Immune Checkpoint Inhibitor-Induced Insidiously Progressive, Fatal Interstitial Lung Disease
Abstract
:1. Personalized Medicine
2. Introduction
3. Materials and Methods
3.1. Patients
3.2. Evaluation of ILDs
3.3. Statistical Analysis
4. Results
4.1. Clinical Characteristics and ICI Responsiveness
4.2. Immune-Related Adverse Events and ICI Responsiveness
4.3. Characteristics Associated with Death Due to ICI-ILD
4.4. The Three Patients Who Died of Insidiously Progressive ICI-ILD
4.4.1. Patient 1 (Figure 2, Table 4)
4.4.2. Patient 2 (Figure 3, Table 4)
4.4.3. Patient 3 (Figure 4, Table 4)
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
CRP | C-reactive protein |
DAD | diffuse alveolar damage |
EGFR | epidermal growth factor receptor |
HP | hypersensitivity pneumonitis |
ICI | immune checkpoint inhibitor |
ILD | interstitial lung disease |
irAE | immune-related adverse event |
KL-6 | Krebs von den Lungen-6 |
LDH | lactate dehydrogenase |
References
- Gandhi, L.; Rodríguez-Abreu, D.; Gadgeel, S.; Esteban, E.; Felip, E.; De Angelis, F.; Domine, M.; Clingan, P.; Hochmair, M.J.; Powell, S.F.; et al. KEYNOTE-189 Investigators. Pembrolizumab plus chemotherapy in metastatic non-small-cell lung cancer. N. Engl. J. Med. 2018, 378, 2078–2092. [Google Scholar] [CrossRef] [PubMed]
- Reck, M.; Rodríguez-Abreu, D.; Robinson, A.G.; Hui, R.; Csőszi, T.; Fülöp, A.; Gottfried, M.; Peled, N.; Tafreshi, A.; Cuffe, S.; et al. Updated Analysis of KEYNOTE-024, Pembrolizumab versus platinum-based chemotherapy for advanced non-small-cell lung cancer with PD-L1 tumor proportion score of 50% or greater. J. Clin. Oncol. 2019, 37, 537–546. [Google Scholar] [CrossRef]
- Fujimoto, D.; Miura, S.; Yoshimura, K.; Wakuda, K.; Oya, Y.; Yokoyama, T.; Yokoi, T.; Asao, T.; Tamiya, M.; Nakamura, A.; et al. Pembrolizumab plus chemotherapy-induced pneumonitis in chemo-naïve patients with non-squamous non-small cell lung cancer: A multicentre, retrospective cohort study. Eur. J. Cancer. 2021, 150, 63–72. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, Y.; Karayama, M.; Uto, T.; Fujii, M.; Matsui, T.; Asada, K.; Kusagaya, H.; Kato, M.; Matsuda, H.; Matsuura, S.; et al. Assessment of immune-related interstitial lung disease in patients with NSCLC treated with immune checkpoint inhibitors: A multicenter prospective study. J. Thorac. Oncol. 2020, 15, 1317–1327. [Google Scholar] [CrossRef] [PubMed]
- Okada, N.; Matsuoka, R.; Sakurada, T.; Goda, M.; Chuma, M.; Yagi, K.; Zamami, Y.; Nishioka, Y.; Ishizawa, K. Risk factors of immune checkpoint inhibitor-related interstitial lung disease in patients with lung cancer: A single-institution retrospective study. Sci. Rep. 2020, 10, 13773. [Google Scholar] [CrossRef]
- Nakanishi, Y.; Masuda, T.; Yamaguchi, K.; Sakamoto, S.; Horimasu, Y.; Nakashima, T.; Miyamoto, S.; Tsutani, Y.; Iwamoto, H.; Fujitaka, K.; et al. Pre-existing interstitial lung abnormalities are risk factors for immune checkpoint inhibitor-induced interstitial lung disease in non-small cell lung cancer. Respir. Investig. 2019, 57, 451–459. [Google Scholar] [CrossRef]
