Germline RAD51C and RAD51D Mutations in High-Risk Chinese Breast and/or Ovarian Cancer Patients and Families
Abstract
:1. Introduction
2. Methods
2.1. Participants and Selection Criteria
2.2. Multi-Gene Panel Testing by NGS
2.3. Measures of Genomic Instability by HRD
2.4. Statistical Analysis
3. Result
3.1. Patients’ Characteristics of the Cohort
3.2. Clinicopathological Characteristics of RAD51C/D Mutations Carriers
3.3. RAD51C/D Mutations
3.4. Homologous Recombination Deficiency (HRD)
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Miller, K.A.; Yoshikawa, D.M.; McConnell, I.R.; Clark, R.; Schild, D.; Albala, J.S. RAD51C Interacts with RAD51B and Is Central to a Larger Protein Complex in Vivo Exclusive of RAD51. J. Biol. Chem. 2002, 277, 8406–8411. [Google Scholar] [CrossRef] [PubMed]
- Masson, J.-Y.; Tarsounas, M.C.; Stasiak, A.Z.; Stasiak, A.; Shah, R.; McIlwraith, M.J.; Benson, F.E.; West, S.C. Identification and purification of two distinct complexes containing the five RAD51 paralogs. Genes Dev. 2001, 15, 3296–3307. [Google Scholar] [CrossRef] [PubMed]
- Wiese, C.; Collins, D.W.; Albala, J.S.; Thompson, L.H.; Kronenberg, A.; Schild, D. Interactions involving the Rad51 paralogs Rad51C and XRCC3 in human cells. Nucleic Acids Res. 2002, 30, 1001–1008. [Google Scholar] [CrossRef]
- Liu, N.; Schild, D.; Thelen, M.P.; Thompson, L.H. Involvement of Rad51C in two distinct protein complexes of Rad51 paralogs in human cells. Nucleic Acids Res. 2002, 30, 1009–1015. [Google Scholar] [CrossRef] [PubMed]
- Masson, J.-Y.; Stasiak, A.Z.; Stasiak, A.; Benson, F.E.; West, S.C. Complex formation by the human RAD51C and XRCC3 recombination repair proteins. Proc. Natl. Acad. Sci. USA 2001, 98, 8440–8446. [Google Scholar] [CrossRef] [PubMed]
- Sigurdsson, S.; Van Komen, S.; Bussen, W.; Schild, D.; Albala, J.S.; Sung, P. Mediator function of the human Rad51B–Rad51C complex in Rad51/RPA-catalyzed DNA strand exchange. Genes Dev. 2001, 15, 3308–3318. [Google Scholar] [CrossRef]
- Lio, Y.-C.; Mazin, A.V.; Kowalczykowski, S.C.; Chen, D.J. Complex Formation by the Human Rad51B and Rad51C DNA Repair Proteins and Their Activities in Vitro. J. Biol. Chem. 2003, 278, 2469–2478. [Google Scholar] [CrossRef]
- Miller, K.A.; Sawicka, D.; Barsky, D.; Albala, J.S. Domain mapping of the Rad51 paralog protein complexes. Nucleic Acids Res. 2004, 32, 169–178. [Google Scholar] [CrossRef]
- Pittman, D.L.; Schimenti, J.C. Midgestation lethality in mice deficient for the RecA-related gene, Rad51d/Rad51l3. Genesis 2000, 26, 167–173. [Google Scholar] [CrossRef]
- Kuznetsov, S.G.; Haines, D.C.; Martin, B.K.; Sharan, S.K. Loss of Rad51c Leads to Embryonic Lethality and Modulation of Trp53-Dependent Tumorigenesis in Mice. Cancer Res. 2009, 69, 863–872. [Google Scholar] [CrossRef]
- Tarsounas, M.; Muñoz, P.; Claas, A.; Smiraldo, P.G.; Pittman, D.L.; A Blasco, M.; West, S.C.; Ma, B.; Sc, W. Telomere Maintenance Requires the RAD51D Recombination/Repair Protein. Cell 2004, 117, 337–347. [Google Scholar] [CrossRef]
- Reh, W.A.; Nairn, R.S.; Lowery, M.P.; Vasquez, K.M. The homologous recombination protein RAD51D protects the genome from large deletions. Nucleic Acids Res. 2017, 45, 1835–1847. [Google Scholar] [CrossRef]
- Pavanello, M.; Chan, I.H.; Ariff, A.; Pharoah, P.D.; Gayther, S.A.; Ramus, S.J. Rare Germline Genetic Variants and the Risks of Epithelial Ovarian Cancer. Cancers 2020, 12, 3046. [Google Scholar] [CrossRef]
- Breast Cancer Susceptibility Collaboration (UK); Loveday, C.; Turnbull, C.; Ramsay, E.; Hughes, D.; Ruark, E.; Frankum, J.R.; Bowden, G.; Kalmyrzaev, B.; Warren-Perry, M.; et al. Germline mutations in RAD51D confer susceptibility to ovarian cancer. Nat. Genet. 2011, 43, 879–882. [Google Scholar] [CrossRef]
- Suszynska, M.; Ratajska, M.; Kozlowski, P. BRIP1, RAD51C, and RAD51D mutations are associated with high susceptibility to ovarian cancer: Mutation prevalence and precise risk estimates based on a pooled analysis of ~30,000 cases. J. Ovarian Res. 2020, 13, 50. [Google Scholar] [CrossRef]
- Song, H.; Dicks, E.; Ramus, S.J.; Tyrer, J.P.; Intermaggio, M.P.; Hayward, J.; Edlund, C.K.; Conti, D.; Harrington, P.; Fraser, L.; et al. Contribution of Germline Mutations in the RAD51B, RAD51C, and RAD51D Genes to Ovarian Cancer in the Population. J. Clin. Oncol. 2015, 33, 2901–2907. [Google Scholar] [CrossRef]
