Gut Microbiota and Clinical Manifestations in Thai Pediatric Patients with Attention-Deficit Hyperactivity Disorder
Abstract
:1. Introduction
2. Subjects and Methods
2.1. Study Design and Participants
2.2. Sample Collection and 16S rRNA Gene Amplicon Sequencing
2.3. Bioinformatics and Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Antolini, G.; Colizzi, M. Where Do Neurodevelopmental Disorders Go? Casting the Eye Away from Childhood towards Adulthood. Healthcare 2023, 11, 1015. [Google Scholar] [CrossRef]
- Salari, N.; Ghasemi, H.; Abdoli, N.; Rahmani, A.; Shiri, M.H.; Hashemian, A.H.; Akbari, H.; Mohammadi, M. The global prevalence of ADHD in children and adolescents: A systematic review and meta-analysis. Ital. J. Pediatr. 2023, 49, 48. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.; Couture, J. A review of the pathophysiology, etiology, and treatment of attention-deficit hyperactivity disorder (ADHD). Ann. Pharmacother. 2014, 48, 209–225. [Google Scholar] [CrossRef] [PubMed]
- Visanuyothin, T.; Wachiradilok, P.; Pavasuthiapaisit, C. 597–Prevalence of adhd and odd: A national survey in thailand 2012. Eur. Psychiatry 2013, 28, 1. [Google Scholar] [CrossRef]
- Singh, A.; Yeh, C.J.; Verma, N.; Das, A.K. Overview of Attention Deficit Hyperactivity Disorder in Young Children. Health Psychol. Res. 2015, 3, 2115. [Google Scholar] [CrossRef] [PubMed]
- da Silva, B.S.; Grevet, E.H.; Silva, L.C.F.; Ramos, J.K.N.; Rovaris, D.L.; Bau, C.H.D. An overview on neurobiology and therapeutics of attention-deficit/hyperactivity disorder. Discov. Ment. Health 2023, 3, 2. [Google Scholar] [CrossRef] [PubMed]
- Cecil, C.A.M.; Nigg, J.T. Epigenetics and ADHD: Reflections on Current Knowledge, Research Priorities and Translational Potential. Mol. Diagn. Ther. 2022, 26, 581–606. [Google Scholar] [CrossRef] [PubMed]
- Sarkar, A.; Yoo, J.Y.; Valeria Ozorio Dutra, S.; Morgan, K.H.; Groer, M. The Association between Early-Life Gut Microbiota and Long-Term Health and Diseases. J. Clin. Med. 2021, 10, 459. [Google Scholar] [CrossRef]
- Checa-Ros, A.; Jeréz-Calero, A.; Molina-Carballo, A.; Campoy, C.; Muñoz-Hoyos, A. Current Evidence on the Role of the Gut Microbiome in ADHD Pathophysiology and Therapeutic Implications. Nutrients 2021, 13, 249. [Google Scholar] [CrossRef]
- Cenit, M.C.; Nuevo, I.C.; Codoñer-Franch, P.; Dinan, T.G.; Sanz, Y. Gut microbiota and attention deficit hyperactivity disorder: New perspectives for a challenging condition. Eur. Child Adolesc. Psychiatry 2017, 26, 1081–1092. [Google Scholar] [CrossRef]
- Liang, S.; Wu, X.; Hu, X.; Wang, T.; Jin, F. Recognizing Depression from the Microbiota-Gut-Brain Axis. Int. J. Mol. Sci. 2018, 19, 1592. [Google Scholar] [CrossRef] [PubMed]
- Appleton, J. The Gut-Brain Axis: Influence of Microbiota on Mood and Mental Health. Integr. Med. 2018, 17, 28–32. [Google Scholar]
- Miri, S.; Yeo, J.; Abubaker, S.; Hammami, R. Neuromicrobiology, an emerging neurometabolic facet of the gut microbiome? Front. Microbiol. 2023, 14, 1098412. [Google Scholar] [CrossRef] [PubMed]
- Luczynski, P.; Whelan, S.O.; O’Sullivan, C.; Clarke, G.; Shanahan, F.; Dinan, T.G.; Cryan, J.F. Adult microbiota-deficient mice have distinct dendritic morphological changes: Differential effects in the amygdala and hippocampus. Eur. J. Neurosci. 2016, 44, 2654–2666. [Google Scholar] [CrossRef] [PubMed]
- Shoji, H.; Ikeda, K.; Miyakawa, T. Behavioral phenotype, intestinal microbiome, and brain neuronal activity of male serotonin transporter knockout mice. Mol. Brain 2023, 16, 32. [Google Scholar] [CrossRef] [PubMed]
