The Role of Next-Generation Sequencing in Precision Medicine: A Review of Outcomes in Oncology
Abstract
:1. Introduction
2. Precision Medicine in Oncology
2.1. The Promise
2.2. The Limitations
3. Barriers to Individualized Treatment
3.1. Physician Interpretation and Patient Preference
3.2. Eligibility for and Access to Care Options
3.3. Cost and Insurance Coverage
3.3.1. Patient Perspective
3.3.2. Policy Implications
4. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bode, A.M.; Dong, Z. Precision oncology-the future of personalized cancer medicine? NPJ Precis. Oncol. 2017, 1, 2. [Google Scholar] [CrossRef] [PubMed]
- Collins, F. Precision Oncology: Gene Changes Predict Immunotherapy Response|NIH Director’s Blog. Available online: https://directorsblog.nih.gov/2017/06/20/precision-oncology-gene-changes-predict-immunotherapy-response/ (accessed on 10 November 2017).
- Schwartzberg, L.; Kim, E.S.; Liu, D.; Schrag, D. Precision oncology: Who, how, what, when, and when not? Am. Soc. Clin. Oncol. Educ. Book 2017, 37, 160–169. [Google Scholar] [CrossRef] [PubMed]
- AACR Project GENIE Consortium AACR Project GENIE: Powering Precision Medicine through an International Consortium. Cancer Discov. 2017, 7, 818–831. [CrossRef] [PubMed]
- Tsimberidou, A.-M.; Iskander, N.G.; Hong, D.S.; Wheler, J.J.; Falchook, G.S.; Fu, S.; Piha-Paul, S.; Naing, A.; Janku, F.; Luthra, R.; et al. Personalized medicine in a phase I clinical trials program: The MD Anderson Cancer Center initiative. Clin. Cancer Res. 2012, 18, 6373–6383. [Google Scholar] [CrossRef] [PubMed]
- Radovich, M.; Kiel, P.J.; Nance, S.M.; Niland, E.E.; Parsley, M.E.; Ferguson, M.E.; Jiang, G.; Ammakkanavar, N.R.; Einhorn, L.H.; Cheng, L.; et al. Clinical benefit of a precision medicine based approach for guiding treatment of refractory cancers. Oncotarget 2016, 7, 56491–56500. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schwaederle, M.; Parker, B.A.; Schwab, R.B.; Daniels, G.A.; Piccioni, D.E.; Kesari, S.; Helsten, T.L.; Bazhenova, L.A.; Romero, J.; Fanta, P.T.; et al. Precision oncology: The UC San Diego Moores Cancer Center PREDICT experience. Mol. Cancer Ther. 2016, 15, 743–752. [Google Scholar] [CrossRef] [PubMed]
- Kris, M.G.; Johnson, B.E.; Berry, L.D.; Kwiatkowski, D.J.; Iafrate, A.J.; Wistuba, I.I.; Varella-Garcia, M.; Franklin, W.A.; Aronson, S.L.; Su, P.-F.; et al. Using multiplexed assays of oncogenic drivers in lung cancers to select targeted drugs. JAMA 2014, 311, 1998–2006. [Google Scholar] [CrossRef] [PubMed]
- Aisner, D. Effect of expanded genomic testing in lung adenocarcinoma (LUCA) on survival benefit: The Lung Cancer Mutation Consortium II (LCMC II) experience. J. Clin. Oncol. 2016, 34, 11510. [Google Scholar] [CrossRef]
- Stockley, T.L.; Oza, A.M.; Berman, H.K.; Leighl, N.B.; Knox, J.J.; Shepherd, F.A.; Chen, E.X.; Krzyzanowska, M.K.; Dhani, N.; Joshua, A.M.; et al. Molecular profiling of advanced solid tumors and patient outcomes with genotype-matched clinical trials: The Princess Margaret IMPACT/COMPACT trial. Genome Med. 2016, 8, 109. [Google Scholar] [CrossRef] [PubMed]
- Le Tourneau, C.; Delord, J.-P.; Gonçalves, A.; Gavoille, C.; Dubot, C.; Isambert, N.; Campone, M.; Trédan, O.; Massiani, M.-A.; Mauborgne, C.; et al. Molecularly targeted therapy based on tumour molecular profiling versus conventional therapy for advanced cancer (SHIVA): A multicentre, open-label, proof-of-concept, randomised, controlled phase 2 trial. Lancet Oncol. 2015, 16, 1324–1334. [Google Scholar] [CrossRef]
- Le, D.T.; Durham, J.N.; Smith, K.N.; Wang, H.; Bartlett, B.R.; Aulakh, L.K.; Lu, S.; Kemberling, H.; Wilt, C.; Luber, B.S.; et al. Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade. Science 2017, 357, 409–413. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- U.S. Food and Drug Administration. FDA Grants Accelerated Approval to Pembrolizumab for First Tissue/Site Agnostic Indication. Available online: https://www.fda.gov/Drugs/InformationOnDrugs/ApprovedDrugs/ucm560040.htm (accessed on 12 November 2017).
