Ultrafast Breast MRI: A Narrative Review
Abstract
:1. Introduction
2. Ultrafast Imaging Technique
3. Exam Interpretation
4. Radiomics and Mathematical Model Application
5. UF-DCE MRI and Possible Clinical Applications
6. Ultrafast Breast MRI in the Era of Personalized Medicine
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sardanelli, F.; Boetes, C.; Borisch, B.; Decker, T.; Federico, M.; Gilbert, F.J.; Helbich, T.; Heywang-Köbrunner, S.H.; Kaiser, W.A.; Kerin, M.J.; et al. Magnetic Resonance Imaging of the Breast: Recommendations from the EUSOMA Working Group. Eur. J. Cancer 2010, 46, 1296–1316. [Google Scholar] [CrossRef] [PubMed]
- Kaiser, C.G.; Reich, C.; Dietzel, M.; Baltzer, P.A.T.; Krammer, J.; Wasser, K.; Schoenberg, S.O.; Kaiser, W.A. DCE-MRI of the Breast in a Stand-Alone Setting Outside a Complementary Strategy—Results of the TK-Study. Eur. Radiol. 2015, 25, 1793–1800. [Google Scholar] [CrossRef]
- Bennani-Baiti, B.; Bennani-Baiti, N.; Baltzer, P.A. Diagnostic Performance of Breast Magnetic Resonance Imaging in Non-Calcified Equivocal Breast Findings: Results from a Systematic Review and Meta-Analysis. PLoS ONE 2016, 11, e0160346. [Google Scholar] [CrossRef]
- Kuhl, C.K.; Schild, H.H. Dynamic Image Interpretation of MRI of the Breast. J. Magn. Reson. Imaging 2000, 12, 965–974. [Google Scholar] [CrossRef] [PubMed]
- Pinker-Domenig, K.; Bogner, W.; Gruber, S.; Bickel, H.; Duffy, S.; Schernthaner, M.; Dubsky, P.; Pluschnig, U.; Rudas, M.; Trattnig, S.; et al. High Resolution MRI of the Breast at 3 T: Which BI-RADS® Descriptors Are Most Strongly Associated with the Diagnosis of Breast Cancer? Eur. Radiol. 2012, 22, 322–330. [Google Scholar] [CrossRef]
- Pesapane, F.; Rotili, A.; Raimondi, S.; Aurilio, G.; Lazzeroni, M.; Nicosia, L.; Latronico, A.; Pizzamiglio, M.; Cassano, E.; Gandini, S. Evolving Paradigms in Breast Cancer Screening: Balancing Efficacy, Personalization, and Equity. Eur. J. Radiol. 2024, 172, 111321. [Google Scholar] [CrossRef] [PubMed]
- Kuhl, C.K.; Schrading, S.; Strobel, K.; Schild, H.H.; Hilgers, R.D.; Bieling, H.B. Abbreviated Breast Magnetic Resonance Imaging (MRI): First Postcontrast Subtracted Images and Maximum-Intensity Projection—A Novel Approach to Breast Cancer Screening with MRI. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2014, 32, 2304–2310. [Google Scholar] [CrossRef]
- Panigrahi, B.; Mullen, L.; Falomo, E.; Panigrahi, B.; Harvey, S. An Abbreviated Protocol for High-Risk Screening Breast Magnetic Resonance Imaging: Impact on Performance Metrics and BI-RADS Assessment. Acad. Radiol. 2017, 24, 1132–1138. [Google Scholar] [CrossRef]
- Borthakur, A.; Weinstein, S.P.; Schnall, M.D.; Conant, E.F. Comparison of Study Activity Times for “Full” versus “Fast MRI” for Breast Cancer Screening. J. Am. Coll. Radiol. JACR 2019, 16, 1046–1051. [Google Scholar] [CrossRef]
- Petrillo, A.; Fusco, R.; Sansone, M.; Cerbone, M.; Filice, S.; Porto, A.; Rubulotta, M.R.; D’Aiuto, M.; Avino, F.; Di Bonito, M.; et al. Abbreviated Breast Dynamic Contrast-Enhanced MR Imaging for Lesion Detection and Characterization: The Experience of an Italian Oncologic Center. Breast Cancer Res. Treat. 2017, 164, 401–410. [Google Scholar] [CrossRef]
