Poly-4-Hydroxybutyrate as a Novel Biomaterial in Personalized Breast Surgery: A Systematic Review and Meta-Analysis
Abstract
1. Introduction
2. Materials and Methods
2.1. Literature Search
2.2. Types of Studies
2.3. Variables of Interest
2.4. Statistical Analysis
2.5. Risk of Bias and Quality Assessment
3. Results
3.1. Included Studies
3.2. Breast Reconstruction Outcomes
3.3. Breast Reconstruction Complications
3.4. Aesthetic Surgery Outcomes
3.5. Aesthetic Surgery Complications
3.6. Quality Assessment
4. Discussion
4.1. Limitations
4.2. Future Directions
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
P4HB | poly-4-hydroxybutyrate |
ADMs | acellular dermal matrices |
IMF | inframammary fold |
OR | odds ratio |
IQR | interquartile range |
BMI | Body Mass Index |
RTOR | return to the operating room |
MQAT | Methodological Quality Assessment Tool |
Q3 | upper quartile |
ROBINS-I | Risk Of Bias In Non-randomized Studies-of Interventions |
OCEBM | Oxford Centre for Evidence-Based Medicine |
N-IMF | nipple-to- inframammary fold distance |
SN-N | sternal notch to the nipple |
References
- Buccheri, E.M.; Lanzano, G.; Villanucci, A.; Mallucci, P.; Bistoni, G.; Hamdi, M. Long-Term Efficacy and Safety of Poly-4-Hydroxybutyrate (P4HB) Scaffold (GalaFLEX) in Mastopexy for Breast Ptosis: A Prospective Study. Aesthetic Plast. Surg. 2025, 49, 4013–4022. [Google Scholar] [CrossRef]
- Williams, S.F.; Martin, D.P.; Moses, A.C. The History of GalaFLEX P4HB Scaffold. Aesthetic Surg. J. 2016, 36 (Suppl. S2), S33–S42. [Google Scholar] [CrossRef]
- Escandón, J.M.; Sweitzer, K.; Christiano, J.G.; Gooch, J.C.; Olzinski, A.T.; Prieto, P.A.; Skinner, K.A.; Langstein, H.N.; Manrique, O.J. Subpectoral versus Prepectoral Two-Stage Breast Reconstruction: A Propensity Score-Matched Analysis of 30-Day Morbidity and Long-Term Outcomes. J. Plast. Reconstr. Aesthet. Surg. 2023, 76, 76–87. [Google Scholar] [CrossRef] [PubMed]
- Escandón, J.M.; Weiss, A.; Christiano, J.G.; Langstein, H.N.; Escandón, L.; Prieto, P.A.; Gooch, J.C.; Manrique, O.J. Prepectoral versus Subpectoral Two-Stage Implant-Based Breast Reconstruction: U.S. Medical Center Experience and Narrative Review. Ann. Transl. Med. 2023, 11, 411. [Google Scholar] [CrossRef]
- Breuing, K.H.; Warren, S.M. Immediate Bilateral Breast Reconstruction with Implants and Inferolateral AlloDerm Slings. Ann. Plast. Surg. 2005, 55, 232–239. [Google Scholar] [CrossRef]
- Dieterich, M.; Dieterich, H.; Timme, S.; Reimer, T.; Gerber, B.; Stubert, J. Using a Titanium-Coated Polypropylene Mesh (TiLOOP® Bra) for Implant-Based Breast Reconstruction: Case Report and Histological Analysis. Arch. Gynecol. Obstet. 2012, 286, 273–276. [Google Scholar] [CrossRef]
