Ten Years’ Experience with the CYP2D6 Activity Score: A Perspective on Future Investigations to Improve Clinical Predictions for Precision Therapeutics
Abstract
:1. Introduction
2. Genetic Factors Impacting mRNA and Protein Expression Levels
2.1. Long-Range Enhancer Single Nucleotide Polymorphism
2.2. Regulation of CYP2D6 Expression via Transcription Factors
2.3. Regulation of CYP2D6 Expression via miRNA
2.4. Variability in the Amount of CYP2D6 Protein among Liver Tissue Samples with the Same Activity Score or Genotype
2.5. Missing Genetic Information: Variability Due to Untested Variation, Variation of Unknown Function, Novel Variants and Technical Errors
3. Other Factors That May Modulate CYP2D6 Expression Levels or Enzyme Activity
3.1. Competing Pathways
3.2. Drug–Drug Interactions
3.3. Herbal Remedies
3.4. Physiological Factors That May Impact CP2D6 Expression and Activity
4. Conclusions
Acknowledgments
Conflicts of Interest
References
- Gaedigk, A. Complexities of CYP2D6 gene analysis and interpretation. Int. Rev. Psychiatry 2013, 25, 534–553. [Google Scholar] [CrossRef] [PubMed]
- Caudle, K.E.; Dunnenberger, H.M.; Freimuth, R.R.; Peterson, J.F.; Burlison, J.D.; Whirl-Carrillo, M.; Scott, S.A.; Rehm, H.L.; Williams, M.S.; Klein, T.E.; et al. Standardizing terms for clinical pharmacogenetic test results: Consensus terms from the Clinical Pharmacogenetics Implementation Consortium (CPIC). Genet. Med. 2016. [Google Scholar] [CrossRef] [PubMed]
- Gaedigk, A.; Simon, S.D.; Pearce, R.E.; Bradford, L.D.; Kennedy, M.J.; Leeder, J.S. The CYP2D6 activity score: Translating genotype information into a qualitative measure of phenotype. Clin. Pharmacol. Ther. 2008, 83, 234–242. [Google Scholar] [CrossRef] [PubMed]
- Crews, K.R.; Gaedigk, A.; Dunnenberger, H.M.; Leeder, J.S.; Klein, T.E.; Caudle, K.E.; Haidar, C.E.; Shen, D.D.; Callaghan, J.T.; Sadhasivam, S.; et al. Clinical Pharmacogenetics Implementation Consortium (CPIC) guidelines for cytochrome P450 2D6 (CYP2D6) genotype and codeine therapy: 2014 Update. Clin. Pharmacol. Ther. 2014, 95, 376–382. [Google Scholar] [CrossRef] [PubMed]
- Hicks, J.K.; Bishop, J.R.; Sangkuhl, K.; Muller, D.J.; Ji, Y.; Leckband, S.G.; Leeder, J.S.; Graham, R.L.; Chiulli, D.L.; Llerena, A.; et al. Clinical Pharmacogenetics Implementation Consortium (CPIC) Guideline for CYP2D6 and CYP2C19 Genotypes and Dosing of Selective Serotonin Reuptake Inhibitors. Clin. Pharmacol. Ther. 2015, 98, 127–134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hicks, J.K.; Sangkuhl, K.; Swen, J.J.; Ellingrod, V.L.; Muller, D.J.; Shimoda, K.; Bishop, J.R.; Kharasch, E.D.; Skaar, T.C.; Gaedigk, A.; et al. Clinical pharmacogenetics implementation consortium guideline (CPIC) for CYP2D6 and CYP2C19 genotypes and dosing of tricyclic antidepressants: 2016 update. Clin. Pharmacol. Ther. 2016. [Google Scholar] [CrossRef] [PubMed]