- Drilon, A.; Nagasubramanian, R.; Blake, J.F.; Ku, N.; Tuch, B.B.; Ebata, K.; Smith, S.; Lauriault, V.; Kolakowski, G.R.; Brandhuber, B.J.; et al. A Next-Generation TRK Kinase Inhibitor Overcomes Acquired Resistance to Prior TRK Kinase Inhibition in Patients with TRK Fusion-Positive Solid Tumors. Cancer Discov. 2017, 7, 963–972. [Google Scholar] [CrossRef] [PubMed]
- West, H.J. No solid evidence, only hollow argument for universal tumor sequencing: Show me the data. JAMA Oncol. 2016, 2, 717–718. [Google Scholar] [CrossRef] [PubMed]
- Moscow, J.A.; Fojo, T.; Schilsky, R.L. The evidence framework for precision cancer medicine. Nat. Rev. Clin. Oncol. 2018, 15, 183–192. [Google Scholar] [CrossRef] [PubMed]
- Fojo, T. Precision oncology: A strategy we were not ready to deploy. Semin. Oncol. 2016, 43, 9–12. [Google Scholar] [CrossRef] [PubMed]
- Cancer Genome Atlas Network. Genomic classification of cutaneous melanoma. Cell 2015, 161, 1681–1696. [Google Scholar] [CrossRef] [PubMed]
- Cancer Genome Atlas Research Network. The molecular taxonomy of primary prostate cancer. Cell 2015, 163, 1011–1025. [Google Scholar] [CrossRef] [PubMed]
- Sohal, D.P.S.; Rini, B.I.; Khorana, A.A.; Dreicer, R.; Abraham, J.; Procop, G.W.; Saunthararajah, Y.; Pennell, N.A.; Stevenson, J.P.; Pelley, R.; et al. Prospective clinical study of precision oncology in solid tumors. J. Natl. Cancer. Inst. 2015, 108. [Google Scholar] [CrossRef] [PubMed]
- Meric-Bernstam, F.; Brusco, L.; Shaw, K.; Horombe, C.; Kopetz, S.; Davies, M.A.; Routbort, M.; Piha-Paul, S.A.; Janku, F.; Ueno, N.; et al. Feasibility of Large-Scale Genomic Testing to Facilitate Enrollment onto Genomically Matched Clinical Trials. J. Clin. Oncol. 2015, 33, 2753–2762. [Google Scholar] [CrossRef] [PubMed]
- André, F.; Bachelot, T.; Commo, F.; Campone, M.; Arnedos, M.; Dieras, V.; Lacroix-Triki, M.; Lacroix, L.; Cohen, P.; Gentien, D.; et al. Comparative genomic hybridisation array and DNA sequencing to direct treatment of metastatic breast cancer: A multicentre, prospective trial (SAFIR01/UNICANCER). Lancet Oncol. 2014, 15, 267–274. [Google Scholar] [CrossRef]
- Beltran, H.; Eng, K.; Mosquera, J.M.; Sigaras, A.; Romanel, A.; Rennert, H.; Kossai, M.; Pauli, C.; Faltas, B.; Fontugne, J.; et al. Whole-Exome Sequencing of Metastatic Cancer and Biomarkers of Treatment Response. JAMA Oncol. 2015, 1, 466–474. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bryce, A.H.; Egan, J.B.; Borad, M.J.; Stewart, A.K.; Nowakowski, G.S.; Chanan-Khan, A.; Patnaik, M.M.; Ansell, S.M.; Banck, M.S.; Robinson, S.I.; et al. Experience with precision genomics and tumor board, indicates frequent target identification, but barriers to delivery. Oncotarget 2017, 8, 27145–27154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gray, S.W.; Hicks-Courant, K.; Cronin, A.; Rollins, B.J.; Weeks, J.C. Physicians’ attitudes about multiplex tumor genomic testing. J. Clin. Oncol. 2014, 32, 1317–1323. [Google Scholar] [CrossRef] [PubMed]