- Kim, S.Y.; Cho, N.; Hong, H.; Lee, Y.; Yoen, H.; Kim, Y.S.; Park, A.R.; Ha, S.M.; Lee, S.H.; Chang, J.M.; et al. Abbreviated Screening MRI for Women with a History of Breast Cancer: Comparison with Full-Protocol Breast MRI. Radiology 2022, 305, 36–45. [Google Scholar] [CrossRef]
- Pesapane, F.; Battaglia, O.; Rotili, A.; Gnocchi, G.; D’Ecclesiis, O.; Bellerba, F.; Penco, S.; Signorelli, G.; Nicosia, L.; Trentin, C.; et al. Comparative Diagnostic Efficacy of Abbreviated and Full Protocol Breast MRI: A Systematic Review and a Meta-Analysis. Br. J. Radiol. 2024, 97, 1915–1924. [Google Scholar] [CrossRef] [PubMed]
- Baxter, G.C.; Selamoglu, A.; Mackay, J.W.; Bond, S.; Gray, E.; Gilbert, F.J. A Meta-Analysis Comparing the Diagnostic Performance of Abbreviated MRI and a Full Diagnostic Protocol in Breast Cancer. Clin. Radiol. 2021, 76, 154.e23–154.e32. [Google Scholar] [CrossRef]
- Jeong, S.M.; Ha, S.M.; Ahn, H.S.; Woo, S.T.; Sung, J.K.; Shin, H.C. A Preliminary Study of the Combination of Ultrafast and Abbreviated Dynamic Contrast: Enhanced Breast Magnetic Resonance Imaging. Medicine 2020, 99, e23415. [Google Scholar] [CrossRef]
- Pelissier, M.; Ambarki, K.; Salleron, J.; Henrot, P. Maximum Slope Using Ultrafast Breast DCE-MRI at 1.5 Tesla: A Potential Tool for Predicting Breast Lesion Aggressiveness. Eur. Radiol. 2021, 31, 9556–9566. [Google Scholar] [CrossRef] [PubMed]
- Saranathan, M.; Rettmann, D.W.; Hargreaves, B.A.; Clarke, S.E.; Vasanawala, S.S. DIfferential Subsampling with Cartesian Ordering (DISCO): A High Spatio-Temporal Resolution Dixon Imaging Sequence for Multiphasic Contrast Enhanced Abdominal Imaging. J. Magn. Reson. Imaging JMRI 2012, 35, 1484–1492. [Google Scholar] [CrossRef] [PubMed]
- Peter, S.C.; Wenkel, E.; Weiland, E.; Dietzel, M.; Janka, R.; Hartmann, A.; Emons, J.; Uder, M.; Ellmann, S. Combination of an Ultrafast TWIST-VIBE Dixon Sequence Protocol and Diffusion-Weighted Imaging into an Accurate Easily Applicable Classification Tool for Masses in Breast MRI. Eur. Radiol. 2020, 30, 2761–2772. [Google Scholar] [CrossRef]
- Honda, M.; Kataoka, M.; Onishi, N.; Iima, M.; Ohashi, A.; Kanao, S.; Nickel, M.D.; Toi, M.; Togashi, K. New Parameters of Ultrafast Dynamic Contrast-Enhanced Breast MRI Using Compressed Sensing. J. Magn. Reson. Imaging JMRI 2020, 51, 164–174. [Google Scholar] [CrossRef]
- Cao, Y.; Wang, X.; Shi, J.; Zeng, X.; Du, L.; Li, Q.; Nickel, D.; Zhou, X.; Zhang, J. Multiple Parameters from Ultrafast Dynamic Contrast-Enhanced Magnetic Resonance Imaging to Discriminate between Benign and Malignant Breast Lesions: Comparison with Apparent Diffusion Coefficient. Diagn. Interv. Imaging 2023, 104, 275–283. [Google Scholar] [CrossRef]
- Ohashi, A.; Kataoka, M.; Iima, M.; Kanao, S.; Honda, M.; Urushibata, Y.; Nickel, M.D.; Kishimoto, A.O.; Ota, R.; Toi, M.; et al. A Multiparametric Approach to Diagnosing Breast Lesions Using Diffusion-Weighted Imaging and Ultrafast Dynamic Contrast-Enhanced MRI. Magn. Reson. Imaging 2020, 71, 154–160. [Google Scholar] [CrossRef]