- Shen, H.; He, M.M.; Liu, H.; Wrighton, S.A.; Wang, L.; Guo, B.; Li, C. Comparative metabolic capabilities and inhibitory profiles of CYP2D6.1, CYP2D6.10, and CYP2D6.17. Drug Metab. Dispos. 2007, 35, 1292–1300. [Google Scholar] [CrossRef] [PubMed]
- Hicks, J.K.; Swen, J.J.; Gaedigk, A. Challenges in CYP2D6 Phenotype Assignment from Genotype Data: A Critical Assessment and Call for Standardization. Curr. Drug Metab. 2014, 15, 218–223. [Google Scholar] [CrossRef] [PubMed]
- Goetz, M.P.; Sangkuhl, K.; Guchelaar, H.J.; Schwab, M.; Province, M.; Whirl-Carrillo, M.; Symmans, W.F.; McLeod, H.L.; Ratain, M.J.; Zembutsu, H.; et al. Clinical Pharmacogenetics Implementation Consortium (CPIC) Guideline for CYP2D6 and Tamoxifen Therapy. Clin. Pharmacol. Ther. 2018. [Google Scholar] [CrossRef] [PubMed]
- Cai, W.M.; Nikoloff, D.M.; Pan, R.M.; de Leon, J.; Fanti, P.; Fairchild, M.; Koch, W.H.; Wedlund, P.J. CYP2D6 genetic variation in healthy adults and psychiatric African-American subjects: Implications for clinical practice and genetic testing. Pharmacogenom. J. 2006, 6, 343–350. [Google Scholar] [CrossRef] [PubMed]
- Streetman, D.S.; Ellis, R.E.; Nafziger, A.N.; Leeder, J.S.; Gaedigk, A.; Gotschall, R.; Kearns, G.L.; Bertino, J.S., Jr. Dose dependency of dextromethorphan for cytochrome P450 2D6 (CYP2D6) phenotyping. Clin. Pharmacol. Ther. 1999, 66, 535–541. [Google Scholar] [CrossRef]
- Labbe, L.; Sirois, C.; Pilote, S.; Arseneault, M.; Robitaille, N.M.; Turgeon, J.; Hamelin, B.A. Effect of gender, sex hormones, time variables and physiological urinary pH on apparent CYP2D6 activity as assessed by metabolic ratios of marker substrates. Pharmacogenetics 2000, 10, 425–438. [Google Scholar] [CrossRef] [PubMed]
- Llerena, A.; Dorado, P.; Ramirez, R.; Gonzalez, I.; Alvarez, M.; Penas-Lledo, E.M.; Perez, B.; Calzadilla, L.R. CYP2D6 genotype and debrisoquine hydroxylation phenotype in Cubans and Nicaraguans. Pharmacogenom. J. 2012. [Google Scholar] [CrossRef] [PubMed]
- Montane Jaime, L.K.; Lalla, A.; Steimer, W.; Gaedigk, A. Characterization of the CYP2D6 gene locus and metabolic activity in Indo- and Afro-Trinidadians: Discovery of novel allelic variants. Pharmacogenomics 2013, 14, 261–276. [Google Scholar] [CrossRef] [PubMed]
- Pedersen, R.S.; Damkier, P.; Brosen, K. Tramadol as a new probe for cytochrome P450 2D6 phenotyping: A population study. Clin. Pharmacol. Ther. 2005, 77, 458–467. [Google Scholar] [CrossRef] [PubMed]
- Gaedigk, A.; Sangkuhl, K.; Whirl-Carrillo, M.; Klein, T.; Leeder, J.S. Prediction of CYP2D6 phenotype from genotype across world populations. Genet. Med. 2017, 19, 69–76. [Google Scholar] [CrossRef] [PubMed]
- Abduljalil, K.; Frank, D.; Gaedigk, A.; Klaassen, T.; Tomalik-Scharte, D.; Jetter, A.; Jaehde, U.; Kirchheiner, J.; Fuhr, U. Assessment of activity levels for CYP2D6*1, CYP2D6*2, and CYP2D6*41 genes by population pharmacokinetics of dextromethorphan. Clin. Pharmacol. Ther. 2010, 88, 643–651. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Montane Jaime, L.K.; Paul, J.; Lalla, A.; Legall, G.; Gaedigk, A. Impact of CYP2D6 on venlafaxine metabolism in Trinidadian patients with major depressive disorder. Pharmacogenomics 2018, 19, 197–212. [Google Scholar] [CrossRef] [PubMed]