- Baba, T.; Sakai, F.; Kato, T.; Kusumoto, M.; Kenmotsu, H.; Sugiura, H.; Tominaga, J.; Oikado, K.; Sata, M.; Endo, M.; et al. Radiologic features of pneumonitis associated with nivolumab in non-small-cell lung cancer and malignant melanoma. Future Oncol. 2019, 15, 1911–1920. [Google Scholar] [CrossRef]
- Johkoh, T.; Lee, K.S.; Nishino, M.; Travis, W.D.; Ryu, J.H.; Lee, H.Y.; Ryerson, C.J.; Franquet, T.; Bankier, A.A.; Brown, K.K.; et al. Chest CT diagnosis and clinical management of drug-related pneumonitis in patients receiving molecular targeting agents and immune checkpoint inhibitors: A Position Paper from the Fleischner Society. Radiology 2021, 298, 550–566. [Google Scholar] [CrossRef]
- Yokoi, M.; Yonezawa, A.; Hira, D.; Handa, T.; Tanizawa, K.; Nakagawa, S.; Tsuda, M.; Ikemi, Y.; Itotani, R.; Yoshida, H.; et al. Subjective symptoms are triggers for the detection of immune checkpoint inhibitor-induced interstitial lung disease and associate with disease severity: A single-center retrospective study. J. Pharm. Health Care Sci. 2024, 10, 52. [Google Scholar] [CrossRef]
- Raghu, G.; Remy-Jardin, M.; Myers, J.L.; Richeldi, L.; Ryerson, C.J.; Lederer, D.J.; Behr, J.; Cottin, V.; Danoff, S.K.; Morell, F.; et al. American Thoracic Society, European Respiratory Society, Japanese Respiratory Society, and Latin American Thoracic Society. Diagnosis of Idiopathic Pulmonary Fibrosis. An Official ATS/ERS/JRS/ALAT Clinical Practice Guideline. Am. J. Respir. Crit. Care Med. 2018, 198, e44–e68. [Google Scholar] [CrossRef]
- Ando, H.; Suzuki, K.; Yanagihara, T. Insights into potential pathogenesis and treatment options for immune-checkpoint inhibitor-related pneumonitis. Biomedicines 2021, 9, 1484. [Google Scholar] [CrossRef] [PubMed]
- Grangeon, M.; Tomasini, P.; Chaleat, S.; Jeanson, A.; Souquet-Bressand, M.; Khobta, N.; Bermudez, J.; Trigui, Y.; Greillier, L.; Blanchon, M.; et al. Association between immune-related adverse events and Efficacy of Immune Checkpoint Inhibitors in Non-small-cell Lung Cancer. Clin. Lung Cancer 2019, 20, 201–207. [Google Scholar] [CrossRef]
- Sato, K.; Akamatsu, H.; Murakami, E.; Sasaki, S.; Kanai, K.; Hayata, A.; Tokudome, N.; Akamatsu, K.; Koh, Y.; Ueda, H.; et al. Correlation between immune-related adverse events and efficacy in non-small cell lung cancer treated with nivolumab. Lung Cancer 2018, 115, 71–74. [Google Scholar] [CrossRef] [PubMed]
- Teraoka, S.; Fujimoto, D.; Morimoto, T.; Kawachi, H.; Ito, M.; Sato, Y.; Nagata, K.; Nakagawa, A.; Otsuka, K.; Uehara, K.; et al. Early immune-related adverse events and association with outcome in advanced non-small cell lung cancer patients treated with nivolumab: A prospective cohort study. J. Thorac. Oncol. 2017, 12, 1798–1805. [Google Scholar] [CrossRef]
- Shankar, B.; Zhang, J.; Naqash, A.R.; Forde, P.M.; Feliciano, J.L.; Marrone, K.A.; Ettinger, D.S.; Hann, C.L.; Brahmer, J.R.; Ricciuti, B.; et al. Multisystem immune-related adverse events associated with immune checkpoint inhibitors for treatment of non-small cell lung cancer. JAMA Oncol. 2020, 6, 1952–1956. [Google Scholar] [CrossRef] [PubMed]