- Deng, Y.; Zhou, M.; Wang, J.; Yao, J.; Yu, J.; Liu, W.; Wu, L.; Wang, J.; Gao, R. Involvement of the microbiota-gut-brain axis in chronic restraint stress: Disturbances of the kynurenine metabolic pathway in both the gut and brain. Gut Microbes 2021, 13, 1869501. [Google Scholar] [CrossRef] [PubMed]
- Needham, B.D.; Funabashi, M.; Adame, M.D.; Wang, Z.; Boktor, J.C.; Haney, J.; Wu, W.L.; Rabut, C.; Ladinsky, M.S.; Hwang, S.J.; et al. A gut-derived metabolite alters brain activity and anxiety behaviour in mice. Nature 2022, 602, 647–653. [Google Scholar] [CrossRef] [PubMed]
- Peay, D.N.; Acuna, A.; Reynolds, C.M.; Willis, C.; Takalkar, R.; Bryce Ortiz, J.; Conrad, C.D. Chronic stress leads to persistent and contrasting stellate neuron dendritic hypertrophy in the amygdala of male and female rats, an effect not found in the hippocampus. Neurosci. Lett. 2023, 812, 137403. [Google Scholar] [CrossRef] [PubMed]
- Stilling, R.M.; Ryan, F.J.; Hoban, A.E.; Shanahan, F.; Clarke, G.; Claesson, M.J.; Dinan, T.G.; Cryan, J.F. Microbes & neurodevelopment—Absence of microbiota during early life increases activity-related transcriptional pathways in the amygdala. Brain Behav. Immun. 2015, 50, 209–220. [Google Scholar] [CrossRef] [PubMed]
- Philip, V.; Newton, D.F.; Oh, H.; Collins, S.M.; Bercik, P.; Sibille, E. Transcriptional markers of excitation-inhibition balance in germ-free mice show region-specific dysregulation and rescue after bacterial colonization. J. Psychiatr. Res. 2021, 135, 248–255. [Google Scholar] [CrossRef]
- Mayer, E.A. Gut feelings: The emerging biology of gut–brain communication. Nat. Rev. Neurosci. 2011, 12, 453–466. [Google Scholar] [CrossRef] [PubMed]
- Cryan, J.F.; Dinan, T.G. Mind-altering microorganisms: The impact of the gut microbiota on brain and behaviour. Nat. Rev. Neurosci. 2012, 13, 701–712. [Google Scholar] [CrossRef] [PubMed]
- Clarke, G.; Grenham, S.; Scully, P.; Fitzgerald, P.; Moloney, R.D.; Shanahan, F.; Dinan, T.G.; Cryan, J.F. The microbiome-gut-brain axis during early life regulates the hippocampal serotonergic system in a sex-dependent manner. Mol. Psychiatry 2013, 18, 666–673. [Google Scholar] [CrossRef] [PubMed]
- Jiang, H.; Ling, Z.; Zhang, Y.; Mao, H.; Ma, Z.; Yin, Y.; Wang, W.; Tang, W.; Tan, Z.; Shi, J.; et al. Altered fecal microbiota composition in patients with major depressive disorder. Brain Behav. Immun. 2015, 48, 186–194. [Google Scholar] [CrossRef] [PubMed]
- Needham, B.D.; Tang, W.; Wu, W.L. Searching for the gut microbial contributing factors to social behavior in rodent models of autism spectrum disorder. Dev. Neurobiol. 2018, 78, 474–499. [Google Scholar] [CrossRef] [PubMed]
- Roman, P.; Rueda-Ruzafa, L.; Cardona, D.; Cortes-Rodríguez, A. Gut-brain axis in the executive function of austism spectrum disorder. Behav. Pharmacol. 2018, 29, 654–663. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Han, Y.; Dy, A.B.C.; Hagerman, R.J. The Gut Microbiota and Autism Spectrum Disorders. Front. Cell. Neurosci. 2017, 11, 120. [Google Scholar] [CrossRef] [PubMed]
- Parracho, H.M.; Bingham, M.O.; Gibson, G.R.; McCartney, A.L. Differences between the gut microflora of children with autistic spectrum disorders and that of healthy children. J. Med. Microbiol. 2005, 54, 987–991. [Google Scholar] [CrossRef] [PubMed]
- Alamoudi, M.U.; Hosie, S.; Shindler, A.E.; Wood, J.L.; Franks, A.E.; Hill-Yardin, E.L. Comparing the Gut Microbiome in Autism and Preclinical Models: A Systematic Review. Front. Cell. Infect. Microbiol. 2022, 12, 905841. [Google Scholar] [CrossRef]
- Chernikova, M.A.; Flores, G.D.; Kilroy, E.; Labus, J.S.; Mayer, E.A.; Aziz-Zadeh, L. The Brain-Gut-Microbiome System: Pathways and Implications for Autism Spectrum Disorder. Nutrients 2021, 13, 4497. [Google Scholar] [CrossRef]