- Liu, J.; Hou, J.; Li, Z.; Wang, B.; Sun, J. Efficacy of Acellular Dermal Matrix in Capsular Contracture of Implant-Based Breast Reconstruction: A Single-Arm Meta-Analysis. Aesthetic Plast. Surg. 2020, 44, 735–742. [Google Scholar] [CrossRef]
- Buccheri, E.M.; Villanucci, A.; Mallucci, P.; Bistoni, G.; de Vita, R. Synthetic Reabsorbable Mesh (GalaFLEX) as Soft Tissue Adjunct in Breast Augmentation Revision Surgery. Aesthetic Surg. J. 2023, 43, 559–566. [Google Scholar] [CrossRef] [PubMed]
- Faulkner, H.R.; Shikowitz-Behr, L.; McLeod, M.; Wright, E.; Hulsen, J.; Austen, W.G.J. The Use of Absorbable Mesh in Implant-Based Breast Reconstruction: A 7-Year Review. Plast. Reconstr. Surg. 2020, 146, 731e–736e. [Google Scholar] [CrossRef]
- Koo, M.Y.; Lee, S.K.; Hur, S.M.; Bae, S.Y.; Choi, M.-Y.; Cho, D.H.; Kim, S.; Choe, J.-H.; Kim, J.-H.; Kim, J.S.; et al. Results from over One Year of Follow-up for Absorbable Mesh Insertion in Partial Mastectomy. Yonsei Med. J. 2011, 52, 803–808. [Google Scholar] [CrossRef] [PubMed]
- Dixon, J.M.; Arnott, I.; Schaverien, M. Chronic Abscess Formation Following Mesh Mastopexy: Case Report. J. Plast. Reconstr. Aesthet. Surg. 2010, 63, 1220–1222. [Google Scholar] [CrossRef]
- Sigalove, S.; O’Rorke, E.; Maxwell, G.P.; Gabriel, A. Evaluation of the Safety of a GalaFLEX-AlloDerm Construct in Prepectoral Breast Reconstruction. Plast. Reconstr. Surg. 2022, 150, 75S–81S. [Google Scholar] [CrossRef]
- Cho, J.S.; Shin, S.H.; Park, J.Y.; Song, Y.J.; Yi, J.M.; Park, M.H.; Yoon, J.H.; Jegal, Y.J.; Yi, J.S.; An, S.J.; et al. Analysis of Infections Occurring in Breast Cancer Patients after Breast Conserving Surgery Using Mesh. J. Breast Cancer 2011, 14, 328–332. [Google Scholar] [CrossRef]
- Ho, G.; Nguyen, T.J.; Shahabi, A.; Hwang, B.H.; Chan, L.S.; Wong, A.K. A Systematic Review and Meta-Analysis of Complications Associated with Acellular Dermal Matrix-Assisted Breast Reconstruction. Ann. Plast. Surg. 2012, 68, 346–356. [Google Scholar] [CrossRef]
- Colwell, A.S.; Damjanovic, B.; Zahedi, B.; Medford-Davis, L.; Hertl, C.; Austen, W.G.J. Retrospective Review of 331 Consecutive Immediate Single-Stage Implant Reconstructions with Acellular Dermal Matrix: Indications, Complications, Trends, and Costs. Plast. Reconstr. Surg. 2011, 128, 1170–1178. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, M.L.; Black, G.G.; Bernstein, J.L.; Chinta, M.; Otterburn, D.M. Timeline and Incidence of Postoperative Complications in Prepectoral, Dual-Plane, and Total Submuscular Alloplastic Reconstruction with and Without Biosynthetic Scaffold Usage. Ann. Plast. Surg. 2023, 90 (Suppl. S5), S466–S471. [Google Scholar] [CrossRef]
- Movassaghi, K.; Gilson, A.; Stewart, C.N.; Cusic, J.; Movassaghi, A. Prepectoral Two-Stage Implant-Based Breast Reconstruction with Poly-4-Hydroxybutyrate for Pocket Control without the Use of Acellular Dermal Matrix: A 4-Year Review. Plast. Reconstr. Surg. 2024, 154, 15–24. [Google Scholar] [CrossRef] [PubMed]
