
- Ishijima, S.A.; Okuno, M.; Mohri, H. Zeta potential of human X- and Y-bearing sperm. Int. J. Androl. 1991, 14, 340–347. [Google Scholar] [CrossRef] [PubMed]
- Ermini, L.; Secciani, F.; La Sala, G.B.; Sabatini, L.; Fineschi, D.; Hale, G.; Rosati, F. Different glycoforms of the human GPI-anchored antigen CD52 associate differently with lipid microdomains in leukocytes and sperm membranes. Biochem. Biophys. Res. Commun. 2005, 338, 1275–1283. [Google Scholar] [CrossRef] [PubMed]
- Giuliani, V.; Pandolfi, C.; Santucci, R.; Pelliccione, F.; Macerola, B.; Focarelli, R.; Rosati, F.; Della Giovampaola, C.; Francavilla, F.; Francavilla, S. Expression of gp20, a human sperm antigen of epididymal origin, is reduced in spermatozoa from subfertile men. Mol. Reprod. Dev. 2004, 69, 235–240. [Google Scholar] [CrossRef] [PubMed]
- Kirchhoff, C.; Schröter, S. New insights into the origin, structure and role of CD52: A major component of the mammalian sperm glycocalyx. Cells Tissues Organs 2001, 168, 93–104. [Google Scholar] [CrossRef] [PubMed]
- Chan, P.J.; Jacobson, J.D.; Corselli, J.U.; Patton, W.C. A simple zeta method for sperm selection based on membrane charge. Fertil. Steril. 2006, 85, 481–486. [Google Scholar] [CrossRef] [PubMed]
- Ainsworth, C.; Nixon, B.; Aitken, R.J. Development of a novel electrophoretic system for the isolation of human spermatozoa. Hum. Reprod. 2005, 20, 2261–2270. [Google Scholar] [CrossRef] [PubMed]
- Fleming, S.D.; Ilad, R.S.; Griffin, A.-M.G.; Wu, Y.; Ong, K.J.; Smith, H.C.; Aitken, R.J. Prospective controlled trial of an electrophoretic method of sperm preparation for assisted reproduction: Comparison with density gradient centrifugation. Hum. Reprod. 2008, 23, 2646–2651. [Google Scholar] [CrossRef]
- Shapouri, F.; Mahendran, T.; Govindarajan, M.; Xie, P.; Kocur, O.; Palermo, G.D.; Bakos, H.W.; Ahlström, A.; Caisander, G.; Xu, B.; et al. A comparison between the FelixTM electrophoretic system of sperm isolation and conventional density gradient centrifugation: A multicentre analysis. J. Assist. Reprod. Genet. 2023, 40, 83–95. [Google Scholar] [CrossRef]
- Parmegiani, L.; Cognigni, G.E.; Bernardi, S.; Troilo, E.; Ciampaglia, W.; Filicori, M. “Physiologic ICSI”: Hyaluronic acid (HA) favors selection of spermatozoa without DNA fragmentation and with normal nucleus, resulting in improvement of embryo quality. Fertil. Steril. 2010, 93, 598–604. [Google Scholar] [CrossRef] [PubMed]
- Huszar, G.; Jakab, A.; Sakkas, D.; Ozenci, C.-C.; Cayli, S.; Delpiano, E.; Ozkavukcu, S. Fertility testing and ICSI sperm selection by hyaluronic acid binding: Clinical and genetic aspects. Reprod. Biomed. Online 2007, 14, 650–663. [Google Scholar] [CrossRef] [PubMed]
- Parmegiani, L.; Cognigni, G.; Bernardi, S.; Troilo, E.; Taraborrelli, S.; Arnone, A.; Maccarini, A.; Filicori, M. Comparison of two ready-to-use systems designed for sperm-hyaluronic acid binding selection before intracytoplasmic sperm injection: PICSI vs. Sperm Slow: A prospective, randomized trial. Fertil. Steril. 2012, 98, 632–637. [Google Scholar] [CrossRef] [PubMed]
- Majumdar, G.; Majumdar, A. A prospective randomized study to evaluate the effect of hyaluronic acid sperm selection on the intracytoplasmic sperm injection outcome of patients with unexplained infertility having normal semen parameters. J. Assist. Reprod. Genet. 2013, 30, 1471–1475. [Google Scholar] [CrossRef] [PubMed]
