Implementation and Feasibility of Mechanomyography in Minimally Invasive Spine Surgery
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Mechanomyography Technique
2.3. Procedures and Patient Variables
3. Results
3.1. MIS Tubular Far Lateral Discectomy
3.2. Cervical Foraminotomy
3.3. MIS-TLIF
3.4. Case Report
4. Discussion
4.1. MIS Tubular Far Lateral Discectomy
4.2. Cervical Foraminotomy
4.3. MIS-TLIF
4.4. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ibitoye, M.O.; Hamzaid, N.A.; Zuniga, J.M.; Abdul Wahab, A.K. Mechanomyography and muscle function assessment: A review of current state and prospects. Clin. Biomech. 2014, 29, 691–704. [Google Scholar] [CrossRef]
- Meagher, C.; Franco, E.; Turk, R.; Wilson, S.; Steadman, N.; McNicholas, L.; Vaidyanathan, R.; Burridge, J.; Stokes, M. New advances in mechanomyography sensor technology and signal processing: Validity and intrarater reliability of recordings from muscle. J. Rehabil. Assist. Technol. Eng. 2020, 7, 2055668320916116. [Google Scholar] [CrossRef] [PubMed]
- Scarborough, D.M.; Linderman, S.E.; Aspenleiter, R.; Berkson, E.M. Quantifying muscle contraction with a conductive electroactive polymer sensor: Introduction to a novel surface mechanomyography device. Int. Biomech. 2023, 10, 37–46. [Google Scholar] [CrossRef]
- Croce, R.; Craft, A.; Miller, J.; Chamberlin, K.; Filipovic, D. Quadriceps mechano- and electromyographic time-frequency responses during muscular contractions to volitional exhaustion. Muscle Nerve 2016, 53, 452–463. [Google Scholar] [CrossRef]
- Kareem, S.; Dilara, K.; Maruthy, K.N.; Johnson, P.; Siva Kumar, A.V. Implementation of surface mechanomyography as a novel approach for objective evaluation of phasic muscle stretch reflexes in people with type 2 diabetes. Diabetes Metab. Syndr. 2024, 18, 103022. [Google Scholar] [CrossRef] [PubMed]
- Benitez, B.; Kwak, M.; Succi, P.J.; Weir, J.P.; Bergstrom, H.C. Unilaterally Induced Quadriceps Fatigue during Sustained Submaximal Isometric Exercise Does Not Alter Contralateral Leg Extensor Performance. J. Funct. Morphol. Kinesiol. 2023, 8, 85. [Google Scholar] [CrossRef]
- Hill, E.C.; Proppe, C.E.; Rivera, P.M.; Lubiak, S.M.; Gonzalez Rojas, D.H.; Lawson, J.E.; Choi, H.; Mansy, H.; Keller, J.L. Blood flow restriction attenuates surface mechanomyography lateral and longitudinal, but not transverse oscillations during fatiguing exercise. Physiol. Meas. 2024, 45, 045002. [Google Scholar] [CrossRef] [PubMed]
- Islam, M.A.; Sundaraj, K.; Ahmad, R.B.; Ahamed, N.U. Mechanomyogram for muscle function assessment: A review. PLoS ONE 2013, 8, e58902. [Google Scholar] [CrossRef] [PubMed]
- Smith, C.M.; Housh, T.J.; Hill, E.C.; Keller, J.L.; Johnson, G.O.; Schmidt, R.J. A biosignal analysis for reducing prosthetic control durations: A proposed method using electromyographic and mechanomyographic control theory. J. Musculoskelet. Neuronal Interact. 2019, 19, 142–149. [Google Scholar] [PubMed]
- Zakaria, H.M.; Tundo, K.M.; Sandles, C.; Chuang, M.; Schultz, L.; Aho, T.; Abdulhak, M. Mechanomyography for Intraoperative Assessment of Cortical Breach During Instrumented Spine Surgery. World Neurosurg. 2018, 117, e252–e258. [Google Scholar] [CrossRef]