- Chen, R.; Zheng, X.; Hu, P. CYP2D6 Phenotyping Using Urine, Plasma, and Saliva Metabolic Ratios to Assess the Impact of CYP2D6*10 on Interindividual Variation in a Chinese Population. Front. Pharmacol. 2017, 8, 239. [Google Scholar] [CrossRef] [PubMed]
- Donzelli, M.; Derungs, A.; Serratore, M.G.; Noppen, C.; Nezic, L.; Krahenbuhl, S.; Haschke, M. The basel cocktail for simultaneous phenotyping of human cytochrome P450 isoforms in plasma, saliva and dried blood spots. Clin. Pharmacokinet. 2014, 53, 271–282. [Google Scholar] [CrossRef] [PubMed]
- Hu, O.Y.; Tang, H.S.; Lane, H.Y.; Chang, W.H.; Hu, T.M. Novel single-point plasma or saliva dextromethorphan method for determining CYP2D6 activity. J. Pharmacol. Exp. Ther. 1998, 285, 955–960. [Google Scholar] [PubMed]
- Mannheimer, B.; Haslemo, T.; Lindh, J.D.; Eliasson, E.; Molden, E. Risperidone and Venlafaxine Metabolic Ratios Strongly Predict a CYP2D6 Poor Metabolizing Genotype. Ther. Drug Monit. 2016, 38, 127–134. [Google Scholar] [CrossRef] [PubMed]
- De Leon, J. Phenoconversion and therapeutic drug monitoring. Br. J. Clin. Pharmacol. 2015, 80, 777–778. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Zhang, B.; Molony, C.; Chudin, E.; Hao, K.; Zhu, J.; Gaedigk, A.; Suver, C.; Zhong, H.; Leeder, J.S.; et al. Systematic genetic and genomic analysis of cytochrome P450 enzyme activities in human liver. Genome Res. 2010, 20, 1020–1036. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Poi, M.J.; Sun, X.; Gaedigk, A.; Leeder, J.S.; Sadee, W. Common CYP2D6 polymorphisms affecting alternative splicing and transcription: Long-range haplotypes with two regulatory variants modulate CYP2D6 activity. Hum. Mol. Genet. 2014, 23, 268–278. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Papp, A.C.; Sun, X. Functional characterization of CYP2D6 enhancer polymorphisms. Hum. Mol. Genet. 2015, 24, 1556–1562. [Google Scholar] [CrossRef] [PubMed]
- Forman, B.M.; Tzameli, I.; Choi, H.S.; Chen, J.; Simha, D.; Seol, W.; Evans, R.M.; Moore, D.D. Androstane metabolites bind to and deactivate the nuclear receptor CAR-β. Nature 1998, 395, 612–615. [Google Scholar] [CrossRef] [PubMed]
- Kliewer, S.A.; Moore, J.T.; Wade, L.; Staudinger, J.L.; Watson, M.A.; Jones, S.A.; McKee, D.D.; Oliver, B.B.; Willson, T.M.; Zetterstrom, R.H.; et al. An orphan nuclear receptor activated by pregnanes defines a novel steroid signaling pathway. Cell 1998, 92, 73–82. [Google Scholar] [CrossRef]
- Hogstedt, S.; Lindberg, B.; Rane, A. Increased oral clearance of metoprolol in pregnancy. Eur. J. Clin. Pharmacol. 1983, 24, 217–220. [Google Scholar] [CrossRef] [PubMed]
