Fundus Autofluorescence in Diabetic Retinopathy
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Fundus Autofluorescence Overview
3.1.1. Fluorescence and Autofluorescence
3.1.2. Retinal Fluorophores
Lipofuscin
Melanin
Advanced Glycation End Products
3.1.3. Macular Pigments
3.1.4. FAF Imaging Techniques
3.2. FAF in Diabetic Macular Oedema
3.2.1. Short-Wavelength FAF (SW-FAF)
3.2.2. Green FAF
3.2.3. Near-Infrared FAF (NIR-FAF)
3.2.4. FAF in the Multimodal Assessment of DMO
3.2.5. FAF in Monitoring DMO Response to Treatment
3.3. FAF in Diabetic Retinal Pigment Epitheliopathy and Choroidopathy
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- International Diabetes Federation (IDF). Diabetes Atlas, 10th ed.; IDF: Brussels, Belgium, 2015. [Google Scholar]
- Tran, K.; Pakzad-Vaezi, K. Multimodal Imaging of Diabetic Retinopathy. Curr. Opin. Ophthalmol. 2018, 29, 566–575. [Google Scholar] [CrossRef] [PubMed]
- Tan, T.E.; Wong, T.Y. Diabetic Retinopathy: Looking Forward to 2030. Front Endocrinol. 2023, 13, 1077669. [Google Scholar] [CrossRef] [PubMed]
- Lee, R.; Wong, T.Y.; Sabanayagam, C. Epidemiology of Diabetic Retinopathy, Diabetic Macular Edema and Related Vision Loss. Eye Vis. 2015, 2, 17. [Google Scholar] [CrossRef] [PubMed]
- Sepah, Y.J.; Akhtar, A.; Sadiq, M.A.; Hafeez, Y.; Nasir, H.; Perez, B.; Mawji, N.; Dean, D.J.; Ferraz, D.; Nguyen, Q.D. Fundus Autofluorescence Imaging: Fundamentals and Clinical Relevance. Saudi J. Ophthalmol. 2014, 28, 111–116. [Google Scholar] [CrossRef] [PubMed]
- Calvo-Maroto, A.M.; Perez-Cambrodi, R.J.; Garcia-Lazaro, S.; Ferrer-Blasco, T.; Cerviño, A. Ocular Autofluorescence in Diabetes Mellitus. A Review. J. Diabetes 2016, 8, 619–628. [Google Scholar] [CrossRef] [PubMed]
- American Academy of Ophthalmology. Physical Optics. In 2022–2023 BCSC Section 3: Clinical Optics and Vision Rehabilitation Print; American Academy of Ophthalmology: San Francisco, CA, USA, 2022; pp. 130–132. [Google Scholar]
- Monici, M. Cell and Tissue Autofluorescence Research and Diagnostic Applications. Biotechnol. Annu. Rev. 2005, 11, 227–256. [Google Scholar] [PubMed]
- Boulton, M.; Rozanowska, M.; Rozanowski, B. Retinal Photodamage. J. Photochem. Photobiol. 2001, 64, 144–161. [Google Scholar] [CrossRef] [PubMed]
- Schmitz-Valckenberg, S.; Holz, F.G.; Bird, A.C.; Spaide, R.F. Fundus Autofluorescence Imaging. Review and Perspectives. Retina 2008, 28, 385–409. [Google Scholar] [CrossRef] [PubMed]
- Hammer, M.; Königsdörffer, E.; Liebermann, C.; Framme, C.; Schuch, G.; Schweitzer, D.; Strobel, J. Ocular Fundus Auto-Fluorescence Observations at Different Wavelengths in Patients with Age-Related Macular Degeneration and Diabetic Retinopathy. Graefe’s Arch. Clin. Exp. Ophthalmol. 2008, 246, 105–114. [Google Scholar] [CrossRef]