- Nair, N.M.; Mills, D.C. Poly-4-Hydroxybutyrate (P4HB) Scaffold Internal Support: Preliminary Experience with Direct Implant Opposition During Complex Breast Revisions. Aesthetic Surg. J. 2019, 39, 1203–1213. [Google Scholar] [CrossRef] [PubMed]
- Shamseer, L.; Moher, D.; Clarke, M.; Ghersi, D.; Liberati, A.; Petticrew, M.; Shekelle, P.; Stewart, L.A.; Altman, D.G.; Booth, A.; et al. Preferred Reporting Items for Systematic Review and Meta-Analysis Protocols (Prisma-p) 2015: Elaboration and Explanation. BMJ 2015, 349, g7647. [Google Scholar] [CrossRef] [PubMed]
- Moher, D.; Shamseer, L.; Clarke, M.; Ghersi, D.; Liberati, A.; Petticrew, M.; Shekelle, P.; Stewart, L.A.; Estarli, M.; Barrera, E.S.A.; et al. Preferred Reporting Items for Systematic Review and Meta-Analysis Protocols (PRISMA-P) 2015 Statement. Syst. Rev. 2016, 4, 1. [Google Scholar] [CrossRef]
- Inthout, J.; Ioannidis, J.P.; Borm, G.F. The Hartung-Knapp-Sidik-Jonkman Method for Random Effects Meta-Analysis Is Straightforward and Considerably Outperforms the Standard DerSimonian-Laird Method. BMC Med. Res. Methodol. 2014, 14, 25. [Google Scholar] [CrossRef] [PubMed]
- Higgins, J.P.T.; Green, S. (Eds.) Cochrane Handbook for Systematic Reviews of Interventions Version 5.1.0; The Cochrane Collaboration: London, UK, 2011. [Google Scholar]
- Deeks, J.; Higgins, J.; Altman, D. Chapter 9: Analysing Data and Undertaking Meta-Analyses. In Cochrane Handbook for Systematic Reviews of Interventions Version 5.1.0; Higgins, J.P.T., Green, S., Eds.; The Cochrane Collaboration: London, UK, 2011. [Google Scholar]
- Egger, M.; Smith, G.D.; Schneider, M.; Minder, C. Bias in Meta-Analysis Detected by a Simple, Graphical Test. Br. Med. J. 1997, 315, 629–634. [Google Scholar] [CrossRef]
- Sterne, J.A.; Hernán, M.A.; Reeves, B.C.; Savović, J.; Berkman, N.D.; Viswanathan, M.; Henry, D.; Altman, D.G.; Ansari, M.T.; Boutron, I.; et al. ROBINS-I: A Tool for Assessing Risk of Bias in Non-Randomised Studies of Interventions. BMJ 2016, 355, i4919. [Google Scholar] [CrossRef]
- Murad, M.H.; Sultan, S.; Haffar, S.; Bazerbachi, F. Methodological Quality and Synthesis of Case Series and Case Reports. BMJ Evid.-Based Med. 2018, 23, 60–63. [Google Scholar] [CrossRef]
- Oxford Centre for Evidence-based Medicine (OCEBM) Levels of Evidence Working Group; Durieux, N.; Pasleau, F.; Howick, J. The Oxford 2011 Levels of Evidence. Group 2011. Available online: http://www.cebm.net/index.aspx?o=5653 (accessed on 22 May 2025).
- Karp, N.; Sorenson, T.J.; Boyd, C.J.; Hemal, K.; Lin, A.; Robinson, I.S.; Choi, M. The GalaFLEX “Empanada” for Direct-to-Implant Prepectoral Breast Reconstruction. Plast. Reconstr. Surg. 2025, 155, 488e–491e. [Google Scholar] [CrossRef]