- Bartol, S.; Wybo, C. The Use of Mechanomyography (MMG) to Locate Nerves During Spine Surgery Procedures. Spine J. 2010, 10, S128. [Google Scholar] [CrossRef]
- Skinner, S.; Guo, L. Intraoperative neuromonitoring during surgery for lumbar stenosis. Handb. Clin. Neurol. 2022, 186, 205–227. [Google Scholar] [PubMed]
- Wilson, J.P.; Vallejo, J.B.; Kumbhare, D.; Guthikonda, B.; Hoang, S. The Use of Intraoperative Neuromonitoring for Cervical Spine Surgery: Indications, Challenges, and Advances. J. Clin. Med. 2023, 12, 4652. [Google Scholar] [CrossRef] [PubMed]
- Strike, S.A.; Hassanzadeh, H.; Jain, A.; Kebaish, K.M.; Njoku, D.B.; Becker, D.; Ain, M.C.; Sponseller, P.D. Intraoperative Neuromonitoring in Pediatric and Adult Spine Deformity Surgery. Clin. Spine Surg. 2017, 30, E1174–E1181. [Google Scholar] [CrossRef]
- Gertsch, J.H.; Moreira, J.J.; Lee, G.R.; Hastings, J.D.; Ritzl, E.; Eccher, M.A.; Cohen, B.A.; Shils, J.L.; McCaffrey, M.T.; Balzer, G.K.; et al. membership of the ASNM. Practice guidelines for the supervising professional: Intraoperative neurophysiological monitoring. J. Clin. Monit. Comput. 2019, 33, 175–183. [Google Scholar] [CrossRef]
- Toleikis, J.R.; Pace, C.; Jahangiri, F.R.; Hemmer, L.B.; Toleikis, S.C. Intraoperative somatosensory evoked potential (SEP) monitoring: An updated position statement by the American Society of Neurophysiological Monitoring. J. Clin. Monit. Comput. 2024, 38, 1003–1042. [Google Scholar] [CrossRef] [PubMed]
- Zelenski, N.A.; Oishi, T.; Shin, A.Y. Intraoperative Neuromonitoring for Peripheral Nerve Surgery. J. Hand Surg. Am. 2023, 48, 396–401. [Google Scholar] [CrossRef] [PubMed]
- Wedemeyer, Z.; Jelacic, S.; Michaelsen, K.; Silliman, W.; Togashi, K.; Bowdle, A. Comparative performance of stimpod electromyography with mechanomyography for quantitative neuromuscular blockade monitoring. J. Clin. Monit. Comput. 2024, 38, 205–212. [Google Scholar] [CrossRef] [PubMed]
- Guerrero, J.R.; Taghlabi, K.M.; Bhenderu, L.S.; Cruz-Garza, J.G.; Javeed, S.; Dibble, C.F.; Ray, W.Z.; Faraji, A.H. Incorporating Intraoperative Mechanomyography to Peripheral Nerve Decompression Surgery. Oper. Neurosurg. 2023, 24, 445–450. [Google Scholar] [CrossRef]
- Holland, N.R.; Lukaczyk, T.A.; Riley, L.H.I.I.I.; Kostuik, J.P. Higher electrical stimulus intensities are required to activate chronically compressed nerve roots: Implications for intraoperative electromyography pedicle screw testing. Spine 1998, 23, 224–227. [Google Scholar] [CrossRef] [PubMed]
- Ament, J.D.; Leon, A.; Kim, K.D.; Johnson, J.P.; Vokshoor, A. Intraoperative neuromonitoring in spine surgery: Large database analysis of cost-effectiveness. N. Am. Spine Soc. J. 2023, 14, 100206. [Google Scholar] [CrossRef] [PubMed]
- Buraimoh, M.; Ansok, C.; Pawloski, J.; Jung, E.K.; Bartol, S. Facet Sparing Foraminal Decompression Using the Flexible Shaver Foraminotomy System: Nerve Safety, Pain Relief, and Patient Satisfaction. Int. J. Spine Surg. 2018, 12, 92–97. [Google Scholar] [CrossRef] [PubMed]