- Sugano, T.; Seike, M.; Saito, Y.; Kashiwada, T.; Terasaki, Y.; Takano, N.; Hisakane, K.; Takahashi, S.; Tanaka, T.; Takeuchi, S.; et al. Immune checkpoint inhibitor-associated interstitial lung diseases correlate with better prognosis in patients with advanced non-small-cell lung cancer. Thorac. Cancer 2020, 11, 1052–1060. [Google Scholar] [CrossRef] [PubMed]
- Tone, M.; Izumo, T.; Awano, N.; Kuse, N.; Inomata, M.; Jo, T.; Yoshimura, H.; Minami, J.; Takada, K.; Miyamoto, S.; et al. High mortality and poor treatment efficacy of immune checkpoint inhibitors in patients with severe grade checkpoint inhibitor pneumonitis in non-small cell lung cancer. Thorac. Cancer. 2019, 10, 2006–2012. [Google Scholar] [CrossRef]
- Socinski, M.A.; Jotte, R.M.; Cappuzzo, F.; Nishio, M.; Mok, T.S.K.; Reck, M.; Finley, G.G.; Kaul, M.D.; Yu, W.; Paranthaman, N.; et al. Association of Immune-Related Adverse Events With Efficacy of Atezolizumab in Patients With Non-Small Cell Lung Cancer: Pooled Analyses of the Phase 3 IMpower130, IMpower132, and IMpower150 Randomized Clinical Trials. JAMA Oncol. 2023, 9, 527–535. [Google Scholar] [CrossRef]
- Nakahama, K.; Izumi, M.; Yoshimoto, N.; Fukui, M.; Sugimoto, A.; Nagamine, H.; Ogawa, K.; Sawa, K.; Tani, Y.; Kaneda, H.; et al. Clinical significance of KL-6 in immune-checkpoint inhibitor treatment for non-small cell lung cancer. Cancer Chemother. Pharmacol. 2023, 92, 381–390. [Google Scholar] [CrossRef]
- Murata, D.; Azuma, K.; Murotani, K.; Matsuo, N.; Matama, G.; Tokito, T.; Sasada, T.; Hoshino, T. Survival and soluble immune mediators of immune checkpoint inhibitor-induced interstitial lung disease in patients with non-small cell lung cancer. Lung Cancer 2023, 184, 107351. [Google Scholar] [CrossRef]
- Flaherty, K.R.; Wells, A.U.; Cottin, V.; Devaraj, A.; Walsh, S.L.F.; Inoue, Y.; Richeldi, L.; Kolb, M.; Tetzlaff, K.; Stowasser, S.; et al. INBUILD Trial Investigators. Nintedanib in progressive fibrosing interstitial lung diseases. N. Engl. J. Med. 2019, 381, 1718–1727. [Google Scholar] [CrossRef]
- Borghaei, H.; Paz-Ares, L.; Horn, L.; Spigel, D.R.; Steins, M.; Ready, N.E.; Chow, L.Q.; Vokes, E.E.; Felip, E.; Holgado, E.; et al. Nivolumab versus Docetaxel in Advanced Nonsquamous Non-Small-Cell Lung Cancer. N. Engl. J. Med. 2015, 373, 1627–1639. [Google Scholar] [CrossRef] [PubMed]
- Herbst, R.S.; Baas, P.; Kim, D.W.; Felip, E.; Pérez-Gracia, J.L.; Han, J.Y.; Molina, J.; Kim, J.H.; Arvis, C.D.; Ahn, M.J.; et al. Pembrolizumab versus docetaxel for previously treated, PD-L1-positive, advanced non-small-cell lung cancer (KEYNOTE-010): A randomised controlled trial. Lancet 2016, 387, 1540–1550. [Google Scholar] [CrossRef]
- Garassino, M.C.; Cho, B.C.; Kim, J.H.; Mazières, J.; Vansteenkiste, J.; Lena, H.; Corral Jaime, J.; Gray, J.E.; Powderly, J.; Chouaid, C.; et al. ATLANTIC Investigators. Durvalumab as third-line or later treatment for advanced non-small-cell lung cancer (ATLANTIC): An open-label, single-arm, phase 2 study. Lancet Oncol. 2018, 19, 521–536. [Google Scholar] [CrossRef]