- Diffley, M.; Tang, A.; Sawar, K.; Al-Saghir, T.; Gonte, M.R.; Hall, J.; Tepper, D.; Darian, V.; Evangelista, M.; Atisha, D. Comparative Postoperative Complications of Acellular Dermal Matrix and Mesh Use in Prepectoral and Subpectoral One-Stage Direct to Implant Reconstruction: A Retrospective Cohort Study. Ann. Plast. Surg. 2025, 94, 521–527. [Google Scholar] [CrossRef] [PubMed]
- Adams, W.P.J.; Baxter, R.; Glicksman, C.; Mast, B.A.; Tantillo, M.; Van Natta, B.W. The Use of Poly-4-Hydroxybutyrate (P4HB) Scaffold in the Ptotic Breast: A Multicenter Clinical Study. Aesthetic Surg. J. 2018, 38, 502–518. [Google Scholar] [CrossRef]
- Tomouk, T.; Georgeu, G. Use of a Biological Scaffold in the Cleavage Area in Complex Revision Breast Augmentation: A Surgical Technique and Case Series. J. Plast. Reconstr. Aesthet. Surg. 2023, 78, 75–81. [Google Scholar] [CrossRef] [PubMed]
- Bistoni, G.; Sofo, F.; Cagli, B.; Buccheri, E.M.; Mallucci, P. Artificial Intelligence, Genuine Outcome: Analysis of 72 Consecutive Cases of Subfascial Augmentation Mastopexy with Smooth Round Implants Supported by P4HB Scaffold. Aesthetic Surg. J. 2024, 44, 1154–1166. [Google Scholar] [CrossRef]
- Sinclair, N.R.; Adams, W.P.J. Long-Term Outcomes of Poly-4-Hydroxybutyrate (P4HB) in Aesthetic Breast Surgery. Aesthetic Surg. J. 2024, 44, 1293–1299. [Google Scholar] [CrossRef] [PubMed]
- Cagli, B.; Gratteri, M.; Cimmino, A.A.; Sofo, F.; Mirra, C.; Savani, L.; Vignapiano, I.; Cogliandro, A.; Marangi, G.F.; Persichetti, P. Innovative Application of GalaFLEX Poly-4-Hydroxybutyrate Scaffold in Breast Reduction/Mastopexy with Inferiorly Based Dermo-Adipose Flap. Plast. Reconstr. Surg.-Glob. Open 2024, 12, e5676. [Google Scholar] [CrossRef] [PubMed]
- Martin, D.P.; Badhwar, A.; Shah, D.V.; Rizk, S.; Eldridge, S.N.; Gagne, D.H.; Ganatra, A.; Darois, R.E.; Williams, S.F.; Tai, H.-C.; et al. Characterization of Poly-4-Hydroxybutyrate Mesh for Hernia Repair Applications. J. Surg. Res. 2013, 184, 766–773. [Google Scholar] [CrossRef]
- Mallucci, P.; Bistoni, G. Experience and Indications for the Use of the P4HB Scaffold (GalaFLEX) in Aesthetic Breast Surgery: A 100-Case Experience. Aesthetic Surg. J. 2022, 42, 1394–1405. [Google Scholar] [CrossRef]
- Deeken, C.R.; Matthews, B.D. Characterization of the Mechanical Strength, Resorption Properties, and Histologic Characteristics of a Fully Absorbable Material (Poly-4-Hydroxybutyrate-PHASIX Mesh) in a Porcine Model of Hernia Repair. ISRN Surg. 2013, 2013, 238067. [Google Scholar] [CrossRef]
- Williams, S.F.; Rizk, S.; Martin, D.P. Poly-4-Hydroxybutyrate (P4HB): A New Generation of Resorbable Medical Devices for Tissue Repair and Regeneration. Biomed. Tech. 2013, 58, 439–452. [Google Scholar] [CrossRef]