- Lilyquist, J.; LaDuca, H.; Polley, E.; Davis, B.T.; Shimelis, H.; Hu, C.; Hart, S.N.; Dolinsky, J.S.; Couch, F.J.; Goldgar, D.E. Frequency of mutations in a large series of clinically ascertained ovarian cancer cases tested on multi-gene panels compared to reference controls. Gynecol. Oncol. 2017, 147, 375–380. [Google Scholar] [CrossRef]
- Wickramanyake, A.; Bernier, G.; Pennil, C.; Casadei, S.; Agnew, K.J.; Stray, S.M.; Mandell, J.; Garcia, R.L.; Walsh, T.; King, M.-C.; et al. Loss of function germline mutations in RAD51D in women with ovarian carcinoma. Gynecol. Oncol. 2012, 127, 552–555, Erratum in Gynecol Oncol. 2014, 132, 260. [Google Scholar] [CrossRef]
- Pennington, K.P.; Walsh, T.; Harrell, M.I.; Lee, M.K.; Pennil, C.C.; Rendi, M.H.; Thornton, A.; Norquist, B.M.; Casadei, S.; Nord, A.S.; et al. Germline and Somatic Mutations in Homologous Recombination Genes Predict Platinum Response and Survival in Ovarian, Fallopian Tube, and Peritoneal Carcinomas. Clin. Cancer Res. 2014, 20, 764–775. [Google Scholar] [CrossRef] [PubMed]
- Thompson, E.R.; Rowley, S.M.; Sawyer, S.; Fab, K.C.; Eccles, D.M.; Trainer, A.H.; Mitchell, G.; James, P.A.; Campbell, I.G. Analysis of RAD51D in Ovarian Cancer Patients and Families with a History of Ovarian or Breast Cancer. PLoS ONE 2013, 8, e54772. [Google Scholar] [CrossRef]
- Yang, X.; Song, H.; Leslie, G.; Engel, C.; Hahnen, E.; Auber, B.; Horváth, J.; Kast, K.; Niederacher, D.; Turnbull, C.; et al. Ovarian and Breast Cancer Risks Associated With Pathogenic Variants in RAD51C and RAD51D. JNCI J. Natl. Cancer Inst. 2020, 112, 1242–1250. [Google Scholar] [CrossRef]
- Breast Cancer Association Consortium; Dorling, L.; Carvalho, S.; Allen, J.; González-Neira, A.; Luccarini, C.; Wahlström, C.; Pooley, K.A.; Parsons, M.T.; Fortuno, C.; et al. Breast Cancer Risk Genes—Association Analysis in More than 113,000 Women. N. Engl. J. Med. 2021, 384, 428–439. [Google Scholar] [CrossRef] [PubMed]
- Hu, C.; Hart, S.N.; Gnanaolivu, R.; Huang, H.; Lee, K.Y.; Na, J.; Gao, C.; Lilyquist, J.; Yadav, S.; Boddicker, N.J.; et al. A Population-Based Study of Genes Previously Implicated in Breast Cancer. N. Engl. J. Med. 2021, 384, 440–451. [Google Scholar] [CrossRef] [PubMed]
- Yoshimura, A.; Imoto, I.; Iwata, H. Functions of Breast Cancer Predisposition Genes: Implications for Clinical Management. Int. J. Mol. Sci. 2022, 23, 7481. [Google Scholar] [CrossRef]
- Golmard, L.; Castéra, L.; Krieger, S.; Moncoutier, V.; Abidallah, K.; Tenreiro, H.; Laugé, A.; Tarabeux, J.; Millot, G.A.; Nicolas, A.; et al. Contribution of germline deleterious variants in the RAD51 paralogs to breast and ovarian cancers. Eur. J. Hum. Genet. 2017, 25, 1345–1353. [Google Scholar] [CrossRef]
- Evans, D.G.; van Veen, E.M.; Woodward, E.R.; Harkness, E.F.; Ellingford, J.M.; Bowers, N.L.; Wallace, A.J.; Howell, S.J.; Howell, A.; Lalloo, F.; et al. Gene Panel Testing for Breast Cancer Reveals Differential Effect of Prior BRCA1/2 Probability. Cancers 2021, 13, 4154. [Google Scholar] [CrossRef]
- Sun, J.; Meng, H.; Yao, L.; Lv, M.; Bai, J.; Zhang, J.; Wang, L.; Ouyang, T.; Li, J.; Wang, T.; et al. Germline Mutations in Cancer Susceptibility Genes in a Large Series of Unselected Breast Cancer Patients. Clin. Cancer Res. 2017, 23, 6113–6119. [Google Scholar] [CrossRef]
- Park, J.S.; Shin, S.; Lee, Y.J.; Lee, S.-T.; Nam, E.J.; Han, J.W.; Lee, S.H.; Kim, T.I.; Park, H.S. Implication and Influence of Multigene Panel Testing with Genetic Counseling in Korean Patients with BRCA1/2 Mutation-Negative Breast Cancer. Cancer Res. Treat. 2022, 54, 1099–1110. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Dai, Y.; Gao, Y.; Chai, R.; Lu, C.; Yu, B.; Kang, Y.; Xu, C. RAD51D Secondary Mutation-Mediated Resistance to PARP-Inhibitor-Based Therapy in HGSOC. Int. J. Mol. Sci. 2023, 24, 14476. [Google Scholar] [CrossRef]
- Coleman, R.L.; Oza, A.M.; Lorusso, D.; Aghajanian, C.; Oaknin, A.; Dean, A.; Colombo, N.; Weberpals, J.I.; Clamp, A.; Scambia, G.; et al. Rucaparib maintenance treatment for recurrent ovarian carcinoma after response to platinum therapy (ARIEL3): A randomised, double-blind, placebo-controlled, phase 3 trial. Lancet 2017, 390, 1949–1961, Erratum in Lancet 2017, 390, 1948. [Google Scholar] [CrossRef]
- Abida, W.; Campbell, D.; Patnaik, A.; Shapiro, J.D.; Sautois, B.; Vogelzang, N.J.; Voog, E.G.; Bryce, A.H.; McDermott, R.; Ricci, F.; et al. Non-BRCA DNA Damage Repair Gene Alterations and Response to the PARP Inhibitor Rucaparib in Metastatic Castration-Resistant Prostate Cancer: Analysis From the Phase II TRITON2 Study. Clin. Cancer Res. 2020, 26, 2487–2496. [Google Scholar] [CrossRef] [PubMed]