- Gadjradj, P.S.; Rubinstein, S.M.; Peul, W.C.; Depauw, P.R.; Vleggeert-Lankamp, C.L.; Seiger, A.; Van Susante, J.L.C.; De Boer, M.R.; Van Tulder, M.W.; Harhangi, B.S. Full endoscopic versus open discectomy for sciatica: Randomised controlled non-inferiority trial. BMJ 2022, 376, e065846. [Google Scholar] [CrossRef]
- Wessell, N.; Khalil, J.; Zavatsky, J.; Ghacham, W.; Bartol, S. Verification of nerve decompression using mechanomyography. Spine J. 2016, 16, 679–686. [Google Scholar] [CrossRef]
- Lener, S.; Wipplinger, C.; Hernandez, R.N.; Hussain, I.; Kirnaz, S.; Navarro-Ramirez, R.; Schmidt, F.A.; Kim, E.; Härtl, R. Defining the MIS-TLIF: A Systematic Review of Techniques and Technologies Used by Surgeons Worldwide. Glob. Spine J. 2020, 10 (Suppl. S2), 151S–167S. [Google Scholar] [CrossRef] [PubMed]
- Limbrick, D.D.; Wright, N.M. Verification of nerve root decompression during minimally-invasive lumbar microdiskectomy: A practical application of surgeon-driven evoked EMG. Minim. Invasive Neurosurg. 2005, 48, 273–277. [Google Scholar] [CrossRef] [PubMed]
Characteristic | Frequency (n = 22) |
---|---|
Sex | |
Male | 13 (59.1%) |
Female | 9 (40.9%) |
Procedure | |
MIS Tubular Far Lateral Discectomies | 14 (63.6%) |
Age (years) | 61.3 ± 15.3 |
BMI (kg/m2) | 25.8 ± 4.4 |
Blood Loss (n, %) | |
<50 mL | 13 (92.8%) |
<250 mL | 1 (7.2%) |
Mean Operative Time (min) | 120 ± 58.5 |
Mean Hospital Stay (days) | 1.4 ± 0.5 |
Cervical Foraminotomy | 5 (22.7%) |
Age (years) | 48.4 ± 17.9 |
BMI (kg/m2) | 23.1 ± 5.2 |
Blood Loss (n, %) | |
<50 mL | 4 (80%) |
<250 mL | 1 (20%) |
Mean Operative Time (min) | 133.4 ± 75.9 |
Mean Hospital Stay (days) | 1.2 ± 0.4 |
MIS-TLIF | 3 (13.6%) |
Age (years) | 66.7 ± 4.9 |
BMI (kg/m2) | 25.2 ± 1.1 |
Blood Loss (n, %) | |
<50 mL | 1 (33.3%) |
<250 mL | 1 (33.3%) |
<500 mL | 1 (33.3%) |
Mean Operative Time (min) | 232 ± 45 |
Mean Hospital Stay (days) | 3 ± 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sommer, F.; Hussain, I.; Willett, N.; Hamad, M.K.; Ikwuegbuenyi, C.A.; Navarro-Ramirez, R.; Kirnaz, S.; McGrath, L.; Goldberg, J.; Ng, A.; et al. Implementation and Feasibility of Mechanomyography in Minimally Invasive Spine Surgery. J. Pers. Med. 2025, 15, 42. https://doi.org/10.3390/jpm15020042
Sommer F, Hussain I, Willett N, Hamad MK, Ikwuegbuenyi CA, Navarro-Ramirez R, Kirnaz S, McGrath L, Goldberg J, Ng A, et al. Implementation and Feasibility of Mechanomyography in Minimally Invasive Spine Surgery. Journal of Personalized Medicine. 2025; 15(2):42. https://doi.org/10.3390/jpm15020042
Chicago/Turabian StyleSommer, Fabian, Ibrahim Hussain, Noah Willett, Mousa K. Hamad, Chibuikem A. Ikwuegbuenyi, Rodrigo Navarro-Ramirez, Sertac Kirnaz, Lynn McGrath, Jacob Goldberg, Amanda Ng, and et al. 2025. "Implementation and Feasibility of Mechanomyography in Minimally Invasive Spine Surgery" Journal of Personalized Medicine 15, no. 2: 42. https://doi.org/10.3390/jpm15020042
APA StyleSommer, F., Hussain, I., Willett, N., Hamad, M. K., Ikwuegbuenyi, C. A., Navarro-Ramirez, R., Kirnaz, S., McGrath, L., Goldberg, J., Ng, A., Mykolajtchuk, C., Haber, S., Sullivan, V., Gadjradj, P. S., & Härtl, R. (2025). Implementation and Feasibility of Mechanomyography in Minimally Invasive Spine Surgery. Journal of Personalized Medicine, 15(2), 42. https://doi.org/10.3390/jpm15020042