- Boon, C.J.; Jeroen Klevering, B.; Keunen, J.E.; Al, E. Fundus Autofluorescence Imaging of Retinal Dystrophies. Vis. Res. 2008, 48, 2569–2577. [Google Scholar] [CrossRef]
- Querques, G.; Zerbib, J.; Georges, A.; Al, E. Multimodal Analysis of the Progression of Best Vitelliform Macular Dystrophy. Mol. Vis. 2014, 20, 575–592. [Google Scholar] [PubMed]
- Robson, R.B.; Saihan, Z.; Jenkins, S.A.; Al, E. Functional Characterisation and Serial Imaging of Abnormal Fundus Autofluorescence in Patients with Retinitis Pigmentosa and Normal Visual Acuity. Br. J. Ophthalmol. 2006, 90, 472–479. [Google Scholar] [CrossRef] [PubMed]
- Hariri, A.H.; Gui, W.; Datoo O’Keefe, G.A.; Ip, M.S.; Sadda, S.V.R.; Gorin, M.B. Ultra-Widefield Fundus Autofluorescence Imaging of Patients with Retinitis Pigmentosa: A Standardized Grading System in Different Genotypes. Ophthalmol. Retin. 2018, 2, 735–745. [Google Scholar] [CrossRef] [PubMed]
- Nassisi, M.; Lavia, C.; Mohand-Said, S.; Smirnov, V.; Antonio, A.; Condroyer, C.; Sancho, S.; Varin, J.; Gaudric, A.; Zeitz, C.; et al. Near-Infrared Fundus Autofluorescence Alterations Correlate with Swept-Source Optical Coherence Tomography Angiography Findings in Patients with Retinitis Pigmentosa. Sci. Rep. 2021, 11, 3180. [Google Scholar] [CrossRef] [PubMed]
- Spaide, R.F.; Klancnik, J.M. Fundus Autofluorescence and Central Serous Chorioretinopathy. Ophthalmology 2005, 112, 825–833. [Google Scholar] [CrossRef] [PubMed]
- Govindahari, V.; Fraser-Bell, S.; Ayachit, A.G.; Invernizzi, A.; Nair, U.; Nair, D.V.; Lupidi, M.; Singh, S.R.; Rajendran, A.; Zur, D.; et al. Multicolor Imaging in Macular Telangiectasia—A Comparison with Fundus Autofluorescence. Graefe’s Arch. Clin. Exp. Ophthalmol. 2020, 258, 2379–2387. [Google Scholar] [CrossRef]
- Kanda, S.; Hara, T.; Fujino, R.; Azuma, K.; Soga, H.; Asaoka, R.; Obata, R.; Inoue, T. Correlation between Fundus Autofluorescence and Visual Function in Patients with Cone-Rod Dystrophy. Sci. Rep. 2021, 11, 1911. [Google Scholar] [CrossRef]
- Calvo-Maroto, A.M.; Cerviño, A. Spotlight on Fundus Autofluorescence. Clin. Optom. 2018, 10, 25–32. [Google Scholar] [CrossRef]
- Yinchen, S.; Xun, X.; Kun, L. Fundus Autofluorescence Characteristics in Patients with Diabetic Macular Edema. Chin. Med. J. 2014, 127, 1423–1428. [Google Scholar] [CrossRef]
- Stitt, A.W. Advanced Glycation: An Important Pathological Event in Diabetic and Age Related Ocular Disease. Br. J. Ophthalmol. 2001, 85, 746–753. [Google Scholar] [CrossRef]
- Midena, E.; Bini, S. Multimodal Retinal Imaging of Diabetic Macular Edema: Toward New Paradigms of Pathophysiology. Graefe’s Arch. Clin. Exp. Ophthalmol. 2016, 254, 1661–1668. [Google Scholar] [CrossRef] [PubMed]
- Bhagat, N.; Pole, C. Fundus Autofluorescence. Available online: https://eyewiki.aao.org/Fundus_Autofluorescence (accessed on 3 November 2023).