- Gruber, J.J.; Afghahi, A.; Timms, K.; DeWees, A.; Gross, W.; Aushev, V.N.; Wu, H.-T.; Balcioglu, M.; Sethi, H.; Scott, D.; et al. A phase II study of talazoparib monotherapy in patients with wild-type BRCA1 and BRCA2 with a mutation in other homologous recombination genes. Nat. Cancer 2022, 3, 1181–1191. [Google Scholar] [CrossRef]
- Singh, H.M.; Bailey, P.; Hübschmann, D.; Berger, A.K.; Neoptolemos, J.P.; Jäger, D.; Siveke, J.; Springfeld, C. Poly(ADP-ribose) polymerase inhibition in pancreatic cancer. Genes, Chromosom. Cancer 2021, 60, 373–384. [Google Scholar] [CrossRef] [PubMed]
- Swisher, E.M.; Lin, K.K.; Oza, A.M.; Scott, C.L.; Giordano, H.; Sun, J.; Konecny, G.E.; Coleman, R.L.; Tinker, A.V.; O’Malley, D.M.; et al. Rucaparib in relapsed, platinum-sensitive high-grade ovarian carcinoma (ARIEL2 Part 1): An international, multicentre, open-label, phase 2 trial. Lancet Oncol. 2017, 18, 75–87. [Google Scholar] [CrossRef]
- Chandran, E.A.; Kennedy, I. Significant Tumor Response to the Poly (ADP-ribose) Polymerase Inhibitor Olaparib in Heavily Pretreated Patient With Ovarian Carcinosarcoma Harboring a Germline RAD51D Mutation. JCO Precis. Oncol. 2018, 2, 1–4. [Google Scholar] [CrossRef]
- Kondrashova, O.; Nguyen, M.; Shield-Artin, K.; Tinker, A.V.; Teng, N.N.H.; Harrell, M.I.; Kuiper, M.J.; Ho, G.Y.; Barker, H.; Jasin, M.; et al. Secondary Somatic Mutations Restoring RAD51C and RAD51D Associated with Acquired Resistance to the PARP Inhibitor Rucaparib in High-Grade Ovarian Carcinoma. Cancer Discov. 2017, 7, 984–998. [Google Scholar] [CrossRef] [PubMed]
- Kwong, A.; Ho, C.Y.S.; Shin, V.Y.; Au, C.H.; Luk, W.P.; Fung, L.H.; Chan, T.; Chan, K.K.L.; Ngan, H.Y.S.; Ma, E.S.K. Germline mutations in Chinese ovarian cancer with or without breast cancer. Mol. Genet. Genom. Med. 2022, 10, e1940. [Google Scholar] [CrossRef]
- Li, C.-F.; Chen, S.-J.; Tan, K.T.; Tse, K.-P.; Wang, W.-F. Performance and clinical utility of homologous recombination deficiency (HRD) determined by genome-wide loss of heterozygosity (LOH). J. Clin. Oncol. 2022, 40 (Suppl. 16), e15025. [Google Scholar] [CrossRef]
- Carver, T.; Hartley, S.; Lee, A.; Cunningham, A.P.; Archer, S.; de Villiers, C.B.; Roberts, J.; Ruston, R.; Walter, F.M.; Tischkowitz, M.; et al. CanRisk Tool—A Web Interface for the Prediction of Breast and Ovarian Cancer Risk and the Likelihood of Carrying Genetic Pathogenic Variants. Cancer Epidemiol. Biomark. Prev. 2021, 30, 469–473. [Google Scholar] [CrossRef]
- Garcin, E.B.; Gon, S.; Sullivan, M.R.; Brunette, G.J.; De Cian, A.; Concordet, J.-P.; Giovannangeli, C.; Dirks, W.G.; Eberth, S.; Bernstein, K.A.; et al. Differential Requirements for the RAD51 Paralogs in Genome Repair and Maintenance in Human Cells. PLOS Genet. 2019, 15, e1008355. [Google Scholar] [CrossRef]
- Motegi, A.; Masutani, M.; Yoshioka, K.-I.; Bessho, T. Aberrations in DNA repair pathways in cancer and therapeutic significances. Semin. Cancer Biol. 2019, 58, 29–46. [Google Scholar] [CrossRef]
- Hauke, J.; Horvath, J.; Groß, E.; Gehrig, A.; Honisch, E.; Hackmann, K.; Schmidt, G.; Arnold, N.; Faust, U.; Sutter, C.; et al. Gene panel testing of 5589 BRCA1/2-negative index patients with breast cancer in a routine diagnostic setting: Results of the German Consortium for Hereditary Breast and Ovarian Cancer. Cancer Med. 2018, 7, 1349–1358. [Google Scholar] [CrossRef]
- Díaz-Zabala, H.; Guo, X.; Ping, J.; Wen, W.; Shu, X.-O.; Long, J.; Lipworth, L.; Li, B.; Fadden, M.K.; Pal, T.; et al. Evaluating breast cancer predisposition genes in women of African ancestry. Anesthesia Analg. 2022, 24, 1468–1475. [Google Scholar] [CrossRef]
- Palmer, J.R.; Polley, E.C.; Hu, C.; John, E.M.; Haiman, C.; Hart, S.N.; Gaudet, M.; Pal, T.; Anton-Culver, H.; Trentham-Dietz, A.; et al. Contribution of Germline Predisposition Gene Mutations to Breast Cancer Risk in African American Women. JNCI J. Natl. Cancer Inst. 2020, 112, 1213–1221. [Google Scholar] [CrossRef]
- Fostira, F.; Kostantopoulou, I.; Apostolou, P.; Papamentzelopoulou, M.S.; Papadimitriou, C.; Faliakou, E.; Christodoulou, C.; Boukovinas, I.; Razis, E.; Tryfonopoulos, D.; et al. One in three highly selected Greek patients with breast cancer carries a loss-of-function variant in a cancer susceptibility gene. J. Med. Genet. 2020, 57, 53–61. [Google Scholar] [CrossRef]
- Shimelis, H.; LaDuca, H.; Hu, C.; Hart, S.N.; Na, J.; Thomas, A.; Akinhanmi, M.; Moore, R.M.; Brauch, H.; Cox, A.; et al. Triple-Negative Breast Cancer Risk Genes Identified by Multigene Hereditary Cancer Panel Testing. JNCI J. Natl. Cancer Inst. 2018, 110, 855–862. [Google Scholar] [CrossRef]