- Kızılay, F.; Altay, B. Sperm function tests in clinical practice. Turk. J. Urol. 2017, 43, 393–400. [Google Scholar] [CrossRef] [PubMed]
- Burkman, L.J.; Coddington, C.C.; Franken, D.R.; Krugen, T.F.; Rosenwaks, Z.; Hogen, G.D. The hemizona assay (HZA): Development of a diagnostic test for the binding of human spermatozoa to the human hemizona pellucida to predict fertilization potential. Fertil. Steril. 1988, 49, 688–697. [Google Scholar] [CrossRef] [PubMed]
- Franken, D.R.; Oosthuizen, W.T.; Cooper, S.; Kruger, T.F.; Burkman, L.J.; Coddington, C.C.; Hodgen, G.D. Electron microscopic evidence on the acrosomal status of bound sperm and their penetration into human hemizonae pellucida after storage in a buffered salt solution. Andrologia 1991, 23, 205–208. [Google Scholar] [CrossRef] [PubMed]
- Franken, D.R.; Oehninger, S.; Burkman, L.J.; Coddington, C.C.; Kruger, T.F.; Rosenwaks, Z.; Acosta, A.A.; Hodgen, G.D. The hemizona assay (HZA): A predictor of human sperm fertilizing potential in in vitro fertilization (IVF) treatment. J. Vitro Fertil. Embryo Transf. IVF 1989, 6, 44–50. [Google Scholar] [CrossRef] [PubMed]
- Dirican, E.K.; Özgün, O.D.; Akarsu, S.; Akın, K.O.; Ercan, Ö.; Uğurlu, M.; Çamsarı, Ç.; Kanyılmaz, O.; Kaya, A.; Ünsal, A. Clinical outcome of magnetic activated cell sorting of non-apoptotic spermatozoa before density gradient centrifugation for assisted reproduction. J. Assist. Reprod. Genet. 2008, 25, 375–381. [Google Scholar] [CrossRef]
- Vermes, I.; Haanen, C.; Steffens-Nakken, H.; Reutelingsperger, C. A novel assay for apoptosis. Flow cytometric detection of phosphatidylserine expression on early apoptotic cells using fluorescein labelled Annexin V. J. Immunol. Methods 1995, 184, 39–51. [Google Scholar] [CrossRef]
- Said, T.M.; Agarwal, A.; Grunewald, S.; Rasch, M.; Glander, H.-J.; Paasch, U. Evaluation of sperm recovery following annexin V magnetic-activated cell sorting separation. Reprod. Biomed. Online 2006, 13, 336–339. [Google Scholar] [CrossRef]
- Said, T.M.; Grunewald, S.; Paasch, U.; Rasch, M.; Agarwal, A.; Glander, H.-J. Effects of magnetic-activated cell sorting on sperm motility and cryosurvival rates. Fertil. Steril. 2005, 83, 1442–1446. [Google Scholar] [CrossRef]
- Sánchez-Martín, P.; Dorado-Silva, M.; Sánchez-Martín, F.; González Martínez, M.; Johnston, S.D.; Gosálvez, J. Magnetic cell sorting of semen containing spermatozoa with high DNA fragmentation in ICSI cycles decreases miscarriage rate. Reprod. Biomed. Online 2017, 34, 506–512. [Google Scholar] [CrossRef]
- Norozi-Hafshejani, M.; Tavalaee, M.; Najafi, M.H.; Shapour, F.; Arbabian, M.; Nasr-Esfahani, M.H. MACS-DGC versus DGC Sperm Wash Procedure: Comparing Clinical Outcomes in Couples with Male Factor Infertility Undergoing ICSI: A Clinical Trial Study. Int. J. Fertil. Steril. 2022, 16, 17–22. [Google Scholar] [CrossRef]
- Karger, S.; Arlt, S.; Haimerl, P.; Heuwieser, W. A systematic review of studies performing the hypo-osmotic swelling test to evaluate the quality of canine spermatozoa. Reprod. Domest. Anim. 2014, 49, 1–6. [Google Scholar] [CrossRef]
- Bencharif, D.; Amirat-Briand, L.; Garand, A.; Anton, M.; Schmitt, E.; Desherces, S.; Delhomme, G.; Langlois, M.-L.; Barrière, P.; Destrumelle, S.; et al. Freezing canine sperm: Comparison of semen extenders containing Equex and LDL (Low Density Lipoproteins). Anim. Reprod. Sci. 2010, 119, 305–313. [Google Scholar] [CrossRef]