- Xu, H.; Chen, M.; Manivannan, A.; Lois, N.; Forrester, J.V. Age-Dependent Accumulation of Lipofuscin in Perivascular and Subretinal Microglia in Experimental Mice. Aging Cells 2008, 7, 58–68. [Google Scholar] [CrossRef] [PubMed]
- Spaide, R. Autofluorescence from the Outer Retinal and Subretinal Space: Hypothesis and Review. Retina 2008, 28, 5–35. [Google Scholar] [CrossRef] [PubMed]
- Yoshitake, S.; Murakami, T.; Horii, T.; Uji, A.; Ogino, K.; Unoki, N.; Nishijima, K.; Yoshimura, N. Qualitative and Quantitative Characteristics of Near-Infrared Autofluorescence in Diabetic Macular Edema. Ophthalmology 2014, 121, 1036–1044. [Google Scholar] [CrossRef] [PubMed]
- Schweitzer, D.; Schenke, S.; Hammer, M.; Schweitzer, F.; Jentsch, S.; Birckner, E.; Becker, W.; Bergmann, A. Towards Metabolic Mapping of the Human Retina. Microsc. Rec. Tech. 2007, 70, 410–419. [Google Scholar] [CrossRef] [PubMed]
- Chung, H.; Park, B.; Shin, H.J.; Kim, H.C. Correlation of Fundus Autofluorescence with Spectral-Domain Optical Coherence Tomography and Vision in Diabetic Macular Edema. Ophthalmology 2012, 119, 1056–1065. [Google Scholar] [CrossRef]
- Lima, V.C.; Rosen, R.B.; Maia, M.; Prata, T.S.; Dorairaj, S.; Farah, M.E.; Sallum, J. Macular Pigment Optical Density Measured by Dual-Wavelength Autofluorescence Imaging in Diabetic and Nondiabetic Patients: A Comparative Study. Investig. Ophthalmol. Vis. Sci. 2010, 51, 5840–5845. [Google Scholar] [CrossRef] [PubMed]
- Wüstemeyer, H.; Jahn, C.; Nestler, A.; Al, E. A New Instrument for the Quantification of Macular Pigment Density: First Results in Patients with AMD and Healthy Subjects. Graefe’s Arch. Clin. Exp. Ophthalmol. 2002, 240, 666–671. [Google Scholar] [CrossRef] [PubMed]
- Waldstein, S.M.; Hickey, D.; Mahmud, I.; Kiire, C.A.; Charbel Issa, P.; Chong, N.V. Two-Wavelength Fundus Autofluorescence and Macular Pigment Optical Density Imaging in Diabetic Macular Oedema. Eye 2012, 26, 1078–1085. [Google Scholar] [CrossRef]
- Calvo-Maroto, A.M.; Esteve-Taboada, J.J.; Domínguez-Vicent, A.; Pérez-Cambrodí, R.J.; Cerviño, A. Confocal Scanning Laser Ophthalmoscopy versus Modified Conventional Fundus Camera for Fundus Autofluorescence. Expert Rev. Med. Devices 2016, 13, 965–978. [Google Scholar] [CrossRef]
- Schmitz-Valckenberg, S.; Fitzke, F.W. Imaging Techniques of Fundus Autofluorescence. In Fundus Autofluorescence; Lois, N., Forrester, J.V., Eds.; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2009; pp. 48–60. [Google Scholar]
- Nidek Mirante-Scanning Laser Ophthalmoscope. Available online: https://www.nidek-intl.com (accessed on 20 March 2024).
- Schweitzer, D.; Deutsch, L.; Klemm, M.; Jentsch, S.; Hammer, M.; Peters, S.; Haueisen, J.; Müller, U.A.; Dawczynski, J. Fluorescence Lifetime Imaging Ophthalmoscopy in Type 2 Diabetic Patients Who Have No Signs of Diabetic Retinopathy. J. Biomed. Opt. 2015, 20, 061106. [Google Scholar] [CrossRef] [PubMed]
- Pece, A.; Isola, V.; Holz, F.; Milani, P.; Brancato, R. Autofluorescence Imaging of Cystoid Macular Edema in Diabetic Retinopathy. Ophthalmologica 2010, 224, 230–235. [Google Scholar] [CrossRef] [PubMed]
- Vujosevic, S.; Casciano, M.; Pilotto, E.; Boccassini, B.; Varano, M.; Midena, E. Diabetic Macular Edema: Fundus Autofluorescence and Functional Correlations. Investig. Ophthalmol. Vis. Sci. 2011, 52, 442–448. [Google Scholar] [CrossRef] [PubMed]