- Couch, F.J.; Hart, S.N.; Sharma, P.; Toland, A.E.; Wang, X.; Miron, P.; Olson, J.E.; Godwin, A.K.; Pankratz, V.S.; Olswold, C.; et al. Inherited Mutations in 17 Breast Cancer Susceptibility Genes Among a Large Triple-Negative Breast Cancer Cohort Unselected for Family History of Breast Cancer. J. Clin. Oncol. 2015, 33, 304–311. [Google Scholar] [CrossRef] [PubMed]
- Ma, D.; Chen, S.Y.; Ren, J.X.; Pei, Y.C.; Jiang, C.W.; Zhao, S.; Xiao, Y.; Xu, X.E.; Liu, G.Y.; Hu, X.; et al. Molecular Features and Functional Implications of Germline Variants in Triple-Negative Breast Cancer. J. Natl. Cancer Inst. 2021, 113, 884–892, Erratum in J. Natl. Cancer Inst. 2022, 114, 482. [Google Scholar] [CrossRef]
- Byers, H.; Wallis, Y.; van Veen, E.M.; Lalloo, F.; Reay, K.; Smith, P.; Wallace, A.J.; Bowers, N.; Newman, W.G.; Evans, D.G. Sensitivity of BRCA1/2 testing in high-risk breast/ovarian/male breast cancer families: Little contribution of comprehensive RNA/NGS panel testing. Eur. J. Hum. Genet. 2016, 24, 1591–1597. [Google Scholar] [CrossRef]
- Sun, T.; Zhang, M.; Xu, X.; Liang, Y.; Chen, J.; Li, Q.; Zeng, J.; Li, Z.; Dong, Y.; Yin, R. The Landscape of RAD51D in Chinese Ovarian Cancer Patients: Prevalence, Correlation with HRD Score, and Correlation with Efficacy. medRxiv 2024. [Google Scholar] [CrossRef]
- Hinz, J.M.; Tebbs, R.S.; Wilson, P.F.; Nham, P.B.; Salazar, E.P.; Nagasawa, H.; Urbin, S.S.; Bedford, J.S.; Thompson, L.H. Repression of mutagenesis by Rad51D-mediated homologous recombination. Nucleic Acids Res. 2006, 34, 1358–1368. [Google Scholar] [CrossRef]
- Rivera, B.; Di Iorio, M.; Frankum, J.; Nadaf, J.; Fahiminiya, S.; Arcand, S.L.; Burk, D.L.; Grapton, D.; Tomiak, E.; Hastings, V.; et al. Functionally Null RAD51D Missense Mutation Associates Strongly with Ovarian Carcinoma. Cancer Res. 2017, 77, 4517–4529. [Google Scholar] [CrossRef] [PubMed]
- Tripathi, K.; Mani, C.; Clark, D.W.; Palle, K. Rad18 is required for functional interactions between FANCD2, BRCA2, and Rad51 to repair DNA topoisomerase 1-poisons induced lesions and promote fork recovery. Oncotarget 2016, 7, 12537–12553. [Google Scholar] [CrossRef]
- Huang, J.; Huen, M.S.Y.; Kim, H.; Leung, C.C.Y.; Glover, J.N.M.; Yu, X.; Chen, J. RAD18 transmits DNA damage signalling to elicit homologous recombination repair. Nat. Cell Biol. 2009, 11, 592–603. [Google Scholar] [CrossRef] [PubMed]
- Hanson, H.; Kulkarni, A.; Loong, L.; Kavanaugh, G.; Torr, B.; Allen, S.; Ahmed, M.; Antoniou, A.C.; Cleaver, R.; Dabir, T.; et al. UK consensus recommendations for clinical management of cancer risk for women with germline pathogenic variants in cancer predisposition genes: RAD51C, RAD51D, BRIP1 and PALB2. J. Med. Genet. 2023, 60, 417–429. [Google Scholar] [CrossRef] [PubMed]
- Susswein, L.R.; Marshall, M.L.; Nusbaum, R.; Vogel Postula, K.J.; Weissman, S.M.; Yackowski, L.; Vaccari, E.M.; Bissonnette, J.; Booker, J.K.; Cremona, M.L.; et al. Pathogenic and likely pathogenic variant prevalence among the first 10,000 patients referred for next-generation cancer panel testing. Genet Med. 2016, 18, 823–832, Erratum in Genet Med. 2016, 18, 531–532. [Google Scholar] [CrossRef] [PubMed]
- Arvai, K.J.; Roberts, M.E.; Torene, R.I.; Susswein, L.R.; Marshall, M.L.; Zhang, Z.; Carter, N.J.; Yackowski, L.; Rinella, E.S.; Klein, R.T.; et al. Age-adjusted association of homologous recombination genes with ovarian cancer using clinical exomes as controls. Hered. Cancer Clin. Pract. 2019, 17, 19. [Google Scholar] [CrossRef] [PubMed]
- Gutiérrez-Enríquez, S.; Bonache, S.; de Garibay, G.R.; Osorio, A.; Santamariña, M.; Ramón y Cajal, T.; Esteban-Cardeñosa, E.; Tenés, A.; Yanowsky, K.; Barroso, A.; et al. About 1% of the breast and ovarian Spanish families testing negative for BRCA1 and BRCA2 are carriers of RAD51D pathogenic variants. Int. J. Cancer 2014, 134, 2088–2097. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Li, Y.; Ouyang, T.; Li, J.; Wang, T.; Fan, Z.; Fan, T.; Lin, B.; Xie, Y. Associations between RAD51D germline mutations and breast cancer risk and survival in BRCA1/2-negative breast cancers. Ann. Oncol. 2018, 29, 2046–2051. [Google Scholar] [CrossRef]
- Norquist, B.M.; Harrell, M.I.; Brady, M.F.; Walsh, T.; Lee, M.K.; Gulsuner, S.; Bernards, S.S.; Casadei, S.; Yi, Q.; Burger, R.A.; et al. Inherited mutations in women with ovarian carcinoma. JAMA Oncol. 2016, 2, 482–490. [Google Scholar] [CrossRef]