- Li, D.; Cheng, C.; Song, W.P.; Ni, P.Z.; Zhang, W.Z.; Wu, X. Dramatic response to immunotherapy in an epidermal growth factor receptor-mutant non-small cell lung cancer: A case report. World J. Clin. Cases 2021, 9, 11419–11424. [Google Scholar] [CrossRef]
- Baglivo, S.; Mandarano, M.; Bellezza, G.; Minotti, V.; Bonaiti, A.; Fischer, M.J.; Birocchi, I.; Roila, F.; Metelli, N.; Ludovini, V.; et al. Inflamed Tumor Phenotype as Predictor of Long-Term Response to Pembrolizumab in an EGFR-Mutated Non-Small Cell Lung Cancer (NSCLC) Patient with Acquired Resistance to Afatinib: A Case Report and Review of the Literature. Oncol. Ther. 2022, 10, 291–300. [Google Scholar] [CrossRef] [PubMed]
- Ichihara, E.; Harada, D.; Inoue, K.; Shibayama, T.; Hosokawa, S.; Kishino, D.; Harita, S.; Ochi, N.; Oda, N.; Hara, N.; et al. Characteristics of patients with EGFR-mutant non-small-cell lung cancer who benefited from immune checkpoint inhibitors. Cancer Immunol. Immunother. 2021, 70, 101–106. [Google Scholar] [CrossRef] [PubMed]
- Reck, M.; Mok, T.S.K.; Nishio, M.; Jotte, R.M.; Cappuzzo, F.; Orlandi, F.; Stroyakovskiy, D.; Nogami, N.; Rodríguez-Abreu, D.; Moro-Sibilot, D.; et al. IMpower150 Study Group. Atezolizumab plus bevacizumab and chemotherapy in non-small-cell lung cancer (IMpower150): Key subgroup analyses of patients with EGFR mutations or baseline liver metastases in a randomised, open-label phase 3 trial. Lancet Respir. Med. 2019, 7, 387–401. [Google Scholar] [CrossRef]
- Park, S.; Kim, T.M.; Han, J.Y.; Lee, G.W.; Shim, B.Y.; Lee, Y.G.; Kim, S.W.; Kim, I.H.; Lee, S.; Kim, Y.J.; et al. Phase III, Randomized Study of Atezolizumab Plus Bevacizumab and Chemotherapy in Patients With EGFR- or ALK-Mutated Non-Small-Cell Lung Cancer (ATTLAS, KCSG-LU19-04). J. Clin. Oncol. 2024, 42, 1241–1251. [Google Scholar] [CrossRef]
- Yamamoto, N.; Horiike, A.; Fujisaka, Y.; Murakami, H.; Shimoyama, T.; Yamada, Y.; Tamura, T. Phase I dose-finding and pharmacokinetic study of the oral epidermal growth factor receptor tyrosine kinase inhibitor Ro50-8231 (erlotinib) in Japanese patients with solid tumors. Cancer Chemother. Pharmacol. 2008, 61, 489–496. [Google Scholar] [CrossRef]
- Kanaji, N.; Ichihara, E.; Tanaka, T.; Ninomiya, T.; Kozuki, T.; Ishikawa, N.; Nishii, K.; Shoda, H.; Yamaguchi, K.; Kawakado, K.; et al. Efficacy and Safety of Re-administration of Epidermal Growth Factor Receptor-Tyrosine Kinase Inhibitor (EGFR-TKI) After EGFR-TKI-Induced Interstitial Lung Disease (CS-Lung-005). Lung 2024, 202, 63–72. [Google Scholar] [CrossRef] [PubMed]
- Okada, N.; Hamano, H.; Yagi, K.; Niimura, T.; Aizawa, F.; Goda, M.; Zamami, Y.; Kitahara, T.; Ishizawa, K. Effect of pre-treatment with EGFR-TKIs on immune checkpoint inhibitor-associated interstitial lung disease in lung cancer patients: Analysis using a Japanese claims database. Int. J. Clin. Pharmacol. Ther. 2024, 62, 69–76. [Google Scholar] [CrossRef] [PubMed]