- Cao, Y.; Huang, Y.; Chen, X.; Wang, W.; Chen, H.; Yin, T.; Nickel, D.; Li, C.; Shao, J.; Zhang, S.; et al. Optimizing Ultrafast Dynamic Contrast-Enhanced MRI Scan Duration in the Differentiation of Benign and Malignant Breast Lesions. Insights Into Imaging 2024, 15, 112. [Google Scholar] [CrossRef]
- Mann, R.M.; Mus, R.D.; Van Zelst, J.; Geppert, C.; Karssemeijer, N.; Platel, B. A Novel Approach to Contrast-Enhanced Breast Magnetic Resonance Imaging for Screening: High-Resolution Ultrafast Dynamic Imaging. Investig. Radiol. 2014, 49, 579–585. [Google Scholar] [CrossRef] [PubMed]
- Mus, R.D.; Borelli, C.; Bult, P.; Weiland, E.; Karssemeijer, N.; Barentsz, J.O.; Gubern-Mérida, A.; Platel, B.; Mann, R.M. Time to Enhancement Derived from Ultrafast Breast MRI as a Novel Parameter to Discriminate Benign from Malignant Breast Lesions. Eur. J. Radiol. 2017, 89, 90–96. [Google Scholar] [CrossRef] [PubMed]
- Amitai, Y.; Freitas, V.A.R.; Golan, O.; Kessner, R.; Shalmon, T.; Neeman, R.; Mauda-Havakuk, M.; Mercer, D.; Sklair-Levy, M.; Menes, T.S. The Diagnostic Performance of Ultrafast MRI to Differentiate Benign from Malignant Breast Lesions: A Systematic Review and Meta-Analysis. Eur. Radiol. 2024, 34, 6285–6295. [Google Scholar] [CrossRef] [PubMed]
- Onishi, N.; Sadinski, M.; Gibbs, P.; Gallagher, K.M.; Hughes, M.C.; Ko, E.S.; Dashevsky, B.Z.; Shanbhag, D.D.; Fung, M.M.; Hunt, T.M.; et al. Differentiation between Subcentimeter Carcinomas and Benign Lesions Using Kinetic Parameters Derived from Ultrafast Dynamic Contrast-Enhanced Breast MRI. Eur. Radiol. 2020, 30, 756–766. [Google Scholar] [CrossRef]
- Onishi, N.; Kataoka, M.; Kanao, S.; Sagawa, H.; Iima, M.; Nickel, M.D.; Toi, M.; Togashi, K. Ultrafast Dynamic Contrast-Enhanced Mri of the Breast Using Compressed Sensing: Breast Cancer Diagnosis Based on Separate Visualization of Breast Arteries and Veins. J. Magn. Reson. Imaging JMRI 2018, 47, 97–104. [Google Scholar] [CrossRef]
- Pries, A.R.; Höpfner, M.; Le Noble, F.; Dewhirst, M.W.; Secomb, T.W. The Shunt Problem: Control of Functional Shunting in Normal and Tumour Vasculature. Nat. Rev. Cancer 2010, 10, 587–593. [Google Scholar] [CrossRef]
- Jain, R.K. Normalizing Tumor Microenvironment to Treat Cancer: Bench to Bedside to Biomarkers. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2013, 31, 2205–2218. [Google Scholar] [CrossRef]
- Abe, H.; Mori, N.; Tsuchiya, K.; Schacht, D.V.; Pineda, F.D.; Jiang, Y.; Karczmar, G.S. Kinetic Analysis of Benign and Malignant Breast Lesions with Ultrafast Dynamic Contrast-Enhanced MRI: Comparison with Standard Kinetic Assessment. AJR. Am. J. Roentgenol. 2016, 207, 1159–1166. [Google Scholar] [CrossRef]
- Singh, S.; Maxwell, J.; Baker, J.A.; Nicholas, J.L.; Lo, J.Y. Computer-Aided Classification of Breast Masses: Performance and Interobserver Variability of Expert Radiologists versus Residents. Radiology 2011, 258, 73–80. [Google Scholar] [CrossRef]