- Slavin, T.P.; Sun, C.L.; Chavarri-Guerra, Y.; Sedrak, M.S.; Katheria, V.; Castillo, D.; Herzog, J.; Dale, W.; Hurria, A.; Weitzel, J.N. Older breast cancer survivors may harbor hereditary cancer predisposition pathogenic variants and are at risk for clonal hematopoiesis. J. Geriatr. Oncol. 2020, 11, 316–319. [Google Scholar] [CrossRef] [PubMed]
- Tung, N.; Lin, N.U.; Kidd, J.; Allen, B.A.; Singh, N.; Wenstrup, R.J.; Hartman, A.R.; Winer, E.P.; Garber, J.E. Frequency of germline mutations in 25 cancer susceptibility genes in a sequential series of patients with breast cancer. J. Clin. Oncol. 2016, 34, 1460–1468. [Google Scholar] [CrossRef] [PubMed]
- Bonache, S.; Esteban, I.; Moles-Fernández, A.; Tenés, A.; Duran-Lozano, L.; Montalban, G.; Bach, V.; Carrasco, E.; Gadea, N.; López-Fernández, A.; et al. Multigene panel testing beyond BRCA1/2 in breast/ovarian cancer Spanish families and clinical actionability of findings. J. Cancer Res. Clin. Oncol. 2018, 144, 2495–2513. [Google Scholar] [CrossRef]
- Velázquez, C.; De Leeneer, K.; Esteban-Cardeñosa, E.M.; Avila Cobos, F.; Lastra, E.; Abella, L.E.; de la Cruz, V.; Lobatón, C.D.; Claes, K.B.; Durán, M.; et al. Germline Genetic Findings Which May Impact Therapeutic Decisions in Families with a Presumed Predisposition for Hereditary Breast and Ovarian Cancer. Cancers 2020, 12, 2151. [Google Scholar] [CrossRef]
- Boni, J.; Idani, A.; Roca, C.; Feliubadaló, L.; Tomiak, E.; Weber, E.; Foulkes, W.D.; Orthwein, A.; El Haffaf, Z.; Lazaro, C.; et al. A decade of RAD51C and RAD51D germline variants in cancer. Hum. Mutat. 2022, 43, 285–298. [Google Scholar] [CrossRef] [PubMed]
- Eoh, K.J.; Kim, J.E.; Park, H.S.; Lee, S.T.; Park, J.S.; Han, J.W.; Lee, J.Y.; Kim, S.; Kim, S.W.; Kim, J.H.; et al. Detection of Germline Mutations in Patients with Epithelial Ovarian Cancer Using Multi-gene Panels: Beyond BRCA1/2. Cancer Res. Treat. 2018, 50, 917–925. [Google Scholar] [CrossRef] [PubMed]
- Hirasawa, A.; Imoto, I.; Naruto, T.; Akahane, T.; Yamagami, W.; Nomura, H.; Masuda, K.; Susumu, N.; Tsuda, H.; Aoki, D. Prevalence of pathogenic germline variants detected by multigene sequencing in unselected Japanese patients with ovarian cancer. Oncotarget 2017, 8, 112258–112267. [Google Scholar] [CrossRef] [PubMed]
- Kwong, A.; Shin, V.Y.; Chen, J.; Cheuk, I.W.Y.; Ho, C.Y.S.; Au, C.H.; Chan, K.K.L.; Ngan, H.Y.S.; Chan, T.L.; Ford, J.M.; et al. Germline Mutation in 1338 BRCA-Negative Chinese Hereditary Breast and/or Ovarian Cancer Patients: Clinical Testing with a Multigene Test Panel. J. Mol. Diagn. 2020, 22, 544–554. [Google Scholar] [CrossRef] [PubMed]
- Zeng, C.; Guo, X.; Wen, W.; Shi, J.; Long, J.; Cai, Q.; Shu, X.O.; Xiang, Y.; Zheng, W. Evaluation of pathogenetic mutations in breast cancer predisposition genes in population-based studies conducted among Chinese women. Breast Cancer Res. Treat. 2020, 181, 465–473. [Google Scholar] [CrossRef]
- Ji, K.; Ao, S.; He, L.; Zhang, L.; Feng, L.; Lyu, G. Characteristics of cancer susceptibility genes mutations in 282 patients with gastric adenocarcinoma. Chin J Cancer Res. 2020, 32, 508–515. [Google Scholar] [CrossRef]
- Meng, H.; Jiang, X.; Cui, J.; Yin, G.; Shi, B.; Liu, Q.; Xuan, H.; Wang, Y. Genomic Analysis Reveals Novel Specific Metastatic Mutations in Chinese Clear Cell Renal Cell Carcinoma. Biomed. Res. Int. 2020, 2020, 2495157. [Google Scholar] [CrossRef] [PubMed]
- Yao, H.; Li, N.; Yuan, H. Clinical characteristics and survival analysis of Chinese ovarian cancer patients with RAD51D germline mutations. BMC Cancer 2022, 22, 1337. [Google Scholar] [CrossRef] [PubMed]
- Pritchard, C.C.; Mateo, J.; Walsh, M.F.; De Sarkar, N.; Abida, W.; Beltran, H.; Garofalo, A.; Gulati, R.; Carreira, S.; Eeles, R.; et al. Inherited DNA-Repair Gene Mutations in Men with Metastatic Prostate Cancer. N. Engl. J. Med. 2016, 375, 443–453. [Google Scholar] [CrossRef] [PubMed]
- Harter, P.; Hauke, J.; Heitz, F.; Reuss, A.; Kommoss, S.; Marmé, F.; Heimbach, A.; Prieske, K.; Richters, L.; Burges, A.; et al. Prevalence of deleterious germline variants in risk genes including BRCA1/2 in consecutive ovarian cancer patients (AGO-TR-1). PLoS ONE 2017, 12, e0186043. [Google Scholar] [CrossRef] [PubMed]
- Lu, C.; Xie, M.; Wendl, M.C.; Wang, J.; McLellan, M.D.; Leiserson, M.D.; Huang, K.L.; Wyczalkowski, M.A.; Jayasinghe, R.; Banerjee, T.; et al. Patterns and functional implications of rare germline variants across 12 cancer types. Nat. Commun. 2015, 6, 10086. [Google Scholar] [CrossRef] [PubMed]