- Dargenio, V.N.; Dargenio, C.; Castellaneta, S.; De Giacomo, A.; Laguardia, M.; Schettini, F.; Francavilla, R.; Cristofori, F. Intestinal Barrier Dysfunction and Microbiota-Gut-Brain Axis: Possible Implications in the Pathogenesis and Treatment of Autism Spectrum Disorder. Nutrients 2023, 15, 1620. [Google Scholar] [CrossRef] [PubMed]
- Tabouy, L.; Getselter, D.; Ziv, O.; Karpuj, M.; Tabouy, T.; Lukic, I.; Maayouf, R.; Werbner, N.; Ben-Amram, H.; Nuriel-Ohayon, M.; et al. Dysbiosis of microbiome and probiotic treatment in a genetic model of autism spectrum disorders. Brain Behav. Immun. 2018, 73, 310–319. [Google Scholar] [CrossRef] [PubMed]
- Tartaglione, A.M.; Pazienza, V.; Calamandrei, G.; Ricceri, L. A snapshot of gut microbiota data from murine models of Autism Spectrum Disorder: Still a blurred picture. Neurosci. Biobehav. Rev. 2023, 147, 105105. [Google Scholar] [CrossRef] [PubMed]
- Sgritta, M.; Dooling, S.W.; Buffington, S.A.; Momin, E.N.; Francis, M.B.; Britton, R.A.; Costa-Mattioli, M. Mechanisms Underlying Microbial-Mediated Changes in Social Behavior in Mouse Models of Autism Spectrum Disorder. Neuron 2019, 101, 246–259.e6. [Google Scholar] [CrossRef] [PubMed]
- Doherty, J.L.; Owen, M.J. Genomic insights into the overlap between psychiatric disorders: Implications for research and clinical practice. Genome Med. 2014, 6, 29. [Google Scholar] [CrossRef] [PubMed]
- Reiersen, A.M.; Todd, R.D. Co-occurrence of ADHD and autism spectrum disorders: Phenomenology and treatment. Expert Rev. Neurother. 2008, 8, 657–669. [Google Scholar] [CrossRef] [PubMed]
- Aarts, E.; Ederveen, T.H.A.; Naaijen, J.; Zwiers, M.P.; Boekhorst, J.; Timmerman, H.M.; Smeekens, S.P.; Netea, M.G.; Buitelaar, J.K.; Franke, B.; et al. Gut microbiome in ADHD and its relation to neural reward anticipation. PLoS ONE 2017, 12, e0183509. [Google Scholar] [CrossRef] [PubMed]
- Jiang, H.Y.; Zhou, Y.Y.; Zhou, G.L.; Li, Y.C.; Yuan, J.; Li, X.H.; Ruan, B. Gut microbiota profiles in treatment-naïve children with attention deficit hyperactivity disorder. Behav. Brain Res. 2018, 347, 408–413. [Google Scholar] [CrossRef] [PubMed]
- Richarte, V.; Sánchez-Mora, C.; Corrales, M.; Fadeuilhe, C.; Vilar-Ribó, L.; Arribas, L.; Garcia, E.; Rosales-Ortiz, S.K.; Arias-Vasquez, A.; Soler-Artigas, M.; et al. Gut microbiota signature in treatment-naïve attention-deficit/hyperactivity disorder. Transl. Psychiatry 2021, 11, 382. [Google Scholar] [CrossRef]
- Prehn-Kristensen, A.; Zimmermann, A.; Tittmann, L.; Lieb, W.; Schreiber, S.; Baving, L.; Fischer, A. Reduced microbiome alpha diversity in young patients with ADHD. PLoS ONE 2018, 13, e0200728. [Google Scholar] [CrossRef]
- Cheng, S.; Han, B.; Ding, M.; Wen, Y.; Ma, M.; Zhang, L.; Qi, X.; Cheng, B.; Li, P.; Kafle, O.P.; et al. Identifying psychiatric disorder-associated gut microbiota using microbiota-related gene set enrichment analysis. Brief. Bioinform. 2020, 21, 1016–1022. [Google Scholar] [CrossRef] [PubMed]
- Pityaratstian, N.; Booranasuksakul, T.; Juengsiragulwit, D.; Benyakorn, S. ADHD screening properties of the Thai version of Swanson, Nolan, and Pelham IV scale (SNAP-IV) and Strengths and Difficulties Questionnaire (SDQ). J. Psychiatr. Assoc. Thail. 2014, 2, 97–110. [Google Scholar]
- Shokouhi, N.; Mohammadi, S.; Ghanbari, Z.; Montazeri, A. Development of a new version of the Bristol Stool Form Scale: Translation, content validity, face validity, and reliability of the Persian version. BMJ Open Gastroenterol. 2022, 9, e001017. [Google Scholar] [CrossRef] [PubMed]
- Nutrient Calculation Computer Software INMUCAL-Nutrients V 4.0 Database NB1; Institute of Nutrition, Mahidol University: Nakhon Pathom, Thailand, 2018.