- Yeung, C.H.; Wagenfeld, A.; Nieschlag, E.; Cooper, T.G. The cause of infertility of male c-ros tyrosine kinase receptor knockout mice. Biol. Reprod. 2000, 63, 612–618. [Google Scholar] [CrossRef]
- Casper, R.F.; Meriano, J.S.; Jarvi, K.A.; Cowan, L.; Lucato, M.L. The hypo-osmotic swelling test for selection of viable sperm for intracytoplasmic sperm injection in men with complete asthenozoospermia. Fertil. Steril. 1996, 65, 972–976. [Google Scholar] [CrossRef]
- Westlander, G.; Barry, M.; Petrucco, O.; Norman, R. Different fertilization rates between immotile testicular spermatozoa and immotile ejaculated spermatozoa for ICSI in men with Kartagener’s syndrome: Case reports. Hum. Reprod. 2003, 18, 1286–1288. [Google Scholar] [CrossRef] [PubMed]
- Aktan, T.M.; Montag, M.; Duman, S.; Gorkemli, H.; Rink, K.; Yurdakul, T. Use of a laser to detect viable but immotile spermatozoa. Andrologia 2004, 36, 366–369. [Google Scholar] [CrossRef] [PubMed]
- Xue, Y.; Xiong, Y.; Cheng, X.; Li, K. Applications of laser technology in the manipulation of human spermatozoa. Reprod. Biol. Endocrinol. RBE 2023, 21, 93. [Google Scholar] [CrossRef]
- Sackmann, E.K.; Fulton, A.L.; Beebe, D.J. The present and future role of microfluidics in biomedical research. Nature 2014, 507, 181–189. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Chen, H.; Li, N.; Zhao, Y. Emerging microfluidic technologies for sperm sorting. Eng. Regen. 2023, 4, 161–169. [Google Scholar] [CrossRef]
- Xiao, S.; Riordon, J.; Simchi, M.; Lagunov, A.; Hannam, T.; Jarvi, K.; Nosrati, R.; Sinton, D. FertDish: Microfluidic sperm selection-in-a-dish for intracytoplasmic sperm injection. Lab Chip 2021, 21, 775–783. [Google Scholar] [CrossRef]
- Doostabadi, M.R.; Mangoli, E.; Marvast, L.D.; Dehghanpour, F.; Maleki, B.; Torkashvand, H.; Talebi, A.R. Microfluidic devices employing chemo- and thermotaxis for sperm selection can improve sperm parameters and function in patients with high DNA fragmentation. Andrologia 2022, 54, e14623. [Google Scholar] [CrossRef]
- Asghar, W.; Velasco, V.; Kingsley, J.L.; Shoukat, M.S.; Shafiee, H.; Anchan, R.M.; Mutter, G.L.; Tüzel, E.; Demirci, U. Selection of functional human sperm with higher DNA integrity and fewer reactive oxygen species. Adv. Healthc. Mater. 2014, 3, 1671–1679. [Google Scholar] [CrossRef]
- Vasilescu, S.A.; Khorsandi, S.; Ding, L.; Bazaz, S.R.; Nosrati, R.; Gook, D.; Warkiani, M.E. A microfluidic approach to rapid sperm recovery from heterogeneous cell suspensions. Sci. Rep. 2021, 11, 7917. [Google Scholar] [CrossRef]
- Wang, W.; Liang, G.-T.; Peng, Y.-Y.; Liu, D.-Y.; Zhou, X.-M. Effects of a microfluidic sperm sorter on sperm routine parameters and DNA integrity. Zhonghua Nan Ke Xue Natl. J. Androl. 2011, 17, 301–304. [Google Scholar]
- Pujol, A.; García-Peiró, A.; Ribas-Maynou, J.; Lafuente, R.; Mataró, D.; Vassena, R. A microfluidic sperm-sorting device reduces the proportion of sperm with double-stranded DNA fragmentation. Zygote 2022, 30, 200–205. [Google Scholar] [CrossRef] [PubMed]
- Banti, M.; Van Zyl, E.; Kafetzis, D. Sperm Preparation with Microfluidic Sperm Sorting Chip May Improve Intracytoplasmic Sperm Injection Outcomes Compared to Density Gradient Centrifugation. Reprod. Sci. 2024, 31, 1695–1704. [Google Scholar] [CrossRef] [PubMed]
- Aydın, Ş.; Bulgan Kılıçdağ, E.; Çağlar Aytaç, P.; Çok, T.; Şimşek, E.; Haydardedeoğlu, B. Prospective randomized controlled study of a microfluidic chip technology for sperm selection in male infertility patients. Andrologia 2022, 54, e14415. [Google Scholar] [CrossRef] [PubMed]