- Pineda Molina, C.; Hussey, G.S.; Liu, A.; Eriksson, J.; D’Angelo, W.A.; Badylak, S.F. Role of 4-Hydroxybutyrate in Increased Resistance to Surgical Site Infections Associated with Surgical Meshes. Biomaterials 2021, 267, 120493. [Google Scholar] [CrossRef]
- Escandón, J.M.; Christiano, J.G.; Gooch, J.C.; Olzinski, A.T.; Prieto, P.A.; Skinner, K.A.; Langstein, H.N.; Manrique, O.J. Two-Stage Implant-Based Breast Reconstruction Using Intraoperative Fluorescence Imaging: A Propensity Score-Matched Analysis. Plast. Reconstr. Surg. 2024, 153, 291–303. [Google Scholar] [CrossRef]
- Escandón, J.M.; Butterfield, J.A.; Christiano, J.G.; Gooch, J.C.; Olzinski, A.T.; Prieto, P.A.; Skinner, K.A.; Langstein, H.N.; Manrique, O.J. Wise-Pattern versus Transverse Pattern Mastectomy in Two-Stage Implant-Based Breast Reconstruction: A Propensity Score-Matched Analysis. Plast. Reconstr. Surg. 2023, 152, 69S–80S. [Google Scholar] [CrossRef]
- Logan Ellis, H.; Asaolu, O.; Nebo, V.; Kasem, A. Biological and Synthetic Mesh Use in Breast Reconstructive Surgery: A Literature Review. World J. Surg. Oncol. 2016, 14, 121. [Google Scholar] [CrossRef] [PubMed]
- Pal, A. Logistic Regression: A Simple Primer. Cancer Res. Stat. Treat. 2021, 4, 551–554. [Google Scholar] [CrossRef]
- Mills, C.D.; Kincaid, K.; Alt, J.M.; Heilman, M.J.; Hill, A.M. M-1/M-2 Macrophages and the Th1/Th2 Paradigm. J. Immunol. 2000, 164, 6166–6173. [Google Scholar] [CrossRef] [PubMed]
- Guilliams, M.; van de Laar, L. A Hitchhiker’s Guide to Myeloid Cell Subsets: Practical Implementation of a Novel Mononuclear Phagocyte Classification System. Front. Immunol. 2015, 6, 406. [Google Scholar] [CrossRef] [PubMed]
- Pineda Molina, C.; Giglio, R.; Gandhi, R.M.; Sicari, B.M.; Londono, R.; Hussey, G.S.; Bartolacci, J.G.; Quijano Luque, L.M.; Cramer, M.C.; Dziki, J.L.; et al. Comparison of the Host Macrophage Response to Synthetic and Biologic Surgical Meshes Used for Ventral Hernia Repair. J. Immunol. Regen. Med. 2019, 3, 13–25. [Google Scholar] [CrossRef]
- Spear, S.L.; Sinkin, J.C.; Al-Attar, A. Porcine Acellular Dermal Matrix (Strattice) in Primary and Revision Cosmetic Breast Surgery. Plast. Reconstr. Surg. 2013, 131, 1140–1148. [Google Scholar] [CrossRef]
- Adams, W.P.J.; Toriumi, D.M.; Van Natta, B.W. Clinical Use of GalaFLEX in Facial and Breast Cosmetic Plastic Surgery. Aesthetic Surg. J. 2016, 36 (Suppl. S2), S23–S32. [Google Scholar] [CrossRef]
- Amro, C.; Sorenson, T.J.; Boyd, C.J.; Hemal, K.; Vernice, N.A.; Park, J.J.; Cohen, O.D.; Choi, M.; Karp, N.S. The Evolution of Implant-Based Breast Reconstruction: Innovations, Trends, and Future Directions. J. Clin. Med. 2024, 13, 7407. [Google Scholar] [CrossRef]
Study | Patients | Breasts | Mesh | Age | BMI | Smokers | Diabetes | HTN | Follow up (Mo.) | Neo Ch | Preop Radiation | Adj Ch | Adj Radiation |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Sigalove et al., 2022 [12] | 135 | 250 | P4HB + AlloDerm | 53.7 ± 12 | 27.5 ± 6.5 | 1 (0.7%) | 26 (19.3%) | 30 (22.2%) | 15 ± 7.8 | 23 (17%) | 4 (1.6%) | 6 (4.4%) | 19 (7.6%) |