- Chen, S.; Zhou, Y.; Chen, Y.; Gu, J. fastp: An ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 2018, 34, i884–i890. [Google Scholar] [CrossRef]
- Magoč, T.; Salzberg, S.L. FLASH: Fast length adjustment of short reads to improve genome assemblies. Bioinformatics 2011, 27, 2957–2963. [Google Scholar] [CrossRef]
- Callahan, B.J.; McMurdie, P.J.; Rosen, M.J.; Han, A.W.; Johnson, A.J.; Holmes, S.P. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 2016, 13, 581–583. [Google Scholar] [CrossRef] [PubMed]
- Hall, M.; Beiko, R.G. 16S rRNA Gene Analysis with QIIME2. In Microbiome Analysis: Methods and Protocols; Beiko, R.G., Hsiao, W., Parkinson, J., Eds.; Springer: New York, NY, USA, 2018; pp. 113–129. [Google Scholar]
- Trumbo, P.; Schlicker, S.; Yates, A.A.; Poos, M. Dietary reference intakes for energy, carbohydrate, fiber, fat, fatty acids, cholesterol, protein and amino acids. J. Am. Diet. Assoc. 2002, 102, 1621–1630. [Google Scholar] [CrossRef] [PubMed]
- Bureau of Nutrition, Department of Health, Ministry of Public Health. Dietary Reference Intake Tables for Thais 2020; A.V. Progressive Ltd.: Bangkok, Thailand, 2020. [Google Scholar]
- Tee, E.S.; Florentino, R.F.; Chongviriyaphan, N.; Ridwan, H.; Appukutty, M.; Mai, T.T. Review of recommended energy and nutrient intake values in Southeast Asian countries. Malays. J. Nutr. 2023, 29, 163–241. [Google Scholar] [CrossRef]
- Douglas, G.M.; Maffei, V.J.; Zaneveld, J.R.; Yurgel, S.N.; Brown, J.R.; Taylor, C.M.; Huttenhower, C.; Langille, M.G.I. PICRUSt2 for prediction of metagenome functions. Nat. Biotechnol. 2020, 38, 685–688. [Google Scholar] [CrossRef]
- Houtman, T.A.; Eckermann, H.A.; Smidt, H.; de Weerth, C. Gut microbiota and BMI throughout childhood: The role of firmicutes, bacteroidetes, and short-chain fatty acid producers. Sci. Rep. 2022, 12, 3140. [Google Scholar] [CrossRef]
- Nguyen, T.T.; Kosciolek, T.; Maldonado, Y.; Daly, R.E.; Martin, A.S.; McDonald, D.; Knight, R.; Jeste, D.V. Differences in gut microbiome composition between persons with chronic schizophrenia and healthy comparison subjects. Schizophr. Res. 2019, 204, 23–29. [Google Scholar] [CrossRef]
- Painold, A.; Mörkl, S.; Kashofer, K.; Halwachs, B.; Dalkner, N.; Bengesser, S.; Birner, A.; Fellendorf, F.; Platzer, M.; Queissner, R.; et al. A step ahead: Exploring the gut microbiota in inpatients with bipolar disorder during a depressive episode. Bipolar Disord. 2019, 21, 40–49. [Google Scholar] [CrossRef]
- Wang, L.; Xie, Z.; Li, G.; Li, G.; Liang, J. Two-sample Mendelian randomization analysis investigates causal associations between gut microbiota and attention deficit hyperactivity disorder. Front. Microbiol. 2023, 14, 1144851. [Google Scholar] [CrossRef] [PubMed]
- Szopinska-Tokov, J.; Dam, S.; Naaijen, J.; Konstanti, P.; Rommelse, N.; Belzer, C.; Buitelaar, J.; Franke, B.; Bloemendaal, M.; Aarts, E.; et al. Investigating the Gut Microbiota Composition of Individuals with Attention-Deficit/Hyperactivity Disorder and Association with Symptoms. Microorganisms 2020, 8, 406, Erratum in Microorganisms 2021, 9, 1358. [Google Scholar] [CrossRef] [PubMed]
- Tengeler, A.C.; Dam, S.A.; Wiesmann, M.; Naaijen, J.; van Bodegom, M.; Belzer, C.; Dederen, P.J.; Verweij, V.; Franke, B.; Kozicz, T.; et al. Gut microbiota from persons with attention-deficit/hyperactivity disorder affects the brain in mice. Microbiome 2020, 8, 44. [Google Scholar] [CrossRef]
- Eroglu, A.; Al’Abri, I.S.; Kopec, R.E.; Crook, N.; Bohn, T. Carotenoids and Their Health Benefits as Derived via Their Interactions with Gut Microbiota. Adv. Nutr. 2023, 14, 238–255. [Google Scholar] [CrossRef] [PubMed]