- Mirsanei, J.S.; Sheibak, N.; Zandieh, Z.; Mehdizadeh, M.; Aflatoonian, R.; Tabatabaei, M.; Mousavi, A.S.; Amjadi, F. Microfluidic chips as a method for sperm selection improve fertilization rate in couples with fertilization failure. Arch. Gynecol. Obstet. 2022, 306, 901–910. [Google Scholar] [CrossRef] [PubMed]
- Bartoov, B.; Berkovitz, A.; Eltes, F.; Kogosowski, A.; Menezo, Y.; Barak, Y. Real-time fine morphology of motile human sperm cells is associated with IVF-ICSI outcome. J. Androl. 2002, 23, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Lo Monte, G.; Murisier, F.; Piva, I.; Germond, M.; Marci, R. Focus on intracytoplasmic morphologically selected sperm injection (IMSI): A mini-review. Asian J. Androl. 2013, 15, 608–615. [Google Scholar] [CrossRef] [PubMed]
- Franco, J.G.; Mauri, A.L.; Petersen, C.G.; Massaro, F.C.; Silva, L.F.I.; Felipe, V.; Cavagna, M.; Pontes, A.; Baruffi, R.L.R.; Oliveira, J.B.A.; et al. Large nuclear vacuoles are indicative of abnormal chromatin packaging in human spermatozoa. Int. J. Androl. 2012, 35, 46–51. [Google Scholar] [CrossRef] [PubMed]
- Bartoov, B.; Berkovitz, A.; Eltes, F.; Kogosovsky, A.; Yagoda, A.; Lederman, H.; Artzi, S.; Gross, M.; Barak, Y. Pregnancy rates are higher with intracytoplasmic morphologically selected sperm injection than with conventional intracytoplasmic injection. Fertil. Steril. 2003, 80, 1413–1419. [Google Scholar] [CrossRef] [PubMed]
- Soares, J.B.; Glina, S.; Antunes, N.; Wonchockier, R.; Galuppo, A.G.; Mizrahi, F.E. Sperm tail flexibility test: A simple test for selecting viable spermatozoa for intracytoplasmic sperm injection from semen samples without motile spermatozoa. Rev. Hosp. Clin. 2003, 58, 250–253. [Google Scholar] [CrossRef] [PubMed]
- Tumuklu Ozyer, G.; Ozyer, B.; Negin, F.; Alarabi, İ.; Agahian, S. A hybrid IMM-JPDAF algorithm for tracking multiple sperm targets and motility analysis. Neural Comput. Appl. 2022, 34, 17407–17421. [Google Scholar] [CrossRef]
- Urbano, L.F.; Masson, P.; VerMilyea, M.; Kam, M. Automatic Tracking and Motility Analysis of Human Sperm in Time-Lapse Images. IEEE Trans. Med. Imaging 2017, 36, 792–801. [Google Scholar] [CrossRef]
- Du Plessis, S.S.; Agarwal, A.; Halabi, J.; Tvrda, E. Contemporary evidence on the physiological role of reactive oxygen species in human sperm function. J. Assist. Reprod. Genet. 2015, 32, 509–520. [Google Scholar] [CrossRef]
- Ribeiro, J.C.; Braga, P.C.; Martins, A.D.; Silva, B.M.; Alves, M.G.; Oliveira, P.F. Antioxidants Present in Reproductive Tract Fluids and Their Relevance for Fertility. Antioxidants 2021, 10, 1441. [Google Scholar] [CrossRef] [PubMed]
- Tremellen, K. Oxidative stress and male infertility—A clinical perspective. Hum. Reprod. Update 2008, 14, 243–258. [Google Scholar] [CrossRef]
- Walke, G.; Gaurkar, S.S.; Prasad, R.; Lohakare, T.; Wanjari, M. The Impact of Oxidative Stress on Male Reproductive Function: Exploring the Role of Antioxidant Supplementation. Cureus 2023, 15, e42583. [Google Scholar] [CrossRef]
- Talevi, R.; Barbato, V.; Fiorentino, I.; Braun, S.; Longobardi, S.; Gualtieri, R. Protective effects of in vitro treatment with zinc, d-aspartate and coenzyme q10 on human sperm motility, lipid peroxidation and DNA fragmentation. Reprod. Biol. Endocrinol. 2013, 11, 81. [Google Scholar] [CrossRef]
- Sadeghi, N.; Boissonneault, G.; Tavalaee, M.; Nasr-Esfahani, M.H. Oxidative versus reductive stress: A delicate balance for sperm integrity. Syst. Biol. Reprod. Med. 2023, 69, 20–31. [Google Scholar] [CrossRef]