- Hogstedt, S.; Lindberg, B.; Peng, D.R.; Regardh, C.G.; Rane, A. Pregnancy-induced increase in metoprolol metabolism. Clin. Pharmacol. Ther. 1985, 37, 688–692. [Google Scholar] [CrossRef] [PubMed]
- Wadelius, M.; Darj, E.; Frenne, G.; Rane, A. Induction of CYP2D6 in pregnancy. Clin. Pharmacol. Ther. 1997, 62, 400–407. [Google Scholar] [CrossRef]
- Tracy, T.S.; Venkataramanan, R.; Glover, D.D.; Caritis, S.N. Temporal changes in drug metabolism (CYP1A2, CYP2D6 and CYP3A activity) during pregnancy. Am. J. Obstet. Gynecol. 2005, 192, 633–639. [Google Scholar] [CrossRef] [PubMed]
- Koh, K.H.; Pan, X.; Shen, H.W.; Arnold, S.L.; Yu, A.M.; Gonzalez, F.J.; Isoherranen, N.; Jeong, H. Altered expression of small heterodimer partner governs cytochrome P450 (CYP) 2D6 induction during pregnancy in CYP2D6-humanized mice. J. Biol. Chem. 2014, 289, 3105–3113. [Google Scholar] [CrossRef] [PubMed]
- Cairns, W.; Smith, C.A.; McLaren, A.W.; Wolf, C.R. Characterization of the human cytochrome P4502D6 promoter. A potential role for antagonistic interactions between members of the nuclear receptor family. J. Biol. Chem. 1996, 271, 25269–25276. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez, F.J. Regulation of hepatocyte nuclear factor 4 α-mediated transcription. Drug Metab. Pharmacokinet. 2008, 23, 2–7. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.S.; Cha, E.Y.; Jung, H.J.; Shon, J.H.; Kim, E.Y.; Yeo, C.W.; Shin, J.G. Genetic polymorphism of hepatocyte nuclear factor-4α influences human cytochrome P450 2D6 activity. Hepatology 2008, 48, 635–645. [Google Scholar] [CrossRef] [PubMed]
- Koh, K.H.; Pan, X.; Zhang, W.; McLachlan, A.; Urrutia, R.; Jeong, H. Kruppel-like factor 9 promotes hepatic cytochrome P450 2D6 expression during pregnancy in CYP2D6-humanized mice. Mol. Pharmacol. 2014, 86, 727–735. [Google Scholar] [CrossRef] [PubMed]
- Cai, S.Y.; He, H.; Nguyen, T.; Mennone, A.; Boyer, J.L. Retinoic acid represses CYP7A1 expression in human hepatocytes and HepG2 cells by FXR/RXR-dependent and independent mechanisms. J. Lipid Res. 2010, 51, 2265–2274. [Google Scholar] [CrossRef] [PubMed]
- Chanda, D.; Park, J.H.; Choi, H.S. Molecular basis of endocrine regulation by orphan nuclear receptor Small Heterodimer Partner. Endocr. J. 2008, 55, 253–268. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Chiang, J.Y. Bile acid signaling in metabolic disease and drug therapy. Pharmacol. Rev. 2014, 66, 948–983. [Google Scholar] [CrossRef] [PubMed]
- Pan, X.; Lee, Y.K.; Jeong, H. Farnesoid X Receptor Agonist Represses Cytochrome P450 2D6 Expression by Upregulating Small Heterodimer Partner. Drug Metab. Dispos. 2015, 43, 1002–1007. [Google Scholar] [CrossRef] [PubMed]
- Pan, X.; Jeong, H. Estrogen-Induced Cholestasis Leads to Repressed CYP2D6 Expression in CYP2D6-Humanized Mice. Mol. Pharmacol. 2015, 88, 106–112. [Google Scholar] [CrossRef] [PubMed]