- Mawson, A.R. Toward a theory of childhood learning disorders, hyperactivity, and aggression. ISRN Psychiatry 2012, 2012, 589792. [Google Scholar] [CrossRef]
- Hegde, P.S.; Agni, M.B.; Rai, P.; Kumar B, M.; KM, D.G. Impact of carotenoids on gut microbiome: Implications in human health and disease. J. Appl. Nat. Sci. 2022, 14, 1085–1099. [Google Scholar] [CrossRef]
- Riaz Rajoka, M.S.; Thirumdas, R.; Mehwish, H.M.; Umair, M.; Khurshid, M.; Hayat, H.F.; Phimolsiripol, Y.; Pallarés, N.; Martí-Quijal, F.J.; Barba, F.J. Role of Food Antioxidants in Modulating Gut Microbial Communities: Novel Understandings in Intestinal Oxidative Stress Damage and Their Impact on Host Health. Antioxidants 2021, 10, 1563. [Google Scholar] [CrossRef] [PubMed]
- Rocha, H.R.; Coelho, M.C.; Gomes, A.M.; Pintado, M.E. Carotenoids Diet: Digestion, Gut Microbiota Modulation, and Inflammatory Diseases. Nutrients 2023, 15, 2265. [Google Scholar] [CrossRef]
- Lyu, Y.; Wu, L.; Wang, F.; Shen, X.; Lin, D. Carotenoid supplementation and retinoic acid in immunoglobulin A regulation of the gut microbiota dysbiosis. Exp. Biol. Med. 2018, 243, 613–620. [Google Scholar] [CrossRef]
- Suwannasom, N.; Kao, I.; Pruß, A.; Georgieva, R.; Bäumler, H. Riboflavin: The Health Benefits of a Forgotten Natural Vitamin. Int. J. Mol. Sci. 2020, 21, 950. [Google Scholar] [CrossRef]
- Wan, Z.; Zheng, J.; Zhu, Z.; Sang, L.; Zhu, J.; Luo, S.; Zhao, Y.; Wang, R.; Zhang, Y.; Hao, K.; et al. Intermediate role of gut microbiota in vitamin B nutrition and its influences on human health. Front. Nutr. 2022, 9, 1031502. [Google Scholar] [CrossRef]
- Marashly, E.T.; Bohlega, S.A. Riboflavin Has Neuroprotective Potential: Focus on Parkinson’s Disease and Migraine. Front. Neurol. 2017, 8, 333. [Google Scholar] [CrossRef]
- Cavaleri, D.; Crocamo, C.; Morello, P.; Bartoli, F.; Carrà, G. The Kynurenine Pathway in Attention-Deficit/Hyperactivity Disorder: A Systematic Review and Meta-Analysis of Blood Concentrations of Tryptophan and Its Catabolites. J. Clin. Med. 2024, 13, 583. [Google Scholar] [CrossRef]
- Silva, Y.P.; Bernardi, A.; Frozza, R.L. The Role of Short-Chain Fatty Acids From Gut Microbiota in Gut-Brain Communication. Front. Endocrinol. 2020, 11, 508738. [Google Scholar] [CrossRef]
- Shin, Y.; Han, S.; Kwon, J.; Ju, S.; Choi, T.G.; Kang, I.; Kim, S.S. Roles of Short-Chain Fatty Acids in Inflammatory Bowel Disease. Nutrients 2023, 15, 4466. [Google Scholar] [CrossRef]
- Fusco, W.; Lorenzo, M.B.; Cintoni, M.; Porcari, S.; Rinninella, E.; Kaitsas, F.; Lener, E.; Mele, M.C.; Gasbarrini, A.; Collado, M.C.; et al. Short-Chain Fatty-Acid-Producing Bacteria: Key Components of the Human Gut Microbiota. Nutrients 2023, 15, 2211. [Google Scholar] [CrossRef]
- O’Riordan, K.J.; Collins, M.K.; Moloney, G.M.; Knox, E.G.; Aburto, M.R.; Fülling, C.; Morley, S.J.; Clarke, G.; Schellekens, H.; Cryan, J.F. Short chain fatty acids: Microbial metabolites for gut-brain axis signalling. Mol. Cell. Endocrinol. 2022, 546, 111572. [Google Scholar] [CrossRef]
- Koh, A.; De Vadder, F.; Kovatcheva-Datchary, P.; Bäckhed, F. From Dietary Fiber to Host Physiology: Short-Chain Fatty Acids as Key Bacterial Metabolites. Cell 2016, 165, 1332–1345. [Google Scholar] [CrossRef]
- Fock, E.; Parnova, R. Mechanisms of Blood–Brain Barrier Protection by Microbiota-Derived Short-Chain Fatty Acids. Cells 2023, 12, 657. [Google Scholar] [CrossRef]
- Facchin, S.; Bertin, L.; Bonazzi, E.; Lorenzon, G.; De Barba, C.; Barberio, B.; Zingone, F.; Maniero, D.; Scarpa, M.; Ruffolo, C.; et al. Short-Chain Fatty Acids and Human Health: From Metabolic Pathways to Current Therapeutic Implications. Life 2024, 14, 559. [Google Scholar] [CrossRef]