- Tamiya, A.; Naito, T.; Miura, S.; Morii, S.; Tsuya, A.; Nakamura, Y.; Kaira, K.; Murakami, H.; Takahashi, T.; Yamamoto, N.; et al. Interstitial lung disease associated with docetaxel in patients with advanced non-small cell lung cancer. Anticancer Res. 2012, 32, 1103–1106. [Google Scholar] [PubMed]
- Wang, Y.; Miao, L.; Hu, Y.; Zhou, Y. The efficacy and safety of first-line chemotherapy in patients with non-small cell lung cancer and interstitial lung disease: A systematic review and meta-analysis. Front. Oncol. 2020, 10, 1636. [Google Scholar] [CrossRef]
Characteristic | Patients (n = 232) |
---|---|
Age, median (range) | 70 (41–94) |
Male/female | 182/50 |
Smoking history | |
Smoker/never smoker | 195/37 |
Pack-years in smokers, average (range) | 54.5 (0.75–171) |
ECOG Performance Status | |
0/1/2/3/4 | 67/109/35/17/4 |
Histology | |
Adenocarcinoma | 132 |
Squamous cell carcinoma | 45 |
Non-small cell carcinoma, NOS | 12 |
Others | 16 |
Small cell carcinoma | 27 |
Driver mutations | |
EGFR/ALK/others/no mutations | 30/3/12/84 |
Clinical stage (8th edition of TNM classification) | |
III/IV | 27/205 |
PD-L1 TPS (%) | |
<1/1–49/50≤/not evaluated | 42/55/71/64 |
ICI Regimens | |
ICI monotherapy | |
nivolumab | 39 |
pembrolizumab | 51 |
atezolizumab | 18 |
ICI + chemotherapy | |
pembrolizumab + carboplatin + PEM | 28 |
pembrolizumab + carboplatin + nab-PAC | 22 |
atezolizumab + carboplatin + etoposide | 16 |
atezolizumab + carboplatin + PEM | 12 |
atezolizumab + carboplatin + nab-PAC | 11 |
durvalumab + carboplatin + etoposide | 10 |
ipilimumab + nivolumab | 9 |
ipilimumab + nivolumab + carboplatin + PEM | 6 |
tremelimumab + durvalumab + carboplatin + nab-PAC | 6 |
others | 4 |
Therapeutic line of ICI | |
1/2/3/4/5 or later | 148/47/16/10/11 |
Characteristic | n | Median PFS, Days | Univariate Analysis p-Value | Multivariate Analysis | |
---|---|---|---|---|---|
HR (95%CI) | p-Value | ||||
Age | |||||
Older, ≥75 | 57 | 202 | 0.69 | ||
Younger, <75 | 135 | 154 | |||
Gender | |||||
Male | 151 | 172 | 0.56 | ||
Female | 41 | 140 | |||
Smoking history | |||||
Never smoker | 32 | 83 | 0.17 | ||
Smoker | 160 | 181 | |||
ECOG Performance Status | |||||
2−4 | 66 | 74 | <0.01 | 2.22 (1.45–3.38) | <0.01 |
0−1 | 126 | 217 | |||
Histology | |||||
SCLC | 23 | 183 | 0.50 | ||
NSCLC | 169 | 168 | |||
Driver mutations | |||||
Yes | 32 | 140 | 0.81 | ||
No | 160 | 172 | |||
PD-L1 TPS | |||||
<50 | 80 | 171 | <0.01 | 1.68 (1.17–2.42) | <0.01 |
50≤ | 51 | 241 | |||
Preexisting ILD | |||||
Yes | 26 | 126 | 0.19 | ||
No | 166 | 172 | |||
Therapeutic line of ICI | |||||
2nd or later | 79 | 68 | <0.01 | 2.51 (1.66–3.81) | <0.01 |
1st | 113 | 225 | |||
Therapeutic regimen | |||||
IO only (one or two ICIs) | 103 | 88 | 0.12 | ||
IO plus chemotherapy | 89 | 203 | |||
CRP (mg/dL) | |||||
1≤ | 106 | 154 | 0.16 | ||
<1 | 85 | 183 | |||
LDH (U/L) | |||||
220≤ | 77 | 119 | 0.24 | ||
<220 | 28 | 191 | |||
NLR | |||||
5≤ | 72 | 94 | <0.01 | 0.65 (0.42–1.00) | 0.05 |
<5 | 119 | 203 | |||
PNI | |||||
<40 | 79 | 119 | <0.01 | 0.82 (0.53–1.28) | 0.38 |
40≤ | 111 | 205 |