- Agarwal, A.; Leisegang, K.; Majzoub, A.; Henkel, R.; Finelli, R.; Panner Selvam, M.K.; Tadros, N.; Parekh, N.; Ko, E.Y.; Cho, C.L.; et al. Utility of Antioxidants in the Treatment of Male Infertility: Clinical Guidelines Based on a Systematic Review and Analysis of Evidence. World J. Men’s Health 2021, 39, 233–290. [Google Scholar] [CrossRef] [PubMed]
- Oseguera-López, I.; Ruiz-Díaz, S.; Ramos-Ibeas, P.; Pérez-Cerezales, S. Novel Techniques of Sperm Selection for Improving IVF and ICSI Outcomes. Front. Cell Dev. Biol. 2019, 7, 298. [Google Scholar] [CrossRef]
- Ribas-Maynou, J.; Barranco, I.; Sorolla-Segura, M.; Llavanera, M.; Delgado-Bermúdez, A.; Yeste, M. Advanced Sperm Selection Strategies as a Treatment for Infertile Couples: A Systematic Review. Int. J. Mol. Sci. 2022, 23, 13859. [Google Scholar] [CrossRef] [PubMed]
- Leung, E.T.Y.; Lee, C.-L.; Tian, X.; Lam, K.K.W.; Li, R.H.W.; Ng, E.H.Y.; Yeung, W.S.B.; Chiu, P.C.N. Simulating nature in sperm selection for assisted reproduction. Nat. Rev. Urol. 2022, 19, 16–36. [Google Scholar] [CrossRef]
- Nixon, B.; Schjenken, J.E.; Burke, N.D.; Skerrett-Byrne, D.A.; Hart, H.M.; De Iuliis, G.N.; Martin, J.H.; Lord, T.; Bromfield, E.G. New horizons in human sperm selection for assisted reproduction. Front. Endocrinol. 2023, 14, 1145533. [Google Scholar] [CrossRef]
- Aitken, R.J.; Gibb, Z. Sperm oxidative stress in the context of male infertility: Current evidence, links with genetic and epigenetic factors and future clinical needs. Minerva Endocrinol. 2022, 47, 38–57. [Google Scholar] [CrossRef]
- Zhang, Y.; Bruna de Lima, C.; Labrecque, R.; Sirard, M.-A. Whole-genome DNA methylation analysis of the sperm in relation to bull fertility. Reproduction 2023, 165, 557–568. [Google Scholar] [CrossRef]
- Andone, B.-A.; Handrea-Dragan, I.M.; Botiz, I.; Boca, S. State-of-the-art and future perspectives in infertility diagnosis: Conventional versus nanotechnology-based assays. Nanomed. Nanotechnol. Biol. Med. 2023, 54, 102709. [Google Scholar] [CrossRef]
- Tomaiuolo, G.; Fellico, F.; Preziosi, V.; Cariati, F.; Strina, I.; Votino, C.; Zullo, F.; Longobardi, S.; Guido, S. Post-liquefaction normospermic human semen behaves as a weak-gel viscoelastic fluid. Soft Matter 2023, 19, 5039–5043. [Google Scholar] [CrossRef]
- Zini, A.; Boman, J.M.; Belzile, E.; Ciampi, A. Sperm DNA damage is associated with an increased risk of pregnancy loss after IVF and ICSI: Systematic review and meta-analysis. Hum. Reprod. 2008, 23, 2663–2668. [Google Scholar] [CrossRef]
- Borges, E.; Zanetti, B.F.; Setti, A.S.; Braga, D.P.d.A.F.; Provenza, R.R.; Iaconelli, A. Sperm DNA fragmentation is correlated with poor embryo development, lower implantation rate, and higher miscarriage rate in reproductive cycles of non-male factor infertility. Fertil. Steril. 2019, 112, 483–490. [Google Scholar] [CrossRef]
- Cariati, F.; Jaroudi, S.; Alfarawati, S.; Raberi, A.; Alviggi, C.; Pivonello, R.; Wells, D. Investigation of sperm telomere length as a potential marker of paternal genome integrity and semen quality. Reprod. Biomed. Online 2016, 33, 404–411. [Google Scholar] [CrossRef]
Semen Alterations | Suggested Protocols |
---|---|
Teratozoospermia, asthenozoospermia and oligozoospermia | Swim up |
Teratozoospermia, asthenozoospermia and oligozoospermia | Density gradient centrifugation |
Teratozoospermia | Zeta potential |