- Sahiner, B.; Chan, H.P.; Roubidoux, M.A.; Hadjiiski, L.M.; Helvie, M.A.; Paramagul, C.; Bailey, J.; Nees, A.V.; Blane, C. Malignant and Benign Breast Masses on 3D US Volumetric Images: Effect of Computer-Aided Diagnosis on Radiologist Accuracy. Radiology 2007, 242, 716–724. [Google Scholar] [CrossRef] [PubMed]
- Platel, B.; Mus, R.; Welte, T.; Karssemeijer, N.; Mann, R. Automated Characterization of Breast Lesions Imaged with an Ultrafast DCE-MR Protocol. IEEE Trans. Med. Imaging 2014, 33, 225–232. [Google Scholar] [CrossRef] [PubMed]
- Gillies, R.J.; Kinahan, P.E.; Hricak, H. Radiomics: Images Are More than Pictures, They Are Data. Radiology 2016, 278, 563–577. [Google Scholar] [CrossRef]
- Pesapane, F.; Rotili, A.; Agazzi, G.M.; Botta, F.; Raimondi, S.; Penco, S.; Dominelli, V.; Cremonesi, M.; Jereczek-Fossa, B.A.; Carrafiello, G.; et al. Recent Radiomics Advancements in Breast Cancer: Lessons and Pitfalls for the Next Future. Curr. Oncol. 2021, 28, 2351–2372. [Google Scholar] [CrossRef]
- Lyu, Y.; Chen, Y.; Meng, L.; Guo, J.; Zhan, X.; Chen, Z.; Yan, W.; Zhang, Y.; Zhao, X.; Zhang, Y. Combination of Ultrafast Dynamic Contrast-Enhanced MRI-Based Radiomics and Artificial Neural Network in Assessing BI-RADS 4 Breast Lesions: Potential to Avoid Unnecessary Biopsies. Front. Oncol. 2023, 13, 1074060. [Google Scholar] [CrossRef]
- Leithner, D.; Wengert, G.; Helbich, T.; Morris, E.; Pinker, K. MRI in the Assessment of BI-RADS® 4 Lesions. Top. Magn. Reson. Imaging TMRI 2017, 26, 191–199. [Google Scholar] [CrossRef]
- Wu, C.; Pineda, F.; Hormuth, D.A.; Karczmar, G.S.; Yankeelov, T.E. Quantitative Analysis of Vascular Properties Derived from Ultrafast DCE-MRI to Discriminate Malignant and Benign Breast Tumors. Magn. Reson. Med. 2019, 81, 2147–2160. [Google Scholar] [CrossRef]
- Chen, W.; Giger, M.L.; Bick, U. A Fuzzy C-Means (FCM)-Based Approach for Computerized Segmentation of Breast Lesions in Dynamic Contrast-Enhanced MR Images. Acad. Radiol. 2006, 13, 63–72. [Google Scholar] [CrossRef] [PubMed]
- Mori, N.; Abe, H.; Mugikura, S.; Takasawa, C.; Sato, S.; Miyashita, M.; Mori, Y.; Pineda, F.D.; Karczmar, G.S.; Tamura, H.; et al. Ultrafast Dynamic Contrast-Enhanced Breast MRI: Kinetic Curve Assessment Using Empirical Mathematical Model Validated with Histological Microvessel Density. Acad. Radiol. 2019, 26, e141–e149. [Google Scholar] [CrossRef]
- Horak, E.R.; Klenk, N.; Leek, R.; LeJeune, S.; Smith, K.; Stuart, N.; Harris, A.L.; Greenall, M.; Stepniewska, K. Angiogenesis, Assessed by Platelet/Endothelial Cell Adhesion Molecule Antibodies, as Indicator of Node Metastases and Survival in Breast Cancer. Lancet 1992, 340, 1120–1124. [Google Scholar] [CrossRef]
- Uzzan, B.; Nicolas, P.; Cucherat, M.; Perret, G.Y. Microvessel Density as a Prognostic Factor in Women with Breast Cancer: A Systematic Review of the Literature and Meta-Analysis. Cancer Res. 2004, 64, 2941–2955. [Google Scholar] [CrossRef] [PubMed]
- Weidner, N.; Gasparini, G. Determination of Epidermal Growth Factor Receptor Provides Additional Prognostic Information to Measuring Tumor Angiogenesis in Breast Carcinoma Patients. Breast Cancer Res. Treat. 1994, 29, 97–107. [Google Scholar] [CrossRef]