- Gänzle, M.G. Lactic metabolism revisited: Metabolism of lactic acid bacteria in food fermentations and food spoilage. Curr. Opin. Food Sci. 2015, 2, 106–117. [Google Scholar] [CrossRef]
- Wortelboer, K.; Koopen, A.M.; Herrema, H.; de Vos, W.M.; Nieuwdorp, M.; Kemper, E.M. From fecal microbiota transplantation toward next-generation beneficial microbes: The case of Anaerobutyricum soehngenii. Front. Med. 2022, 9, 1077275. [Google Scholar] [CrossRef]
- Engels, C.; Ruscheweyh, H.J.; Beerenwinkel, N.; Lacroix, C.; Schwab, C. The Common Gut Microbe Eubacterium hallii also Contributes to Intestinal Propionate Formation. Front. Microbiol. 2016, 7, 713. [Google Scholar] [CrossRef]
- Seegers, J.; Bui, N.; De Vos, W. Remarkable Metabolic Versatility of the Commensal Bacteria Eubacterium hallii and Intestinimonas butyriciproducens: Potential Next-Generation Therapeutic Microbes. In Probiotic Bacteria and Postbiotic Metabolites: Role in Animal and Human Health. Microorganisms for Sustainability; Springer: Singapore, 2021; pp. 139–151. [Google Scholar]
- Wei, Y.H.; Ma, X.; Zhao, J.C.; Wang, X.Q.; Gao, C.Q. Succinate metabolism and its regulation of host-microbe interactions. Gut Microbes 2023, 15, 2190300. [Google Scholar] [CrossRef]
- Hoyles, L.; Snelling, T.; Umlai, U.K.; Nicholson, J.K.; Carding, S.R.; Glen, R.C.; McArthur, S. Microbiome-host systems interactions: Protective effects of propionate upon the blood-brain barrier. Microbiome 2018, 6, 55. [Google Scholar] [CrossRef]
- Yang, L.L.; Stiernborg, M.; Skott, E.; Gillberg, T.; Landberg, R.; Giacobini, M.; Lavebratt, C. Lower plasma concentrations of short-chain fatty acids (SCFAs) in patients with ADHD. J. Psychiatr. Res. 2022, 156, 36–43. [Google Scholar] [CrossRef]
- Yang, L.L.; Stiernborg, M.; Skott, E.; Xu, J.; Wu, Y.; Landberg, R.; Arefin, S.; Kublickiene, K.; Millischer, V.; Nilsson, I.A.K.; et al. Effects of a Synbiotic on Plasma Immune Activity Markers and Short-Chain Fatty Acids in Children and Adults with ADHD—A Randomized Controlled Trial. Nutrients 2023, 15, 1293. [Google Scholar] [CrossRef]
- Korsten, S.; Vromans, H.; Garssen, J.; Willemsen, L.E.M. Butyrate Protects Barrier Integrity and Suppresses Immune Activation in a Caco-2/PBMC Co-Culture Model While HDAC Inhibition Mimics Butyrate in Restoring Cytokine-Induced Barrier Disruption. Nutrients 2023, 15, 2760. [Google Scholar] [CrossRef]
- Asarat, M.; Apostolopoulos, V.; Vasiljevic, T.; Donkor, O. Short-Chain Fatty Acids Regulate Cytokines and Th17/Treg Cells in Human Peripheral Blood Mononuclear Cells in vitro. Immunol. Investig. 2016, 45, 205–222. [Google Scholar] [CrossRef] [PubMed]
- Usami, M.; Kishimoto, K.; Ohata, A.; Miyoshi, M.; Aoyama, M.; Fueda, Y.; Kotani, J. Butyrate and trichostatin A attenuate nuclear factor kappaB activation and tumor necrosis factor alpha secretion and increase prostaglandin E2 secretion in human peripheral blood mononuclear cells. Nutr. Res. 2008, 28, 321–328. [Google Scholar] [CrossRef] [PubMed]
- Singh, N.; Gurav, A.; Sivaprakasam, S.; Brady, E.; Padia, R.; Shi, H.; Thangaraju, M.; Prasad, P.D.; Manicassamy, S.; Munn, D.H.; et al. Activation of Gpr109a, receptor for niacin and the commensal metabolite butyrate, suppresses colonic inflammation and carcinogenesis. Immunity 2014, 40, 128–139. [Google Scholar] [CrossRef] [PubMed]
- Suda, K.; Matsuda, K. How Microbes Affect Depression: Underlying Mechanisms via the Gut-Brain Axis and the Modulating Role of Probiotics. Int. J. Mol. Sci. 2022, 23, 1172. [Google Scholar] [CrossRef]