Teratozoospermia | Hyaluronic acid binding |
Teratozoospermia | Hemi-zona assay |
Teratozoospermia | Magnetic-activated cell sorting |
Severe asthenozoospermia | Hypo-osmotic swelling test |
Complete asthenozoospermia | Laser-assisted immobile sperm selection |
Teratozoospermia and asthenozoospermia | Microfluidics |
Teratozoospermia | Motile sperm organelle morphology examination |
Asthenozoospermia | Birefringance |
Asthenozoospermia | Sperm tail flexibility test |
Non-obstructive azoospermia | Fluorescence-activated cell sorting |
Protocol | Advantages | Disadvantages | Description | Clinical Outcomes |
---|---|---|---|---|
Swim Up (SU) | Easy, economical recovery of highly motile spermatozoa | Not effective in cases of severe oligoasthenozoospermia | Motile spermatozoa will migrate in a suitable culture medium, placed over a portion of the semen sample | Comparing SU and DGC, no significant differences in fertilization, good-quality embryo, and blastocyst formation rates have been found in IVF/ICSI cycles [40] |
Density Gradient Centrifugation (DGC) | Easy, economical recovery of highly motile spermatozoa with normal morphology | Not as effective in cases of severe oligoasthenozoospermia | Spermatozoa with a good morphology will reach the bottom of the centrifuge tube during centrifugation process, progressing through solutions of increasing density | |
Zeta Potential | Selection of mature spermatozoa with intact DNA and normal morphology | Low efficiency | Spermatozoa with negative charge will bind to the walls of a centrifuge tube, previously positively charged | Combining the zeta potential technique with DGC, pregnancy rates following ICSI are better than individual procedures [43] |
Hyaluronic Acid Binding (Ha) | Selection of viable non-apoptotic spermatozoa, free of DNA fragmentation, and with a frequency of chromosomal diploidy within normal limits | Low selection of motile spermatozoa with normal morphology at high magnification | Spermatozoa, with HA receptors will adhere with their heads to the bottom of Petri dishes pre-treated with HA hydrogel | Sperm selection with the PICSI dish significantly reduced the miscarriage rate compared to standard ICSI [44] |
Hemi-Zona Assay (HZA) | Identification of spermatozoa capable of binding to the zona pellucida | Difficult to obtain donated human oocytes | Spermatozoa able to bind to glycoprotein receptors ZP3/ZP4 on the zona surface from a non-fertilized human oocyte can be counted as normal | The hemi-zona index must be above 30% for IUI likely to be successful [45] |
Magnetic-Activated Cell Sorting (MACS) | Selection of non-apoptotic spermatozoa | Expensive | Non-apoptotic spermatozoa will pass through a column of annexin-V coated paramagnetic beads subjected to a magnetic field | MACS is more efficient than PICSI in the elimination of spermatozoa with fragmented DNA in cases of idiopathic infertility [46,47]. DGC-MACS, compared to DGC alone, SU, and DGC followed by SU, provides a higher percentage of viable spermatozoa with normal morphology and intact DNA in teratozoospermic patients [48] |
Hypo-Osmotic Swelling Test (HOST) | Economical, easy, selection of viable spermatozoa with an intact plasmalemma | Difficult aspiration into an ICSI micropipette | Viable spermatozoa in hyposmotic solution will show a swelling of the cytoplasm due to osmosis | In cases of immotile spermatozoa, HOST and the sperm tail flexibility test enable selection of viable spermatozoa; however they work better in fresh than in cryopreserved spermatozoa [49] |