- Temesvari, M.; Kobori, L.; Paulik, J.; Sarvary, E.; Belic, A.; Monostory, K. Estimation of drug-metabolizing capacity by cytochrome P450 genotyping and expression. J. Pharmacol. Exp. Ther. 2012, 341, 294–305. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Antona, C.; Donato, M.T.; Pareja, E.; Gomez-Lechon, M.J.; Castell, J.V. Cytochrome P-450 mRNA expression in human liver and its relationship with enzyme activity. Arch. Biochem. Biophys. 2001, 393, 308–315. [Google Scholar] [CrossRef] [PubMed]
- Zanger, U.M.; Fischer, J.; Raimundo, S.; Stuven, T.; Evert, B.O.; Schwab, M.; Eichelbaum, M. Comprehensive analysis of the genetic factors determining expression and function of hepatic CYP2D6. Pharmacogenetics 2001, 11, 573–585. [Google Scholar] [CrossRef] [PubMed]
- Koturbash, I.; Tolleson, W.H.; Guo, L.; Yu, D.; Chen, S.; Hong, H.; Mattes, W.; Ning, B. microRNAs as pharmacogenomic biomarkers for drug efficacy and drug safety assessment. Biomark. Med. 2015, 9, 1153–1176. [Google Scholar] [CrossRef] [PubMed]
- Swart, M.; Dandara, C. Genetic variation in the 3′-UTR of CYP1A2, CYP2B6, CYP2D6, CYP3A4, NR1I2, and UGT2B7: Potential effects on regulation by microRNA and pharmacogenomics relevance. Front. Genet. 2014, 5, 167. [Google Scholar] [CrossRef] [PubMed]
- Burgess, K.S.; Philips, S.; Benson, E.A.; Desta, Z.; Gaedigk, A.; Gaedigk, R.; Segar, M.W.; Liu, Y.; Skaar, T.C. Age-Related Changes in MicroRNA Expression and Pharmacogenes in Human Liver. Clin. Pharmacol. Ther. 2015, 98, 205–215. [Google Scholar] [CrossRef] [PubMed]
- Burgess, K.S.; Ipe, J.; Swart, M.; Metzger, I.F.; Lu, J.; Gufford, B.T.; Thong, N.; Desta, Z.; Gaedigk, R.; Pearce, R.; et al. Variants in the CYP2B6 3'UTR alter in vitro and in vivo CYP2B6 activity: Potential role of microRNAs. Clin. Pharmacol. Ther. 2017. [Google Scholar] [CrossRef] [PubMed]
- Pan, Y.Z.; Gao, W.; Yu, A.M. MicroRNAs regulate CYP3A4 expression via direct and indirect targeting. Drug Metab. Dispos. 2009, 37, 2112–2117. [Google Scholar] [CrossRef] [PubMed]
- Mohri, T.; Nakajima, M.; Fukami, T.; Takamiya, M.; Aoki, Y.; Yokoi, T. Human CYP2E1 is regulated by miR-378. Biochem. Pharmacol. 2010, 79, 1045–1052. [Google Scholar] [CrossRef] [PubMed]
- Yu, D.; Green, B.; Marrone, A.; Guo, Y.; Kadlubar, S.; Lin, D.; Fuscoe, J.; Pogribny, I.; Ning, B. Suppression of CYP2C9 by microRNA hsa-miR-128-3p in human liver cells and association with hepatocellular carcinoma. Sci. Rep. 2015, 5, 8534. [Google Scholar] [CrossRef] [PubMed]
- Tsuchiya, Y.; Nakajima, M.; Takagi, S.; Taniya, T.; Yokoi, T. MicroRNA regulates the expression of human cytochrome P450 1B1. Cancer Res. 2006, 66, 9090–9098. [Google Scholar] [CrossRef] [PubMed]
- Zeng, L.; Chen, Y.; Wang, Y.; Yu, L.R.; Knox, B.; Chen, J.; Shi, T.; Chen, S.; Ren, Z.; Guo, L.; et al. MicroRNA hsa-miR-370-3p suppresses the expression and induction of CYP2D6 by facilitating mRNA degradation. Biochem. Pharmacol. 2017, 140, 139–149. [Google Scholar] [CrossRef] [PubMed]