- Hernandez-Da Mota, S.E.; Melo-Granados, E.A.R.; Fromow-Guerra, J.; Bejar-Cornejo, F.; Gallego-Pinazo, R.; Rodríguez-Ayala, E. Correlation Analysis of Fundus Autofluorescence, Spectral Domain Optical Coherence Tomography, and Visual Function in Patients with Diabetic Macular Oedema Treated with Intravitreal Ziv-Aflibercept. Eur. J. Ophthalmol. 2019, 29, 271–277. [Google Scholar] [CrossRef] [PubMed]
- Saurabh, K.; Roy, R.; Goel, S. Correlation of Multicolor Images and Conventional Color Fundus Photographs with Foveal Autofluorescence Patterns in Diabetic Macular Edema. Indian J. Ophthalmol. 2020, 68, 141–144. [Google Scholar] [CrossRef] [PubMed]
- Bessho, K.; Gomi, F.; Harino, S.; Sawa, M.; Sayanagi, K.; Tsujikawa, M.; Tano, Y. Macular Autofluorescence in Eyes with Cystoid Macula Edema, Detected with 488 Nm-Excitation but Not with 580 Nm-Excitation. Graefe’s Arch. Clin. Exp. Ophthalmol. 2009, 247, 729–734. [Google Scholar] [CrossRef] [PubMed]
- Calvo-Maroto, A.M.; Esteve-Taboada, J.J.; Pérez-Cambrodí, R.J.; Madrid-Costa, D.; Cerviño, A. Pilot Study on Visual Function and Fundus Autofluorescence Assessment in Diabetic Patients. J. Ophthalmol. 2016, 2016, 1287847. [Google Scholar] [CrossRef] [PubMed]
- Reznicek, L.; Dabov, S.; Haritoglou, C.; Kampik, A.; Kernt, M.; Neubauer, A.S. Green-Light Fundus Autofluorescence in Diabetic Macular Edema. Int. J. Ophthalmol. 2013, 6, 75–80. [Google Scholar] [CrossRef]
- Keilhauer, C.N.; Delori, F.C. Near-Infrared Autofluorescence Imaging of the Fundus: Visualization of Ocular Melanin. Investig. Ophthalmol. Vis. Sci. 2006, 47, 3556–3564. [Google Scholar] [CrossRef]
- Ghassemi, F.; Bazvand, F.; Faghihi, H.; Roohipourmoallai, R.; Masoumi, M.; Jamali, S.; Mohebbi, M.; Sabour, S. Near-Infrared Confocal Reflectance Scanning Laser Ophthalmoscopy (SLO) and Short-Wavelength Autofluorescence Imaging in Cystic Diabetic Macular Edema. J. Ophthalmol. 2022, 2022, 6831396. [Google Scholar] [CrossRef]
- Yoshitake, S.; Murakami, T.; Uji, A.; Fujimoto, M.; Dodo, Y.; Suzuma, K.; Tsujikawa, A. Granular Lesions of Short-Wavelength and near-Infrared Autofluorescence in Diabetic Macular Oedema. Eye 2019, 33, 564–571. [Google Scholar] [CrossRef] [PubMed]
- McBain, V.A.; Forrester, J.V.; Lois, N. Fundus Autofluorescence in the Diagnosis of Cystoid Macular Oedema. Br. J. Ophthalmol. 2008, 92, 946–949. [Google Scholar] [CrossRef] [PubMed]
- Vujosevic, S.; Bottega, E.; Casciano, M.; Pilotto, E.; Convento, E.; Midena, E. Microperimetry and Fundus Autofluorescence in Diabetic Macular Edema: Subthreshold Micropulse Diode Laser versus Modified Early Treatment Diabetic Retinopathy Study Laser Photocoagulation. Retina 2010, 30, 908–916. [Google Scholar] [CrossRef] [PubMed]
- Muqit, M.M.K.; Gray, J.C.B.; Marcellino, G.R.; Henson, D.B.; Young, L.B.; Charles, S.J.; Turner, G.S.; Stanga, P.E. Fundus Autofluorescence and Fourier-Domain Optical Coherence Tomography Imaging of 10 and 20 Millisecond Pascal Retinal Photocoagulation Treatment. Br. J. Ophthalmol. 2009, 93, 518–525. [Google Scholar] [CrossRef] [PubMed]
- Higaki, M.; Nozaki, M.; Yoshida, M.; Ogura, Y. Less Expansion of Short-Pulse Laser Scars in Panretinal Photocoagulation for Diabetic Retinopathy. J. Ophthalmol. 2018, 2018, 9371895. [Google Scholar] [CrossRef] [PubMed]
- Kang, E.C.; Seo, Y.; Byeon, S.H. Diabetic Retinal Pigment Epitheliopathy: Fundus Autofluorescence and Spectral-Domain Optical Coherence Tomography Findings. Graefe’s Arch. Clin. Exp. Ophthalmol. 2016, 254, 1931–1940. [Google Scholar] [CrossRef]