- Albertsen, M.; Karst, S.M.; Ziegler, A.S.; Kirkegaard, R.H.; Nielsen, P.H. Back to Basics--The Influence of DNA Extraction and Primer Choice on Phylogenetic Analysis of Activated Sludge Communities. PLoS ONE 2015, 10, e0132783. [Google Scholar] [CrossRef]
Characteristics | ADHD (n = 24) | Healthy Children (n = 24) | p-Value † |
---|---|---|---|
Gender, No. (%) | |||
Male | 21 (87.5) | 21 (87.5) | 1.000 |
Female | 3 (12.5) | 3 (12.5) | |
Age (year) | 7 (7, 8) | 7 (7,8) | 0.887 |
Height (cm) | 125.5 (120.5, 134.0) | 125.0 (120.0, 132.5) | 0.804 |
Body weight (kg) | 24.6 (20.5, 28.0) | 24.0 (20.5, 30.0) | 0.702 |
BMI (kg/m2) | 15.04 (14.59, 16.48) | 15.72 (14.42, 19.10) | 0.658 |
Gestational age (wk) | 37 (37, 39) | 39 (37.5, 39.5) | 0.140 |
Birth weight (gm) | 3156 (2735, 3465) | 3155 (2945, 3415) | 0.509 |
Birth length (cm) | 50.5 (48.0, 55.0) | 51.0 (50.1, 53.5) | 0.860 |
Head circumference (cm) | 33.0 (31.5, 34.0) | 33.5 (33.0, 34.0) | 0.373 |
6-month exclusive breastfeeding, No. (%) | 7 (29.2) | 5 (20.8) | 0.706 |
Constipation, No. (%) | 7 (29.2) | 3 (12.5) | 0.155 |
The SNAP-IV scale | |||
Inattention scores | |||
| 17.0 (15.0, 19.5) | 8.0 (4.5, 9.0) | <0.001 * |
| 18.0 (16.0, 20.5) | 6.0 (4.0, 9.0) | <0.001 * |
Hyperactivity/impulsivity scores | |||
| 16.0 (11.5, 19.0) | 4.0 (2.5, 8.0) | <0.001 * |
| 15.5 (12.0, 19.5) | 4.0 (4.0, 5.0) | <0.001 * |
Genera | Inattention Subset Scoring | Hyperactivity/Impulsivity Subset Scoring | ||||||
---|---|---|---|---|---|---|---|---|
Parent | Teachers | Parent | Teachers | |||||
rs † | p-Value | rs † | p-Value | rs † | p-Value | rs † | p-Value | |
Megamonas | −0.14 | 0.004 * | −0.38 | 0.008 * | −0.40 | 0.005 * | −0.41 | 0.004 * |
Eubacterium hallii group | −0.40 | 0.005 * | −0.44 | 0.002 * | −0.34 | 0.018 * | −0.41 | 0.004 * |
Enterobacter | −0.19 | 0.193 | −0.24 | 0.108 | −0.09 | 0.531 | −0.16 | 0.268 |
Negativibacillus | −0.31 | 0.031 * | −0.31 | 0.033 * | −0.17 | 0.248 | −0.25 | 0.086 |
Butyricimonas | −0.27 | 0.065 | −0.24 | 0.103 | −0.32 | 0.025 * | −0.30 | 0.037 * |
Acidaminococcus | −0.25 | 0.088 | −0.24 | 0.107 | −0.23 | 0.114 | −0.24 | 0.102 |
Succinivibrio | 0.19 | 0.193 | 0.31 | 0.030 * | 0.25 | 0.09 | 0.29 | 0.043 * |
CAG-352 | 0.34 | 0.020 * | 0.40 | 0.005 * | 0.37 | 0.009 * | 0.36 | 0.012 * |
Alloprevotella | 0.39 | 0.006 * | 0.32 | 0.026 * | 0.20 | 0.185 | 0.15 | 0.305 |
Dietary Intake | DRIs (EAR/AI) in Children Aged 6–12 y | ADHD (n = 24) | Healthy Children (n = 24) | p-Value * |
---|---|---|---|---|
Energy (kcal) | 1320–1800 | 1073 (859, 1353) | 1150 (926, 1394) | 0.578 |
Carbohydrate (CHO) (g) | ND | 139 (108, 161) | 142 (109, 168) | 0.592 |
Protein (g) | 24–40 | 50 (37, 62) | 52 (39, 63) | 0.635 |
Fat (g) | ND | 39 (31, 54) | 38 (35, 59) | 0.578 |
CHO: Protein: Fat (%TEI) | ND | 49: 19: 32 | 49: 19: 32 | 0.903 |
Dietary fiber (g) | ND | 2.8 (1.8, 4.3) | 3.6 (2.7, 5.0) | 0.161 |
Sodium (mg) | 325–1175 | 1254 (1005, 1667) | 1455 (1239, 1908) | 0.095 |
Adequate/Inadequate (n) | NA | NA | NA | |
Potassium (mg) | 1625–3325 | 802 (649, 977) | 963 (609, 1182) | 0.386 |
Adequate/Inadequate (n) | NA | NA | NA | |
Calcium (mg) | 800–1000 | 322 (176, 503) | 414 (291, 631) | 0.187 |
Adequate/Inadequate (n) | 0/24 | 2/22 | 0.149 | |
Phosphorus (mg) | 500–1000 | 508 (353, 573) | 523 (419, 730) | 0.433 |
Adequate/Inadequate (n) | 17/7 | 19/5 | 0.505 | |
Iron (mg) | 6.6–15.6 | 4.4 (3.5, 5.9) | 4.8 (3.9, 6.6) | 0.343 |
Adequate/Inadequate (n) | 10/14 | 13/11 | 0.386 | |
Copper (mg) | 1.0–1.3 | 0.34 (0.25, 0.37) | 0.39 (0.32, 0.48) | 0.023 * |
Adequate/Inadequate (n) | 0/24 | 1/23 | 0.312 | |