- Gaedigk, A.; Ingelman-Sundberg, M.; Miller, N.A.; Leeder, J.S.; Whirl-Carrillo, M.; Klein, T.E. The Pharmacogene Variation (PharmVar) Consortium: Incorporation of the Human Cytochrome P450 (CYP) Allele Nomenclature Database. Clin. Pharmacol. Ther. 2017. [Google Scholar] [CrossRef] [PubMed]
- Tyndale, R.; Aoyama, T.; Broly, F.; Matsunaga, T.; Inaba, T.; Kalow, W.; Gelboin, H.V.; Meyer, U.A.; Gonzalez, F.J. Identification of a new variant CYP2D6 allele lacking the codon encoding Lys-281: Possible association with the poor metabolizer phenotype. Pharmacogenetics 1991, 1, 26–32. [Google Scholar] [CrossRef] [PubMed]
- Hanioka, N.; Okumura, Y.; Saito, Y.; Hichiya, H.; Soyama, A.; Saito, K.; Ueno, K.; Sawada, J.; Narimatsu, S. Catalytic roles of CYP2D6.10 and CYP2D6.36 enzymes in mexiletine metabolism: In vitro functional analysis of recombinant proteins expressed in Saccharomyces cervisiae. Biochem. Pharmacol. 2006, 71, 1386–1395. [Google Scholar] [CrossRef] [PubMed]
- Toscano, C.; Klein, K.; Blievernicht, J.; Schaeffeler, E.; Saussele, T.; Raimundo, S.; Eichelbaum, M.; Schwab, M.; Zanger, U.M. Impaired expression of CYP2D6 in intermediate metabolizers carrying the *41 allele caused by the intronic SNP 2988G>A: Evidence for modulation of splicing events. Pharmacogenet. Genom. 2006, 16, 755–766. [Google Scholar] [CrossRef] [PubMed]
- Brown, J.T.; Abdel-Rahman, S.M.; van Haandel, L.; Gaedigk, A.; Lin, Y.S.; Leeder, J.S. Single dose, CYP2D6 genotype-stratified pharmacokinetic study of atomoxetine in children with ADHD. Clin. Pharmacol. Ther. 2016, 99, 642–650. [Google Scholar] [CrossRef] [PubMed]
- Ning, M.; Duarte, J.D.; Rubin, L.H.; Jeong, H. CYP2D6 protein level is the major contributor to inter-individual variability in CYP2D6-mediated drug metabolism in healthy human liver tissue. Clin. Pharmacol. Ther. 2018. [Google Scholar] [CrossRef] [PubMed]
- Dodgen, T.M.; Hochfeld, W.E.; Fickl, H.; Asfaha, S.M.; Durandt, C.; Rheeder, P.; Drogemoller, B.I.; Wright, G.E.; Warnich, L.; Labuschagne, C.D.; et al. Introduction of the AmpliChip CYP450 Test to a South African cohort: A platform comparative prospective cohort study. BMC Med. Genet. 2013, 14, 20. [Google Scholar] [CrossRef] [PubMed]
- Gaedigk, A.; Twist, G.P.; Farrow, E.G.; Lowry, J.A.; Soden, S.E.; Miller, N.A. In vivo characterization of CYP2D6*12, *29 and *84 using dextromethorphan as a probe drug: A case report. Pharmacogenomics 2017, 18, 427–431. [Google Scholar] [CrossRef] [PubMed]
- Qiao, W.; Yang, Y.; Sebra, R.; Mendiratta, G.; Gaedigk, A.; Desnick, R.J.; Scott, S.A. Long-Read Single Molecule Real-Time Full Gene Sequencing of Cytochrome P450-2D6. Hum. Mutat. 2016, 37, 315–323. [Google Scholar] [CrossRef] [PubMed]
- Qian, J.C.; Xu, X.M.; Hu, G.X.; Dai, D.P.; Xu, R.A.; Hu, L.M.; Li, F.H.; Zhang, X.H.; Yang, J.F.; Cai, J.P. Genetic variations of human CYP2D6 in the Chinese Han population. Pharmacogenomics 2013, 14, 1731–1743. [Google Scholar] [CrossRef] [PubMed]