- Stafford, J.L.; Dyson, G.; Levin, N.K.; Chaudhry, S.; Rosati, R.; Kalpage, H.; Wernette, C.; Petrucelli, N.; Simon, M.S.; Tainsky, M.A. Reanalysis of BRCA1/2 negative high risk ovarian cancer patients reveals novel germline risk loci and insights into missing heritability. PLoS ONE 2017, 12, e0178450. [Google Scholar] [CrossRef] [PubMed]
- Konstanta, I.; Fostira, F.; Apostolou, P.; Stratikos, E.; Kalfakakou, D.; Pampanos, A.; Kollia, P.; Papadimitriou, C.; Konstantopoulou, I.; Yannoukakos, D. Contribution of RAD51D germline mutations in breast and ovarian cancer in Greece. J. Hum. Genet. 2018, 63, 1149–1158. [Google Scholar] [CrossRef] [PubMed]
- Bernstein-Molho, R.; Singer, A.; Laitman, Y.; Netzer, I.; Zalmanoviz, S.; Friedman, E. Multigene panel testing in unselected Israeli breast cancer cases: Mutational spectrum and use of BRCA1/2 mutation prediction algorithms. Breast Cancer Res. Treat. 2019, 176, 165–170. [Google Scholar] [CrossRef] [PubMed]
- Osher, D.J.; De Leeneer, K.; Michils, G.; Hamel, N.; Tomiak, E.; Poppe, B.; Leunen, K.; Legius, E.; Shuen, A.; Smith, E.; et al. Mutation analysis of RAD51D in non-BRCA1/2 ovarian and breast cancer families. Br. J. Cancer 2012, 106, 1460–1463. [Google Scholar] [CrossRef]
- Pelttari, L.M.; Kiiski, J.; Nurminen, R.; Kallioniemi, A.; Schleutker, J.; Gylfe, A.; Aaltonen, L.A.; Leminen, A.; Heikkilä, P.; Blomqvist, C.; et al. A Finnish founder mutation in RAD51D: Analysis in breast, ovarian, prostate, and colorectal cancer. J. Med. Genet. 2012, 49, 429–432. [Google Scholar] [CrossRef]
- Nurmi, A.; Muranen, T.A.; Pelttari, L.M.; Kiiski, J.I.; Heikkinen, T.; Lehto, S.; Kallioniemi, A.; Schleutker, J.; Bützow, R.; Blomqvist, C.; et al. Recurrent moderate-risk mutations in Finnish breast and ovarian cancer patients. Int. J. Cancer 2019, 145, 2692–2700. [Google Scholar] [CrossRef]
- Kraus, C.; Hoyer, J.; Vasileiou, G.; Wunderle, M.; Lux, M.P.; Fasching, P.A.; Krumbiegel, M.; Uebe, S.; Reuter, M.; Beckmann, M.W.; et al. Gene panel sequencing in familial breast/ovarian cancer patients identifies multiple novel mutations also in genes others than BRCA1/2. Int. J. Cancer 2017, 140, 95–102. [Google Scholar] [CrossRef] [PubMed]
- Hoyer, J.; Vasileiou, G.; Uebe, S.; Wunderle, M.; Kraus, C.; Fasching, P.A.; Thiel, C.T.; Hartmann, A.; Beckmann, M.W.; Lux, M.P.; et al. Addition of triple negativity of breast cancer as an indicator for germline mutations in predisposing genes increases sensitivity of clinical selection criteria. BMC Cancer 2018, 18, 926. [Google Scholar] [CrossRef] [PubMed]
- Bernards, S.S.; Norquist, B.M.; Harrell, M.I.; Agnew, K.J.; Lee, M.K.; Walsh, T.; Swisher, E.M. Genetic characterization of early onset ovarian carcinoma. Gynecol. Oncol. 2016, 140, 221–225. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Bermúdez, A.I.; Sarabia-Meseguer, M.D.; García-Aliaga, Á.; Marín-Vera, M.; Macías-Cerrolaza, J.A.; Henaréjos, P.S.; Guardiola-Castillo, V.; Peña, F.A.; Alonso-Romero, J.L.; Noguera-Velasco, J.A.; et al. Mutational analysis of RAD51C and RAD51D genes in hereditary breast and ovarian cancer families from Murcia (southeastern Spain). Eur. J. Med. Genet. 2018, 61, 355–361. [Google Scholar] [CrossRef] [PubMed]
- Janatova, M.; Soukupova, J.; Stribrna, J.; Kleiblova, P.; Vocka, M.; Boudova, P.; Kleibl, Z.; Pohlreich, P. Mutation Analysis of the RAD51C and RAD51D Genes in High-Risk Ovarian Cancer Patients and Families from the Czech Republic. PLoS ONE 2015, 10, e0127711. [Google Scholar] [CrossRef] [PubMed]
- Barbosa, A.; Pinto, P.; Peixoto, A.; Guerra, J.; Pinto, C.; Santos, C.; Pinheiro, M.; Escudeiro, C.; Bartosch, C.; Silva, J.; et al. Gene Panel Tumor Testing in Ovarian Cancer Patients Significantly Increases the Yield of Clinically Actionable Germline Variants beyond BRCA1/BRCA2. Cancers 2020, 12, 2834. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Meeks, H.; Feng, B.J.; Healey, S.; Thorne, H.; Makunin, I.; Ellis, J.; kConFab Investigators; Campbell, I.; Southey, M.; et al. Targeted massively parallel sequencing of a panel of putative breast cancer susceptibility genes in a large cohort of multiple-case breast and ovarian cancer families. J. Med. Genet. 2016, 53, 34–42. [Google Scholar] [CrossRef]
- Gervas, P.; Molokov, A.; Schegoleva, A.; Kiselev, A.; Babyshkina, N.; Pisareva, L.; Tyukalov, Y.; Choynzonov, E.; Cherdyntseva, N. New germline mutations in non-BRCA genes among breast cancer women of Mongoloid origin. Mol. Biol. Rep. 2020, 47, 5315–5321. [Google Scholar] [CrossRef]