- Toi, M.; Tominaga, T.; Kashitani, J. Tumor Angiogenesis Is an Independent Prognostic Indicator in Primary Breast Carcinoma. Int. J. Cancer 1993, 55, 371–374. [Google Scholar] [CrossRef] [PubMed]
- Weidner, N.; Folkman, J.; Pozza, F.; Bevilacqua, P.; Allred, E.N.; Moore, D.H.; Meli, S.; Gasparini, G. Tumor Angiogenesis: A New Significant and Independent Prognostic Indicator in Early-Stage Breast Carcinoma. J. Natl. Cancer Inst. 1992, 84, 1875–1887. [Google Scholar] [CrossRef]
- Jia, W.R.; Tang, L.; Wang, D.B.; Chai, W.M.; Fei, X.C.; He, J.R.; Chen, M.; Wang, W.P. Three-Dimensional Contrast-Enhanced Ultrasound in Response Assessment for Breast Cancer: A Comparison with Dynamic Contrast-Enhanced Magnetic Resonance Imaging and Pathology. Sci. Rep. 2016, 6, 33832. [Google Scholar] [CrossRef]
- Sherwood, L.M.; Parris, E.E.; Folkman, J. Tumor Angiogenesis: Therapeutic Implications. N. Engl. J. Med. 1971, 285, 1182–1186. [Google Scholar] [CrossRef]
- Folkman, J.; Merler, E.; Abernathy, C.; Williams, G. Isolation of a Tumor Factor Responsible for Angiogenesis. J. Exp. Med. 1971, 133, 275–288. [Google Scholar] [CrossRef]
- Pineda, F.D.; Medved, M.; Wang, S.; Fan, X.; Schacht, D.V.; Sennett, C.; Oto, A.; Newstead, G.M.; Abe, H.; Karczmar, G.S. Ultrafast Bilateral DCE-MRI of the Breast with Conventional Fourier Sampling: Preliminary Evaluation of Semi-Quantitative Analysis. Acad. Radiol. 2016, 23, 1137–1144. [Google Scholar] [CrossRef]
- Kim, E.S.; Cho, N.; Kim, S.Y.; Lee, S.H.; Chang, J.M.; Kim, Y.S.; Ha, S.M.; Moon, W.K. Added Value of Ultrafast Sequence in Abbreviated Breast MRI Surveillance in Women with a Personal History of Breast Cancer: A Multireader Study. Eur. J. Radiol. 2022, 151, 110322. [Google Scholar] [CrossRef]
- Earl, H.; Provenzano, E.; Abraham, J.; Dunn, J.; Vallier, A.L.; Gounaris, I.; Hiller, L. Neoadjuvant Trials in Early Breast Cancer: Pathological Response at Surgery and Correlation to Longer Term Outcomes—What Does It All Mean? BMC Med. 2015, 13, 234. [Google Scholar] [CrossRef]
- Liao, G.J.; Henze Bancroft, L.C.; Strigel, R.M.; Chitalia, R.D.; Kontos, D.; Moy, L.; Partridge, S.C.; Rahbar, H. Background Parenchymal Enhancement on Breast MRI: A Comprehensive Review. J. Magn. Reson. Imaging JMRI 2020, 51, 43–61. [Google Scholar] [CrossRef] [PubMed]
- Ren, Z.; Pineda, F.D.; Howard, F.M.; Fan, X.; Nanda, R.; Abe, H.; Kulkarni, K.; Karczmar, G.S. Bilateral Asymmetry of Quantitative Parenchymal Kinetics at Ultrafast DCE-MRI Predict Response to Neoadjuvant Chemotherapy in Patients with HER2+ Breast Cancer. Magn. Reson. Imaging 2023, 104, 9–15. [Google Scholar] [CrossRef]
- Honda, M.; Kataoka, M.; Iima, M.; Ota, R.; Ohashi, A.; Kishimoto, A.O.; Miyake, K.K.; Nickel, M.D.; Yamada, Y.; Toi, M.; et al. Visual Evaluation of Ultrafast MRI in the Assessment of Residual Breast Cancer after Neoadjuvant Systemic Therapy: A Preliminary Study Association with Subtype. Tomography 2022, 8, 1522–1533. [Google Scholar] [CrossRef]