- Riffel, A.K.; Dehghani, M.; Hartshorne, T.; Floyd, K.C.; Leeder, J.S.; Rosenblatt, K.P.; Gaedigk, A. CYP2D7 Sequence Variation Interferes with TaqMan CYP2D6*15 and *35 Genotyping. Front. Pharmacol. 2015, 6, 312. [Google Scholar] [CrossRef] [PubMed]
- Gaedigk, A.; Riffel, A.K.; Leeder, J.S. CYP2D6 Haplotype Determination Using Long Range Allele-Specific Amplification: Resolution of a Complex Genotype and a Discordant Genotype Involving the CYP2D6*59 Allele. J. Mol. Diagn. 2015, 17, 740–748. [Google Scholar] [CrossRef] [PubMed]
- Gaedigk, A.; Freeman, N.; Hartshorne, T.; Riffel, A.K.; Irwin, D.; Bishop, J.R.; Stein, M.A.; Newcorn, J.H.; Jaime, L.K.; Cherner, M.; et al. SNP genotyping using TaqMan technology: The CYP2D6*17 assay conundrum. Sci. Rep. 2015, 5, 9257. [Google Scholar] [CrossRef] [PubMed]
- Gaedigk, A.; Garcia-Ribera, C.; Jeong, H.E.; Shin, J.G.; Hernandez-Sanchez, J. Resolution of a clinical AmpliChip CYP450 Test no call: Discovery and characterization of novel CYP2D6*1 haplotypes. Pharmacogenomics 2014, 15, 1175–1184. [Google Scholar] [CrossRef] [PubMed]
- Gaedigk, A.; Riffel, A.K.; Berrocal, B.G.; Solaesa, V.G.; Davila, I.; Isidoro-Garcia, M. Characterization of a complex CYP2D6 genotype that caused an AmpliChip CYP450 Test no-call in the clinical setting. Clin. Chem. Lab. Med. 2014, 52, 799–807. [Google Scholar] [CrossRef] [PubMed]
- Frank, D.; Jaehde, U.; Fuhr, U. Evaluation of probe drugs and pharmacokinetic metrics for CYP2D6 phenotyping. Eur. J. Clin. Pharmacol. 2007, 63, 321–333. [Google Scholar] [CrossRef] [PubMed]
- Von Moltke, L.L.; Greenblatt, D.J.; Grassi, J.M.; Granda, B.W.; Venkatakrishnan, K.; Schmider, J.; Harmatz, J.S.; Shader, R.I. Multiple human cytochromes contribute to biotransformation of dextromethorphan in-vitro: Role of CYP2C9, CYP2C19, CYP2D6, and CYP3A. J. Pharm. Pharmacol. 1998, 50, 997–1004. [Google Scholar] [CrossRef] [PubMed]
- Stingl, J.C.; Brockmoller, J.; Viviani, R. Genetic variability of drug-metabolizing enzymes: The dual impact on psychiatric therapy and regulation of brain function. Mol. Psychiatry 2013, 18, 273–287. [Google Scholar] [CrossRef] [PubMed]
- De Leon, J.; Sandson, N.B.; Cozza, K.L. A preliminary attempt to personalize risperidone dosing using drug-drug interactions and genetics: Part II. Psychosomatics 2008, 49, 347–361. [Google Scholar] [CrossRef] [PubMed]
- Bahar, M.A.; Setiawan, D.; Hak, E.; Wilffert, B. Pharmacogenetics of drug-drug interaction and drug-drug-gene interaction: A systematic review on CYP2C9, CYP2C19 and CYP2D6. Pharmacogenomics 2017, 18, 701–739. [Google Scholar] [CrossRef] [PubMed]
- Storelli, F.; Matthey, A.; Lenglet, S.; Thomas, A.; Desmeules, J.; Daali, Y. Impact of CYP2D6 functional allelic variations on phenoconversion and drug-drug interactions. Clin. Pharmacol. Ther. 2017. [Google Scholar] [CrossRef] [PubMed]
- Thomford, N.E.; Dzobo, K.; Chopera, D.; Wonkam, A.; Skelton, M.; Blackhurst, D.; Chirikure, S.; Dandara, C. Pharmacogenomics Implications of Using Herbal Medicinal Plants on African Populations in Health Transition. Pharmaceuticals 2015, 8, 637–663. [Google Scholar] [CrossRef] [PubMed]