- Ramírez-Calvo, M.; García-Casado, Z.; Fernández-Serra, A.; de Juan, I.; Palanca, S.; Oltra, S.; Soto, J.L.; Castillejo, A.; Barbera, V.M.; Juan-Fita, M.J.; et al. Implementation of massive sequencing in the genetic diagnosis of hereditary cancer syndromes: Diagnostic performance in the Hereditary Cancer Programme of the Valencia Community (FamCan-NGS). Hered. Cancer Clin. Pract. 2019, 17, 3. [Google Scholar] [CrossRef]
RAD51C/D+ | Negative | Total | p-Value | ||||
---|---|---|---|---|---|---|---|
N= | 18 | N= | 3710 | N= | 3728 | ||
Pathogenic Mutation | |||||||
RAD51C+ | 5 | 27.8% | |||||
RAD51D+ | 13 | 72.2% | |||||
Gender | |||||||
F | 18 | 100.0% | 3647 | 98.3% | 3665 | 98.3% | 1 |
M | 0 | 0.0% | 63 | 1.7% | 63 | 1.7% | |
Cancer Type | |||||||
Breast Cancer | 12 | 66.7% | 3135 | 84.5% | 3147 | 84.4% | 0.0761 |
Ovarian Cancers | 5 | 27.8% | 480 | 12.9% | 485 | 13.0% | |
Breast & Ovarian Cancer | 1 | 5.6% | 95 | 2.6% | 96 | 2.6% | |
Dx Age (Breast Cancer) | |||||||
Median (Range) | 41 (29–72) | 44 (18–95) | 44 (18–95) | 0.4050 | |||
<45 | 8 | 61.5% | 1716 | 53.1% | 1724 | 53.2% | 0.5903 |
≥45 | 5 | 38.5% | 1514 | 46.9% | 1519 | 46.8% | |
Dx Age (Ovarian Cancer) | |||||||
Median (Range) | 45.5 (36–61) | 48 (9–79) | 48 (9–79) | 0.8800 | |||
<45 | 3 | 50.0% | 199 | 34.6% | 202 | 34.8% | 0.4238 |
≥45 | 3 | 50.0% | 376 | 65.4% | 379 | 65.2% | |
Bilateral Breast Cancer | |||||||
Y | 5 | 38.5% | 572 | 17.7% | 577 | 17.8% | 0.0648 |
N | 8 | 61.5% | 2658 | 82.3% | 2666 | 82.2% | |
Family History (1st & 2nd Degree) | |||||||
Breast CA | 7 | 38.9% | 1310 | 35.3% | 1317 | 35.3% | 0.8064 |
Ovarian CA | 2 | 11.1% | 149 | 4.0% | 151 | 4.1% | 0.1636 |
Characteristics of Breast Cancer | N= | 18 | N= | 3779 | N= | 3797 | |
Histology | |||||||
Ductal | 17 | 94.4% | 2688 | 72.6% | 2705 | 72.7% | 0.1404 |
In-situ | 1 | 5.6% | 657 | 17.7% | 658 | 17.7% | |
Others | 0 | 0.0% | 359 | 9.7% | 359 | 9.6% | |
NS | 0 | 75 | 75 | ||||
Grade | |||||||
1 | 3 | 18.8% | 502 | 19.2% | 505 | 19.2% | 0.0059 |
2 | 2 | 12.5% | 1226 | 46.9% | 1228 | 46.7% | |
3 | 11 | 68.8% | 886 | 33.9% | 897 | 34.1% | |
Stage | |||||||
0 | 1 | 5.6% | 691 | 19.3% | 692 | 19.2% | 0.0508 |
1 | 5 | 27.8% | 1305 | 36.4% | 1310 | 36.3% | |
2 | 7 | 38.9% | 1056 | 29.4% | 1063 | 29.5% | |
3 | 2 | 11.1% | 408 | 11.4% | 410 | 11.4% | |
4 | 3 | 16.7% | 128 | 3.6% | 131 | 3.6% | |
NS | 0 | 191 | 191 | ||||
T | |||||||
T0 | 2 | 11.1% | 726 | 20.4% | 728 | 20.3% | 0.1819 |
T1 | 7 | 38.9% | 1700 | 47.7% | 1707 | 47.6% | |
T2 | 7 | 38.9% | 997 | 28.0% | 1004 | 28.0% | |
T3 | 1 | 5.6% | 95 | 2.7% | 96 | 2.7% | |
T4 | 1 | 5.6% | 48 | 1.3% | 49 | 1.4% | |
NS | 0 | 213 | 213 | ||||
N | |||||||
N0 | 11 | 64.7% | 2445 | 68.6% | 2456 | 68.5% | 0.2180 |
N1 | 4 | 23.5% | 728 | 20.4% | 732 | 20.4% | |
N2 | 0 | 0.0% | 260 | 7.3% | 260 | 7.3% | |
N3 | 2 | 11.8% | 133 | 3.7% | 135 | 3.8% | |
NS | 1 | 213 | 214 | ||||
ER | |||||||
Pos | 11 | 64.7% | 2583 | 75.4% | 2594 | 75.4% | 0.3945 |
Neg | 6 | 35.3% | 841 | 24.6% | 847 | 24.6% | |
NS | 1 | 355 | 356 | ||||
PR | |||||||
Pos | 8 | 50.0% | 2178 | 64.3% | 2186 | 64.3% | 0.2955 |
Neg | 8 | 50.0% | 1207 | 35.7% | 1215 | 35.7% | |
NS | 2 | 394 | 396 | ||||
Her2 | |||||||
Pos | 2 | 12.5% | 772 | 24.0% | 774 | 24.0% | 0.6037 |
Equivocal | 1 | 6.3% | 258 | 8.0% | 259 | 8.0% | |
Neg | 13 | 81.3% | 2180 | 67.9% | 2193 | 68.0% | |
NS | 2 | 569 | 571 | ||||
TNBC | |||||||
Yes | 5 | 31.3% | 401 | 13.9% | 406 | 14.0% | 0.0611 |
No | 11 | 68.8% | 2485 | 86.1% | 2496 | 86.0% | |
Characteristics of Ovarian Cancer | N= | 6 | N= | 575 | N= | 581 | |
Site of Cancer | |||||||
Ovarian | 5 | 83.3% | 503 | 88.1% | 508 | 88.0% | 0.2093 |
Fallopian Tube | 0 | 0.0% | 11 | 1.9% | 11 | 1.9% | |
Peritoneal | 0 | 0.0% | 29 | 5.1% | 29 | 5.0% | |
Uterus | 0 | 0.0% | 19 | 3.3% | 19 | 3.3% | |
Mixed | 1 | 16.7% | 9 | 1.6% | 10 | 1.7% | |
NS | 0 | 4 | |||||
Histology | |||||||
Epithelial | 5 | 100.0% | 513 | 96.1% | 518 | 96.1% | 1 |
Germ Cell | 0 | 0.0% | 7 | 1.3% | 7 | 1.3% | |
Stromal | 0 | 0.0% | 5 | 0.9% | 5 | 0.9% | |
Others | 0 | 0.0% | 1 | 0.2% | 1 | 0.2% | |
Mixed | 0 | 0.0% | 8 | 1.5% | 8 | 1.5% | |
NS | 1 | 41 | 42 | ||||
Epithelial Subtype | |||||||
Serous | 5 | 100% | 160 | 30.7% | 165 | 31.2% | 0.1008 |
Mucinous | 0 | 0% | 54 | 10.4% | 54 | 10.3% | |
Endometrioid | 0 | 0% | 175 | 33.6% | 175 | 33.3% | |
Clear cell | 0 | 0% | 102 | 19.6% | 102 | 19.4% | |
Mixed | 0 | 0% | 19 | 3.6% | 19 | 3.6% | |