128 | 249 | AlloDerm Alone | 51.2 ± 12.7 | 29.9 ± 7.4 | 5 (3.9%) | 28 (21.9%) | 33 (25.8%) | 41.9 ± 12 | 36 (28.1%) | 4 (1.6%) | 2 (1.6%) | 16 (6.4%) | |
Chen et al., 2023 [16] | 220 | 161 | No Mesh † | 49.5 ± 11.4 | 24.0 ± 5.14 | 48 (29.8%) | 6 (3.7%) | N/A | N/A | N/A | N/A | N/A | 14 (8.7%) |
122 | ADM | 46.8 ± 11.5 | 22.3 ± 3.30 | 28 (23.0%) | 3 (2.5%) | N/A | N/A | N/A | N/A | N/A | 20 (16.4%) | ||
96 | P4HB | 50.9 ± 11.9 | 23.9 ± 6.80 | 27 (28.1%) | 1 (1.0%) | N/A | N/A | N/A | N/A | N/A | 11 (11.5%) | ||
14 | No Mesh ∆ | 42.4 ± 12.4 | 24.4 ± 7.76 | 3 (21.4%) | 1 (7.1%) | N/A | N/A | N/A | N/A | N/A | 1 (7.1%) | ||
Movassaghi et al., 2024 [17] | 105 | 194 | P4HB | 48.5 (28–77) | 27.5 (18.3–44) | 4 (3.8%) | 8 (7.6%) | 21 (20%) | 24.6 (9.24–41.04) | 23 (21.9%) | 6 (3.1%) | 19 (18.1%) | 22 (11.3%) |
Karp et al., 2025 [28] | 42 | 75 | P4HB | 53 ± 12 | 24 ± 5 | 5 (12%) | N/A | N/A | 2.83 (0.25–15.6) | N/A | N/A | N/A | N/A |
Diffley et al., 2025 [29] | 72 | 122 | AlloDerm™ | 51.4 ± 11.2 | 28.5 ± 6.5 | 4 (5.6%) | 12 (16.7%) | N/A | 18.3 ± 13.7 | 17 (13.9%) | 11 (9.0%) | 26 (21.3%) | 11 (9.0%) |
114 | 192 | FlexHD® | 51.1 ± 12.7 | 27.6 ± 6.9 | 6 (5.3%) | 9 (7.89%) | N/A | 9.2 ± 8.1 | 46 (24.0%) | 18 (9.4%) | 53 (27.6%) | 18 (9.4%) | |
15 | 22 | DermACELL | 56.5 ± 12.3 | 26.8 ± 4.9 | 2 (13.3%) | 2 (13.3%) | N/A | 15.7 ± 12.2 | 3 (13.6%) | 0 (0.0%) | 1 (4.5%) | 0 (0.0%) | |
12 | 21 | P4HB | 44.8 ± 9.1 | 29.8 ± 4.9 | 1 (8.3%) | 2 (16.7%) | N/A | 14.8 ± 9.03 | 10 (47.6%) | 3 (14.3%) | 5 (23.8%) | 3 (14.3%) | |
12 | 22 | Meso BioMatrix | 54.3 ± 11.2 | 28.8 ± 4 | 1 (8.3%) | 0 (0.0%) | N/A | 8.3 ± 5.6 | 1 (4.5%) | 4 (18.2%) | 5 (22.7%) | 4 (18.2%) | |
17 | 25 | Autologous Dermal Flap | 51.1 ± 12.8 | 32.2 ± 7.2 | 0 (0.0%) | 1 (5.9%) | N/A | 9.9 ± 8.2 | 8 (32.0%) | 5 (20.0%) | 10 (40.0%) | 5 (20.0%) |
Study | Patients | Mesh | Age | BMI | Smokers | Diabetes | HTN | Follow Up (Mo.) |
---|---|---|---|---|---|---|---|---|
Adams, Baxter, et al., 2018 [30] | 62 | P4HB | 42.4 ± 9.4 | 24.7 ± 2.9 | 0 (0%) | 0 (0%) | 3 (4.8%) | N/A |
Nair & Mills, 2019 [18] | 5 | P4HB | 46.2 ± 12.44 | 22.4 ± 2.83 | N/A | N/A | N/A | 15.3 ± 6.6 |
Buccheri et al., 2023 [8] | 34 | P4HB | 38.2 ± 10.44 | 23.4 ± 2.83 | N/A | N/A | N/A | 12 (6–28) |
Tomouk & Georgeu, 2023 [31] | 6 | P4HB | 44.6 (32–68) | N/A | N/A | N/A | N/A | 36–60 |
Bistoni et al., 2024 * [32] | 72 | P4HB | 35.6 (18–59) | 22.3 (18–33) | 8 (11.1%) | N/A | N/A | 24.8 (12–45) |
Sinclair & Adams, 2024 [33] | 248 | P4HB | 38.2 | N/A | N/A | N/A | N/A | 34.8 (12–111.6) |
Buccheri et al., 2025 * [1] | 30 | P4HB | 32.17 ± 3.24 | 23.233 ± 2.002 | 7 (23.3%) | 0 (0%) | N/A | 12 |