- Choi, S.E.; Park, A.Y.; Kim, G.I.; Jung, H.K.; Ko, K.H.; Kim, Y. The Kinetic Parameters of Dynamic Contrast-Enhanced MRI with Ultrafast Imaging in Breast Cancer Patients Receiving Neoadjuvant Chemotherapy: Prediction of Pathologic Complete Response and Correlation with Histologic Microvessel Density. Medicine 2025, 104, e40239. [Google Scholar] [CrossRef]
- Hoeben, A.; Joosten, E.A.J.; van den Beuken-Van Everdingen, M.H.J. Personalized Medicine: Recent Progress in Cancer Therapy. Cancers 2021, 13, 242. [Google Scholar] [CrossRef] [PubMed]
- Pesapane, F.; Battaglia, O.; Pellegrino, G.; Mangione, E.; Petitto, S.; Fiol Manna, E.D.; Cazzaniga, L.; Nicosia, L.; Lazzeroni, M.; Corso, G.; et al. Advances in Breast Cancer Risk Modeling: Integrating Clinics, Imaging, Pathology and Artificial Intelligence for Personalized Risk Assessment. Future Oncol. 2023, 19, 2547–2564. [Google Scholar] [CrossRef]
- Li, Z.; Wang, X.; Zhang, H.; Yang, Y.; Zhang, Y.; Zhuang, Y.; Yang, Q.; Gao, E.; Ren, Y.; Zhang, Y.; et al. Positive Progesterone Receptor Expression in Meningioma May Increase the Transverse Relaxation: First Prospective Clinical Trial Using Single-Shot Ultrafast T2 Mapping. Acad. Radiol. 2024, 31, 187–198. [Google Scholar] [CrossRef]
- Pesapane, F.; Suter, M.B.; Rotili, A.; Penco, S.; Nigro, O.; Cremonesi, M.; Bellomi, M.; Jereczek-Fossa, B.A.; Pinotti, G.; Cassano, E. Will Traditional Biopsy Be Substituted by Radiomics and Liquid Biopsy for Breast Cancer Diagnosis and Characterisation? Med. Oncol. 2020, 37, 29. [Google Scholar] [CrossRef] [PubMed]
- Pesapane, F.; De Marco, P.; Rapino, A.; Lombardo, E.; Nicosia, L.; Tantrige, P.; Rotili, A.; Bozzini, A.C.; Penco, S.; Dominelli, V.; et al. How Radiomics Can Improve Breast Cancer Diagnosis and Treatment. J. Clin. Med. 2023, 12, 1372. [Google Scholar] [CrossRef]
- Netti, S.; D’Ecclesiis, O.; Corso, F.; Botta, F.; Origgi, D.; Pesapane, F.; Agazzi, G.M.; Rotili, A.; Gaeta, A.; Scalco, E.; et al. Methodological Issues in Radiomics: Impact on Accuracy of MRI for Predicting Response to Neoadjuvant Chemotherapy in Breast Cancer. Eur. Radiol. 2024. [Google Scholar] [CrossRef]
- Pesapane, F.; Agazzi, G.M.; Rotili, A.; Ferrari, F.; Cardillo, A.; Penco, S.; Dominelli, V.; D’Ecclesiis, O.; Vignati, S.; Raimondi, S.; et al. Prediction of the Pathological Response to Neoadjuvant Chemotherapy in Breast Cancer Patients with MRI-Radiomics: A Systematic Review and Meta-Analysis. Curr. Probl. Cancer 2022, 46, 100883. [Google Scholar] [CrossRef] [PubMed]
- Rossi, E.M.C.; Invento, A.; Pesapane, F.; Pagan, E.; Bagnardi, V.; Fusco, N.; Venetis, K.; Dominelli, V.; Trentin, C.; Cassano, E.; et al. Diagnostic Performance of Image-Guided Vacuum-Assisted Breast Biopsy after Neoadjuvant Therapy for Breast Cancer: Prospective Pilot Study. Br. J. Surg. 2023, 110, 217–224. [Google Scholar] [CrossRef] [PubMed]
- Kuhl, C.K. Breast MR Imaging at 3T. Magn. Reson. Imaging Clin. North Am. 2007, 15, 315–320. [Google Scholar] [CrossRef] [PubMed]