Others | 0 | 0% | 11 | 2.1% | 11 | 2.1% | |
Grade | |||||||
0 | 0 | 0.0% | 12 | 2.3% | 12 | 2.3% | 0.3903 |
1 | 0 | 0.0% | 65 | 12.7% | 65 | 12.6% | |
2 | 0 | 0.0% | 139 | 27.1% | 139 | 26.9% | |
3 | 5 | 100.0% | 288 | 56.3% | 293 | 56.7% | |
Mixed | 0 | 0.0% | 8 | 1.6% | 8 | 1.5% | |
NS | 1 | 63 | 64 | ||||
Stage | |||||||
1 | 0 | 0.0% | 267 | 51.4% | 267 | 50.9% | 0.0117 |
2 | 1 | 16.7% | 69 | 13.3% | 70 | 13.3% | |
3 | 3 | 50.0% | 139 | 26.8% | 142 | 27.0% | |
4 | 2 | 33.3% | 44 | 8.5% | 46 | 8.8% | |
NS | 0 | 56 | 56 |
Gene | Mutation Variants | Probands | Dx | Personal Cancer | HRD Status * (LOH Score) | Breast Histology | Ovarian Histology | Breast Cancer Risk for FM # | Other Germline Mutations | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Histo | ER | PR | HER2 | Grade | Histo | Lifetime Risk from Age 20 | Risk at Ages 40 and 50 | |||||||
RAD51C | c.394dupA; p.Thr132Asnfs*23 | 001 | 43 | Breast | ^ QC failed | Ductal | Pos | Pos | Neg | -- | -- | 26.4% (M) | 4.8% (M) | BRCA2 VUS c.2405A > G; p.(Asn802Ser) |
002 | 61 | Ovarian | Pos (0.46) | -- | -- | -- | -- | High | Serous | 23.8% (M) | 4.1% (M) | -- | ||
003 | 47 | Breast | Pos (0.49) | Ductal | Pos | Pos | Pos | -- | -- | 32.1% (H) | 6.7% (M) | -- | ||
004 | 47 72 74 | Ovarian Breast Breast | Pos (0.35) | DCIS IDC | Pos Pos | NA Pos | NA Neg | High | Serous | 21.4% (M) | 2.4% (P) | (Somatic) BRCA1 heterozygous deletion exons 4–6 | ||
c.1000_1003delinsTTTCC; p.Glu334Phefs*14 | 005 | 44 | Ovarian | Pos (0.4) | -- | -- | -- | -- | High | Serous | 16.6% (P) | 2.4% (P) | BRCA1 VUS c.5068A > C; p.(Lys1690Gln) | |
RAD51D | c.270_271dupTA; p.Lys91Ilefs*13 | 006 | 41 50 | Breast Breast | ^ SNP frequency aberrant | Ductal Ductal | Neg Neg | Neg Neg | Neg Neg | -- | -- | 29.1% (M) | 5.8% (M) | -- |
007 | 33 | Breast | Pos (0.66) | Ductal | Neg | Neg | Neg | -- | -- | 25.2% (M) | 4.7% (M) | -- | ||
008 | 33 37 | Breast Breast | ^ SNP frequency aberrant | Ductal Ductal | Pos Pos | Pos Pos | Neg Pos | -- | -- | 32.8% (H) | 7% (M) | -- | ||
009 | 49 | Breast | ^ SNP frequency aberrant | Ductal | Neg | Neg | Neg | -- | -- | 23.5% (M) | 4.2% (M) | -- | ||
010 | 59 | Ovarian | ^ SNP frequency aberrant | -- | -- | -- | -- | High | Serous | 13.8% (P) | 1.8% (P) | BRCA1 VUS c.2347A > G; p.(Ile783Val)BARD1 VUS c.539A > G; p.(Tyr180Cys) | ||
011 | 30 | Breast | ^ Not Done | Ductal | Pos | Neg | Neg | -- | -- | 25.2% (M) | 4.7% (M) | -- | ||
012 | 36 | Ovarian | Neg (0.34) | -- | -- | -- | -- | High | Serous | 15.5% (P) | 2.2% (M) | -- | ||
013 | 58 | Breast | Neg (0.017) | Ductal | Pos | Pos | Neg | -- | -- | 21.2% (M) | 3.8% (M) | MSH2 VUS c.1121A > G; p.(Gln374Arg) RAD51D VUS c.932T > A; p.(Ile311Asn) | ||
014 | 29 | Breast | Pos (0.58) | Ductal | Neg | Neg | Neg | -- | -- | 32.2% (H) | 6.8% (M) | BRCA2 VUS c.2239G>A; p.(Glu747Lys) | ||
015 | 40 | Breast | Pos (0.48) | Ductal | Pos | Neg | Neg | -- | -- | 32% (H) | 6.7% (M) | -- | ||
016 | 56 64 | Breast Breast | Pos (0.67) | Ductal Ductal | Neg Pos | Neg Pos | Pos Neg | -- | -- | 31.8% (H) | 6.1% (M) | BRCA1 VUS c.5068A > C; p.(Lys1690Gln) | ||
c.556C > T; p.Arg186* | 017 | 43 | Ovarian | Neg (0.36) | -- | -- | -- | -- | High | Serous | 14.1% (P) | 1.7% (P) | BRCA2 VUS c.2744C > G; p.(Thr915Ser) | |
c.801delC; p.Trp268Glyfs*42 | 018 | 38 38 | Breast Breast | Neg (0.28) | Ductal DCIS | Pos -- | Pos -- | Neg -- | -- | -- | 25.4% (M) | 4.7% (M) | -- |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kwong, A.; Ho, C.Y.S.; Au, C.H.; Tey, S.K.; Ma, E.S.K. Germline RAD51C and RAD51D Mutations in High-Risk Chinese Breast and/or Ovarian Cancer Patients and Families. J. Pers. Med. 2024, 14, 866. https://doi.org/10.3390/jpm14080866
Kwong A, Ho CYS, Au CH, Tey SK, Ma ESK. Germline RAD51C and RAD51D Mutations in High-Risk Chinese Breast and/or Ovarian Cancer Patients and Families. Journal of Personalized Medicine. 2024; 14(8):866. https://doi.org/10.3390/jpm14080866
Chicago/Turabian StyleKwong, Ava, Cecilia Yuen Sze Ho, Chun Hang Au, Sze Keong Tey, and Edmond Shiu Kwan Ma. 2024. "Germline RAD51C and RAD51D Mutations in High-Risk Chinese Breast and/or Ovarian Cancer Patients and Families" Journal of Personalized Medicine 14, no. 8: 866. https://doi.org/10.3390/jpm14080866
APA StyleKwong, A., Ho, C. Y. S., Au, C. H., Tey, S. K., & Ma, E. S. K. (2024). Germline RAD51C and RAD51D Mutations in High-Risk Chinese Breast and/or Ovarian Cancer Patients and Families. Journal of Personalized Medicine, 14(8), 866. https://doi.org/10.3390/jpm14080866