- Thomford, N.E.; Dzobo, K.; Adu, F.; Chirikure, S.; Wonkam, A.; Dandara, C. Bush mint (Hyptis suaveolens) and spreading hogweed (Boerhavia diffusa) medicinal plant extracts differentially affect activities of CYP1A2, CYP2D6 and CYP3A4 enzymes. J. Ethnopharmacol. 2017, 211, 58–69. [Google Scholar] [CrossRef] [PubMed]
- Shah, R.R. Pharmacogenetics and precision medicine: Is inflammation a covert threat to effective genotype-based therapy? Ther. Adv. Drug Saf. 2017, 8, 267–272. [Google Scholar] [CrossRef] [PubMed]
- Shah, R.R.; Smith, R.L. Inflammation-induced phenoconversion of polymorphic drug metabolizing enzymes: Hypothesis with implications for personalized medicine. Drug Metab. Dispos. 2015, 43, 400–410. [Google Scholar] [CrossRef] [PubMed]
- He, Z.X.; Chen, X.W.; Zhou, Z.W.; Zhou, S.F. Impact of physiological, pathological and environmental factors on the expression and activity of human cytochrome P450 2D6 and implications in precision medicine. Drug Metab. Rev. 2015, 47, 470–519. [Google Scholar] [CrossRef] [PubMed]
- Koppel, N.; Maini Rekdal, V.; Balskus, E.P. Chemical transformation of xenobiotics by the human gut microbiota. Science 2017, 356, eaag2770. [Google Scholar] [CrossRef] [PubMed]
- De Vries, E.M.; Lammers, L.A.; Achterbergh, R.; Klumpen, H.J.; Mathot, R.A.; Boelen, A.; Romijn, J.A. Fasting-Induced Changes in Hepatic P450 Mediated Drug Metabolism Are Largely Independent of the Constitutive Androstane Receptor CAR. PLoS ONE 2016, 11, e0159552. [Google Scholar] [CrossRef] [PubMed]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gaedigk, A.; Dinh, J.C.; Jeong, H.; Prasad, B.; Leeder, J.S. Ten Years’ Experience with the CYP2D6 Activity Score: A Perspective on Future Investigations to Improve Clinical Predictions for Precision Therapeutics. J. Pers. Med. 2018, 8, 15. https://doi.org/10.3390/jpm8020015
Gaedigk A, Dinh JC, Jeong H, Prasad B, Leeder JS. Ten Years’ Experience with the CYP2D6 Activity Score: A Perspective on Future Investigations to Improve Clinical Predictions for Precision Therapeutics. Journal of Personalized Medicine. 2018; 8(2):15. https://doi.org/10.3390/jpm8020015
Chicago/Turabian StyleGaedigk, Andrea, Jean C. Dinh, Hyunyoung Jeong, Bhagwat Prasad, and J. Steven Leeder. 2018. "Ten Years’ Experience with the CYP2D6 Activity Score: A Perspective on Future Investigations to Improve Clinical Predictions for Precision Therapeutics" Journal of Personalized Medicine 8, no. 2: 15. https://doi.org/10.3390/jpm8020015
APA StyleGaedigk, A., Dinh, J. C., Jeong, H., Prasad, B., & Leeder, J. S. (2018). Ten Years’ Experience with the CYP2D6 Activity Score: A Perspective on Future Investigations to Improve Clinical Predictions for Precision Therapeutics. Journal of Personalized Medicine, 8(2), 15. https://doi.org/10.3390/jpm8020015