Magnesium (mg) | 120–170 | 24 (14, 38) | 18 (13, 40) | 0.578 |
Adequate/Inadequate (n) | 0/24 | 0/24 | 1.000 | |
Selenium (mcg) | 30–40 | 37 (22, 53) | 34 (27, 45) | 0.984 |
Adequate/Inadequate (n) | 17/7 | 21/3 | 0.155 | |
Zinc (mg) | 6.3–9.5 | 3.2 (2.7, 4.2) | 3.8 (2.8, 4.5) | 0.174 |
Adequate/Inadequate (n) | 7/17 | 9/15 | 0.540 | |
Vitamin A (mcg) | 350–550 | 154 (100, 284) | 202 (176, 286) | 0.257 |
Adequate/Inadequate (n) | 6/18 | 6/18 | 1.000 | |
Beta-carotene (mcg) | ND | 68 (20, 307) | 238 (89, 418) | 0.039 * |
Adequate/Inadequate (n) | NA | NA | NA | |
Vitamin B1 (mg) | 0.6–0.9 | 0.8 (0.6, 1.4) | 0.8 (0.6, 2.2) | 0.386 |
Adequate/Inadequate (n) | 19/5 | 21/3 | 0.439 | |
Vitamin B2 (mg) | 0.6–0.9 | 0.8 (0.6, 1.2) | 1.1 (0.9, 1.5) | 0.041 * |
Adequate/Inadequate (n) | 19/5 | 22/2 | 0.220 | |
Vitamin B3 (mg) | 8–12 | 9 (6, 15) | 15 (10, 19) | 0.022 * |
Adequate/Inadequate (n) | 19/5 | 23/1 | 0.081 | |
Vitamin B6 (mg) | 0.6–1 | 0.4 (0.3, 0.5) | 0.4 (0.3, 0.4) | 0.312 |
Adequate/Inadequate (n) | 7/17 | 4/20 | 0.303 | |
Vitamin B12 (mcg) | 1.2–1.8 | 0.8 (0.3, 1.4) | 0.6 (0.4, 1.1) | 0.509 |
Adequate/Inadequate (n) | 10/14 | 6/18 | 0.221 | |
Vitamin C (mg) | 40–60 | 7 (1, 21) | 10 (6, 17) | 0.293 |
Adequate/Inadequate (n) | 5/19 | 5/19 | 1.000 | |
Vitamin E (mg) | 9–13 | 1.3 (0.8, 2.1) | 1.1 (0.6, 1.9) | 0.918 |
Adequate/Inadequate (n) | 0/24 | 0/24 | 1.000 |
Genera | Copper | Beta-Carotene | Vitamin B2 | Vitamin B3 | ||||
---|---|---|---|---|---|---|---|---|
rs † | p-Value | rs † | p-Value | rs † | p-Value | rs † | p-Value | |
Megamonas | 0.07 | 0.622 | −0.03 | 0.843 | −0.06 | 0.674 | 0.12 | 0.434 |
Eubacterium hallii group | 0.20 | 0.180 | 0.36 | 0.013 * | 0.12 | 0.405 | 0.21 | 0.146 |
Enterobacter | 0.15 | 0.306 | 0.01 | 0.967 | 0.16 | 0.279 | 0.11 | 0.470 |
Negativibacillus | 0.10 | 0.484 | 0.23 | 0.117 | 0.10 | 0.506 | 0.22 | 0.140 |
Butyricimonas | 0.19 | 0.190 | 0.11 | 0.441 | 0.17 | 0.240 | 0.13 | 0.388 |
Acidaminococcus | −0.01 | 0.959 | 0.10 | 0.496 | 0.14 | 0.349 | −0.03 | 0.816 |
Succinivibrio | −0.22 | 0.137 | −0.31 | 0.035 * | −0.21 | 0.155 | −0.16 | 0.280 |
CAG-352 | −0.02 | 0.902 | −0.20 | 0.170 | −0.09 | 0.551 | −0.13 | 0.386 |
Alloprevotella | −0.24 | 0.104 | −0.21 | 0.159 | −0.32 | 0.026 * | −0.22 | 0.137 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Panpetch, J.; Kiatrungrit, K.; Tuntipopipat, S.; Tangphatsornruang, S.; Mhuantong, W.; Chongviriyaphan, N. Gut Microbiota and Clinical Manifestations in Thai Pediatric Patients with Attention-Deficit Hyperactivity Disorder. J. Pers. Med. 2024, 14, 739. https://doi.org/10.3390/jpm14070739
Panpetch J, Kiatrungrit K, Tuntipopipat S, Tangphatsornruang S, Mhuantong W, Chongviriyaphan N. Gut Microbiota and Clinical Manifestations in Thai Pediatric Patients with Attention-Deficit Hyperactivity Disorder. Journal of Personalized Medicine. 2024; 14(7):739. https://doi.org/10.3390/jpm14070739
Chicago/Turabian StylePanpetch, Jittraporn, Komsan Kiatrungrit, Siriporn Tuntipopipat, Sithichoke Tangphatsornruang, Wuttichai Mhuantong, and Nalinee Chongviriyaphan. 2024. "Gut Microbiota and Clinical Manifestations in Thai Pediatric Patients with Attention-Deficit Hyperactivity Disorder" Journal of Personalized Medicine 14, no. 7: 739. https://doi.org/10.3390/jpm14070739
APA StylePanpetch, J., Kiatrungrit, K., Tuntipopipat, S., Tangphatsornruang, S., Mhuantong, W., & Chongviriyaphan, N. (2024). Gut Microbiota and Clinical Manifestations in Thai Pediatric Patients with Attention-Deficit Hyperactivity Disorder. Journal of Personalized Medicine, 14(7), 739. https://doi.org/10.3390/jpm14070739