30 | No Mesh | 32.2 ± 3.691 | 22.647 ± 2.224 | 5 (16.6%) | 1 (3.3%) | N/A | 12 | |
Cagli et al., 2024 [34] | 5 | P4HB | N/A | N/A | N/A | N/A | N/A | N/A |
10 | No Mesh | N/A | N/A | N/A | N/A | N/A | N/A |
Study | Patients | Breasts | Mesh | Laterality | Technique | Incision Pattern | Plane | Final Implant Size (cc) | Surgical Time (min) |
---|---|---|---|---|---|---|---|---|---|
Sigalove et al., 2022 [12] | 135 | 250 | P4HB + AlloDerm | Bilateral: 115 (85.2%) Unilateral: 20 (14.8%) | Two-stage § | N/A | Pre-pectoral | N/A | N/A |
128 | 249 | AlloDerm Alone | Bilateral: 121 (94.5%) Unilateral: 7 (5.5%) | N/A | Pre-pectoral | N/A | N/A | ||
Chen et al., 2023 [16] | 220 | 161 | No Mesh | N/A | Two-stage | N/A | Prepectoral | N/A | N/A |
122 | ADM | N/A | N/A | Dual-Plane ADM | N/A | N/A | |||
96 | P4HB | N/A | N/A | Dual-Plane P4HB | N/A | N/A | |||
14 | No Mesh | N/A | N/A | Total Submuscular | N/A | N/A | |||
Movassaghi et al., 2024 [17] | 105 | 194 | P4HB | Bilateral 89 (84.7%) Unilateral 16 (15.2%) | Two-stage § | Inferolateral for non-ptotic Mastopexy for ptotic | Pre-pectoral | 573 ± 153.4 | 75 † 105 ∆ |
Karp et al., 2025 [28] | 42 | 75 | P4HB | N/A | Direct-to-implant § | N/A | Pre-pectoral | N/A | N/A |
Diffley et al. 2025 [29] | 72 | 122 | AlloDerm™ | Bilateral: 50 (69.4%) Unilateral: 22 (30.6%) | Direct-to-implant § | N/A | Prepectoral: 80 (65.6%) Subpectoral: 42 (34.4%) | N/A | N/A |
114 | 192 | FlexHD® | Bilateral: 78 (68.4%) Unilateral: 36 (31.6%) | N/A | Prepectoral: 180 (93.8%) Subpectoral: 12 (6.3%) | N/A | N/A | ||
15 | 22 | DermACELL | Bilateral: 6 (40.0%) Unilateral: 9 (60.0%) | N/A | Prepectoral: 9 (40.9%) Subpectoral: 13 (59.1%) | N/A | N/A | ||
12 | 21 | P4HB | Bilateral: 9 (75.0%) Unilateral: 3 (25.0%) | N/A | Prepectoral: 20 (95.2%) Subpectoral: 1 (4.8%) | N/A | N/A | ||
12 | 22 | Meso BioMatrix® | Bilateral: 10 (83.3%) Unilateral: 2 (16.7%) | N/A | Prepectoral: 20 (90.9%) Subpectoral: 2 (9.1%) | N/A | N/A | ||
17 | 25 | Autologous Dermal Flap | Bilateral: 6 (35.3%) Unilateral: 11 (64.7%) | N/A | Prepectoral: 15 (60.0%) Subpectoral: 10 (40.0%) | N/A | N/A |
Study | Patients | Mesh | Indication | Specimen Weight (gr) | Technique | Implant Plane | Final implant Size (cc) | Surgical Time (min) | Pedicle |
---|---|---|---|---|---|---|---|---|---|
Adams, Baxter, et al., 2018 [30] | 62 | P4HB | Breast ptosis | R/: 122.1 ± 110.4 (n = 31) L/: 131.5 ± 107.8 (n = 34) | Breast Reduction Mastopexy | N/A | N/A | N/A | Superior: 8 (12.9%) Inferior: 39 (62.9%) Central: 21 (33.9%) Other: 2 (3.2%) |
Nair & Mills, 2019 [18] | 5 | P4HB | Capsular contracture: 5 (100%) Implant ripping: 1 (20%) | N/A | Capsulectomy: 3 (60%) Capsulotomy: 1 (20%) Capsulorrhaphy: 1 (20%) | Subpectoral: 4 (80%) Subglandular: 1 (20%) | 540 ± 157 | N/A | N/A |