- Viola, F.; Barteselli, G.; Dell’arti, L.; Vezzola, D.; Villani, E.; Mapelli, C.; Zanaboni, L.; Cappellini, M.D.; Ratiglia, R. Abnormal Fundus Autofluorescence Results Ofpatients in Long-Term Treatment with deferoxamine. Ophthalmology 2012, 119, 1693–1700. [Google Scholar] [CrossRef]
Study | FAF Technique and Excitation Wavelength | Classification | Study Findings (Regarding FAF) |
---|---|---|---|
Pece et al. [37] | cSLO 488 nm | Type 1: multilobulated Type 2: single-lobulated Type 3: mixed | Increased FAF lobules corresponded to hyporeflective intraretinal spaces as seen on OCT |
Vujosevic et al. [38] | cSLO 488 nm | Normal or decreased FAF Single-spot-increased FAF Multiple-spot-increased FAF | Increased FAF (single and multiple spot) was significantly associated both with cystic changes on TD-OCT (in 89% of cases) and with a reduced retinal sensitivity, irrespective of VA |
Chung et al. [29] | cSLO 488 nm | For an area of 500 µm in diameter centered on the fovea: Grade 1: no/barely visible FAF Grade 2: increased FAF of less than one-half of the total area Grade 3: increased FAF between one-half and three-quarters of the total area Grade 4: increased FAF of more than three-quarters of the total area | Lower FAF increases are associated with preserved retinal function and better visual outcomes after DMO treatment with intravitreal Bevacizumab Increased FAF correlates with OCT parameters: CMT, reduced ONL thickness and the extent of IS/OS disruption |
Yinchen et al. [21] | cSLO 488 nm | Normal FAF Cystoid-increased FAF Spot-increased FAF Irregular decreased FAF | In the normal and cystoid-increased FAF groups, the IS/OS and ELM were relatively conserved, while in the spot-increased and irregular decreased FAF groups, they were disrupted. VA and macular sensitivity were better in the first two groups, while in the last two, they were severely decreased. |
Hernandez-Da Mota et al. [39] | Flash fundus camera 510–580 nm | Grade 1: decreased FAF Grade 2: normal FAF Grade 3: single-spot-increased FAF Grade 4: multiple-spot-increased FAF Grade 4: plaque-like or confluent multiple-spot-increased FAF | A significant correlation exists between FAF level and macular cube average thickness on OCT before and 1 month after aflibercept intravitreal injection for DMO. No significant correlation between FAF patterns and BCVA and contrast sensitivity was found. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dumitrescu, O.-M.; Zemba, M.; Brănișteanu, D.C.; Pîrvulescu, R.A.; Radu, M.; Stanca, H.T. Fundus Autofluorescence in Diabetic Retinopathy. J. Pers. Med. 2024, 14, 793. https://doi.org/10.3390/jpm14080793
Dumitrescu O-M, Zemba M, Brănișteanu DC, Pîrvulescu RA, Radu M, Stanca HT. Fundus Autofluorescence in Diabetic Retinopathy. Journal of Personalized Medicine. 2024; 14(8):793. https://doi.org/10.3390/jpm14080793
Chicago/Turabian StyleDumitrescu, Otilia-Maria, Mihail Zemba, Daniel Constantin Brănișteanu, Ruxandra Angela Pîrvulescu, Madalina Radu, and Horia Tudor Stanca. 2024. "Fundus Autofluorescence in Diabetic Retinopathy" Journal of Personalized Medicine 14, no. 8: 793. https://doi.org/10.3390/jpm14080793
APA StyleDumitrescu, O. -M., Zemba, M., Brănișteanu, D. C., Pîrvulescu, R. A., Radu, M., & Stanca, H. T. (2024). Fundus Autofluorescence in Diabetic Retinopathy. Journal of Personalized Medicine, 14(8), 793. https://doi.org/10.3390/jpm14080793