- Elezaby, M.; Li, G.; Bhargavan-Chatfield, M.; Burnside, E.S.; Demartini, W.B. ACR BI-RADS Assessment Category 4 Subdivisions in Diagnostic Mammography: Utilization and Outcomes in the National Mammography Database. Radiology 2018, 287, 416–422. [Google Scholar] [CrossRef]
Ultrafast Imaging Technique/Parameter | TWIST-VIBE | CS-VIBE | DISCO | TVD | KWIC |
---|---|---|---|---|---|
Acquisition time (s) | 78 | 75 | 60 | 98 | 60 |
TR/TE (ms) | 6.89/2.4 | 5/2.5 | 3.8/1.7 | 5.64/2.46 | 3.57/1.68 |
Voxel size (mm) | 1.38 × 1.17 × 2 | N/A | N/A | 0.9 × 0.9 × 2.5 | N/A |
FoV (mm) | 375 × 300 | 360 × 360 | 212 × 212 | 360 × 360 | 333 × 330 |
Flip angle (°) | 15 | 15 | 10 | 15 | 15 |
Slice thickness (mm) | 2 | 2.5 | 1.6 | 2.5 | 2.5 |
Fat suppression method | TWIST-VIBE with Dixon fat suppression | VIBE with fat suppression | N/A | Dixon fat–water separation | VIBE with fat suppression |
No. of slices | 72 | 60 | N/A | 60 | 60 |
Parameter | Details | Unit of Measurement |
---|---|---|
MS (Maximum Slope) | The relative enhancement percentage change of the tangent along the steepest part of the enhancing curve within the first minute divided by seconds. | %/s |
TTE (Time to Enhancement) | The time point at which the lesion starts to enhance minus the time point where the aorta starts to enhance. | s |
BAT (Bolus Arrival Time) | The time from the start of contrast injection to tracer bolus arrival at a lesion. | s |
IAUGC (Initial Area Under the Gadolinium Contrast-Agent Concentration–Time curve) | The area under the tissue concentration curve from BAT to 60 s from the start of contrast injection divided by the area under the arterial input function concentration curve from BAT to 60 s from the start of contrast injection. | mmol/s |
A-V interval (Time Interval between Arterial and Venous Visualization) | Time interval between arterial and venous visualization. | s |
SER (Signal Enhancement Ratio) | (S1 − S0)/(S2 − S0), where S0 is the signal intensity pre-contrast, S1 is the signal intensity at early post-contrast and S2 is the signal intensity at late post-contrast. | s |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Battaglia, O.; Pesapane, F.; Penco, S.; Signorelli, G.; Dominelli, V.; Nicosia, L.; Bozzini, A.C.; Rotili, A.; Cassano, E. Ultrafast Breast MRI: A Narrative Review. J. Pers. Med. 2025, 15, 142. https://doi.org/10.3390/jpm15040142
Battaglia O, Pesapane F, Penco S, Signorelli G, Dominelli V, Nicosia L, Bozzini AC, Rotili A, Cassano E. Ultrafast Breast MRI: A Narrative Review. Journal of Personalized Medicine. 2025; 15(4):142. https://doi.org/10.3390/jpm15040142
Chicago/Turabian StyleBattaglia, Ottavia, Filippo Pesapane, Silvia Penco, Giulia Signorelli, Valeria Dominelli, Luca Nicosia, Anna Carla Bozzini, Anna Rotili, and Enrico Cassano. 2025. "Ultrafast Breast MRI: A Narrative Review" Journal of Personalized Medicine 15, no. 4: 142. https://doi.org/10.3390/jpm15040142
APA StyleBattaglia, O., Pesapane, F., Penco, S., Signorelli, G., Dominelli, V., Nicosia, L., Bozzini, A. C., Rotili, A., & Cassano, E. (2025). Ultrafast Breast MRI: A Narrative Review. Journal of Personalized Medicine, 15(4), 142. https://doi.org/10.3390/jpm15040142