Sperm Tail Flexibility Test (STFT) | Selection of viable but immotile spermatozoa | Not a standardized technique. Further studies are required | Spermatozoa are shaken with an ICSI needle | |
Laser-Assisted Immobile Sperm Selection (LAISS) | No exposure of the spermatozoa to potentially harmful chemical substances. Selection of live spermatozoa in severe asthenozoospermia | Expensive, difficult | A laser shot is fired at the sperm tail to observe tail curling as an indication of viability | In asthenozoospermic samples, the use of laser results in significantly higher fertilization and embryo cleavage rates compared to those obtained from randomly selected spermatozoa [50] |
Microfluidics | Recovery of motile spermatozoa with normal morphology and intact DNA | Expensive, not a standardized technique | Using micrometric capillaries, motile spermatozoa will separate from non-motile ones, and from other cells | Microfluidics provides a higher number of higher quality blastocysts compared to DGC [51] |
Motile Sperm Organelle Morphology Examination (MSOME) | More detailed analysis of sperm morphology, high pregnancy rates | Long procedure, expensive | Spermatozoa are observed at a magnification of up to 6300x | There are no significant differences in the degree of fertilization after ICSI and IMSI [52,53] |
Birefringence | Selection of spermatozoa with a compact nucleus and normal acrosome | Not a standardized technique. Further studies are required | Spermatozoa are observed under polarization microscopy | Immotile birefringent sperm in asthenozoospermic patients have a higher fertilization rate compared to non-birefringent ones in ICSI [54] |
Fluorescence-Activated Cell Sorting (FACS) | Recovery of spermatozoa from a mixed sample (especially in non-obstructive azoospermia) | Expensive technique, high percentage of cell loss, time-consuming | Spermatozoa from seminal fluid labeled with fluorophore-conjugated antibodies fluoresce when excited by a laser and can be recovered | The alteration in cell viability due to fluorophores and antibodies limits the use of FACS in routine clinical practice [19] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cariati, F.; Orsi, M.G.; Bagnulo, F.; Del Mondo, D.; Vigilante, L.; De Rosa, M.; Sciorio, R.; Conforti, A.; Fleming, S.; Alviggi, C. Advanced Sperm Selection Techniques for Assisted Reproduction. J. Pers. Med. 2024, 14, 726. https://doi.org/10.3390/jpm14070726
Cariati F, Orsi MG, Bagnulo F, Del Mondo D, Vigilante L, De Rosa M, Sciorio R, Conforti A, Fleming S, Alviggi C. Advanced Sperm Selection Techniques for Assisted Reproduction. Journal of Personalized Medicine. 2024; 14(7):726. https://doi.org/10.3390/jpm14070726
Chicago/Turabian StyleCariati, Federica, Maria Grazia Orsi, Francesca Bagnulo, Daniela Del Mondo, Luigi Vigilante, Martina De Rosa, Romualdo Sciorio, Alessandro Conforti, Steven Fleming, and Carlo Alviggi. 2024. "Advanced Sperm Selection Techniques for Assisted Reproduction" Journal of Personalized Medicine 14, no. 7: 726. https://doi.org/10.3390/jpm14070726
APA StyleCariati, F., Orsi, M. G., Bagnulo, F., Del Mondo, D., Vigilante, L., De Rosa, M., Sciorio, R., Conforti, A., Fleming, S., & Alviggi, C. (2024). Advanced Sperm Selection Techniques for Assisted Reproduction. Journal of Personalized Medicine, 14(7), 726. https://doi.org/10.3390/jpm14070726