Characteristic | Survival (n = 35) | Death (n = 6) | Univariate Analysis p-Value |
---|---|---|---|
At ICI discontinuation | |||
ICI-ILD pattern, non-OP/OP (n) | 18/17 | 6/0 | 0.03 |
ICI cycle number | 7 ± 6 | 9 ± 8 | 0.80 |
CRP (mg/dL) | 4.6 ± 5.0 | 10.4 ± 5.0 | <0.05 |
LDH (U/L) | 299 ± 214 | 394 ± 151 | 0.25 |
WBC (/microL) | 7623 ± 2935 | 9772 ± 3402 | 0.23 |
Number of lung lobes affected by ICI-ILD | 4 ± 1 | 5 ± 0 | <0.01 |
ICI-ILD grade | 2 ± 1 | 4 ± 1 | <0.01 |
Between ICI initiation and ICI-ILD development | |||
Period (days) | 159 ± 133 | 106 ± 104 | 0.34 |
Between ICI-ILD development and ICI discontinuation | |||
Period (days) | 31 ± 67 | 89 ± 92 | 0.23 |
Additional ICI cycle number | 1 ± 3 | 3 ± 3 | 0.27 |
Change in CRP | 0.01 ± 1.06 | 4.51 ± 3.78 | 0.04 |
Change in LDH | 3 ± 27 | 127 ± 160 | 0.14 |
Change in WBC | 627 ± 2055 | 2588 ± 2432 | 0.14 |
Change in lung lobes affected by ICI-ILD | 0 ± 1 | 2 ± 2 | 0.03 |
Change in ICI-ILD grade | 0 ± 1 | 2 ± 1 | 0.08 |
Patient No. | Patient 1 | Patient 2 | Patient 3 |
---|---|---|---|
Age | 65 | 68 | 81 |
Gender | F | M | M |
Smoking (pack-year) | 0 | 30 | 48 |
Histology | adenocarcinoma | adenocarcinoma | adenocarcinoma |
Clinical stage | cT1bN0M1b (OSS), IVA | cT3N2M1c (ADR, LYM), | cT3N0M1a (PLE), IVA |
IVB | |||
1st line therapy | carboplatin + pemetrexed | carboplatin + pemetrexed+ | pembrolizumab |
pembrolizumab | |||
2nd line therapy | erlotinib | ||
3rd line therapy | pembrolizumab | ||
Days between ILD | 197 | 119 | 211 |
Development and ICI | |||
discontinuation | |||
At ICI-ILD development and at ICI discontinuation | |||
ICI cycle number | 13 and 22 | 4 and 8 | 11 and 17 |
CRP (mg/dL) | 0.13 and 2.92 | 0.15 and 8.49 | 1.1 and 7.76 |
LDH (U/L) | 188 and 215 | 210 and 543 | 214 and 586 |
WBC (/microL) | 4510 and 7180 | 4900 and 10,850 | 4300 and 9910 |
Lobes of ICI-ILD | 2 and 5 | 2 and 5 | 2 and 5 |
ICI-ILD grade | 1 and 2 | 1 and 4 | 1 and 4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kanaji, N.; Watanabe, N.; Inoue, T.; Mizoguchi, H.; Komori, Y.; Ohara, Y.; Kadowaki, N. Immune Checkpoint Inhibitor-Induced Insidiously Progressive, Fatal Interstitial Lung Disease. J. Pers. Med. 2025, 15, 115. https://doi.org/10.3390/jpm15030115
Kanaji N, Watanabe N, Inoue T, Mizoguchi H, Komori Y, Ohara Y, Kadowaki N. Immune Checkpoint Inhibitor-Induced Insidiously Progressive, Fatal Interstitial Lung Disease. Journal of Personalized Medicine. 2025; 15(3):115. https://doi.org/10.3390/jpm15030115
Chicago/Turabian StyleKanaji, Nobuhiro, Naoki Watanabe, Takuya Inoue, Hitoshi Mizoguchi, Yuta Komori, Yasuhiro Ohara, and Norimitsu Kadowaki. 2025. "Immune Checkpoint Inhibitor-Induced Insidiously Progressive, Fatal Interstitial Lung Disease" Journal of Personalized Medicine 15, no. 3: 115. https://doi.org/10.3390/jpm15030115
APA StyleKanaji, N., Watanabe, N., Inoue, T., Mizoguchi, H., Komori, Y., Ohara, Y., & Kadowaki, N. (2025). Immune Checkpoint Inhibitor-Induced Insidiously Progressive, Fatal Interstitial Lung Disease. Journal of Personalized Medicine, 15(3), 115. https://doi.org/10.3390/jpm15030115