Buccheri et al., 2023 [8] | 34 | P4HB | Breast Augmentation Revision | N/A | Capsulectomy with mastopexy: 12 (35.3%) Capsulectomy w/o mastopexy: 22 (64.7%) | Subglandular | 345 (325–440) | 160 (140–180) | N/A |
Tomouk and Georgeu, 2023 [31] | 6 | P4HB | Breast Augmentation Revision | N/A | Capsulectomy with mastopexy: 4 (66.6%) Capsulectomy w/o mastopexy: 2 (33.33%) | Subglandular | 244 (170–320) | N/A | N/A |
Bistoni et al., 2024 [32] | 72 | P4HB | Breast Augmentation | 286.4 (70–653) | Augmentation Mastopexy - Primary: 46 - Secondary: 26 | Subfascial | 294 (175–510) | N/A | N/A |
Sinclair & Adams, 2024 [33] | 248 | P4HB | Breast ptosis: 167 (68.2%) Capsular contracture: 30 (12.2%) Implant malposition: 29 (11.8%) Hypomastia: 10 (4.1%) Macromastia: 12 (4.9%) | N/A | Mastopexy: 88 (35.5%) Augmentation-mastopexy: 82 (33.1%) Implant exch. with site change: 30 (12.1%) Neosubpectoral pocket creation: 17 (6.9%) Capsulorrhaphy: 12 (4.8%) Breast reduction: 10 (4.0%) Implant exch. with capsulectomy: 7 (2.8%) Primary breast augmentation: 2 (0.8%) | N/A | N/A | N/A | N/A |
Buccheri et al., 2025 [1] | 30 | P4HB | Regnault grade III breast ptosis | N/A | Mastopexy § | N/A | N/A | 121.5 ± 9.2 | Inferior pedicle (Dermo-adipose) |
30 | No Mesh | N/A | Mastopexy § | N/A | N/A | 122.5 ± 10.2 | Inferior pedicle (Dermo-adipose) | ||
Cagli et al., 2024 [34] | 5 | P4HB | Grade III ptosis | N/A | Breast Reduction § | N/A | N/A | N/A | Inferior pedicle (Dermo-adipose) |
10 | No Mesh | N/A | Breast Reduction § | N/A | N/A | N/A | Inferior pedicle (Dermo-adipose) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Escandón, J.M.; Nugent, A.; Karp, N.S.; Vyas, K.; Boyd, C.J.; Kreutz-Rodrigues, L.; Manrique, O.J. Poly-4-Hydroxybutyrate as a Novel Biomaterial in Personalized Breast Surgery: A Systematic Review and Meta-Analysis. J. Pers. Med. 2025, 15, 368. https://doi.org/10.3390/jpm15080368
Escandón JM, Nugent A, Karp NS, Vyas K, Boyd CJ, Kreutz-Rodrigues L, Manrique OJ. Poly-4-Hydroxybutyrate as a Novel Biomaterial in Personalized Breast Surgery: A Systematic Review and Meta-Analysis. Journal of Personalized Medicine. 2025; 15(8):368. https://doi.org/10.3390/jpm15080368
Chicago/Turabian StyleEscandón, Joseph M., Ajani Nugent, Nolan S. Karp, Krishna Vyas, Carter J. Boyd, Lucas Kreutz-Rodrigues, and Oscar J. Manrique. 2025. "Poly-4-Hydroxybutyrate as a Novel Biomaterial in Personalized Breast Surgery: A Systematic Review and Meta-Analysis" Journal of Personalized Medicine 15, no. 8: 368. https://doi.org/10.3390/jpm15080368
APA StyleEscandón, J. M., Nugent, A., Karp, N. S., Vyas, K., Boyd, C. J., Kreutz-Rodrigues, L., & Manrique, O. J. (2025). Poly-4-Hydroxybutyrate as a Novel Biomaterial in Personalized Breast Surgery: A Systematic Review and Meta-Analysis. Journal of Personalized Medicine, 15(8), 368. https://doi.org/10.3390/jpm15080368