- Bielinski, S.J.; Olson, J.E.; Pathak, J.; Weinshilboum, R.M.; Wang, L.; Lyke, K.J.; Ryu, E.; Targonski, P.V.; Van Norstrand, M.D.; Hathcock, M.A.; et al. Preemptive genotyping for personalized medicine: Design of the right drug, right dose, right time-using genomic data to individualize treatment protocol. Mayo Clin. Proc. 2014, 89, 25–33. [Google Scholar] [CrossRef] [PubMed]
- Kaiwar, C.; McAllister, T.M.; Lazaridis, K.N.; Klee, E.W. Preemptive sequencing in the genomic medicine era. Expert Rev. Precis. Med. Drug Dev. 2017, 2, 91–98. [Google Scholar] [CrossRef]
- Letai, A. Functional precision cancer medicine-moving beyond pure genomics. Nat. Med. 2017, 23, 1028–1035. [Google Scholar] [CrossRef] [PubMed]
- NCI-MATCH/EAY131. Available online: http://ecog-acrin.org/nci-match-eay131 (accessed on 3 July 2018).
- Empire Blue Cross Blue Shield In Vitro Companion Diagnostic Devices. Available online: https://www.empireblue.com/medicalpolicies/policies/mp_pw_c142818.htm (accessed on 13 November 2017).
- Brown, T.D.; Tameishi, M.; Liu, X.; Scanlan, J.; Beatty, J.D.; Drescher, C. Analysis of reimbursement (R) for next generation sequencing (NGS) on patients’ tumors in the context of a personalized medicine program. J. Clin. Oncol. 2017, 35, 6506. [Google Scholar] [CrossRef]
- Eisenberg, R.; Varmus, H. Insurance for broad genomic tests in oncology. Science 2017, 358, 1133–1134. [Google Scholar] [CrossRef] [PubMed]
- National Cancer Institute Off-Label Drug Use in Cancer Treatment. Available online: https://www.cancer.gov/about-cancer/treatment/drugs/off-label (accessed on 6 November 2017).
- Saiyed, M.M.; Ong, P.S.; Chew, L. Off-label drug use in oncology: A systematic review of literature. J. Clin. Pharm. Ther. 2017, 42, 251–258. [Google Scholar] [CrossRef] [PubMed]
- Centers for Medicare and Medicaid Services Compendia. Available online: https://www.cms.gov/medicare-coverage-database/indexes/medicare-coverage-documents-index.aspx?MCDIndexType=6&mcdtypename=Compendia&bc=AgAAAAAAAAAAAA%3D%3D& (accessed on 12 November 2017).
- Yandell, K. Going Off-Label. Available online: http://www.cancertodaymag.org/Summer2017/Pages/Going-Off-Label-Targeted-Therapy-Immunotherapy.aspx?Page=0 (accessed on 8 November 2017).
- U.S. Food and Drug Administration. FDA Announces Approval, CMS Proposes Coverage of First Breakthrough-Designated Test to Detect Extensive Number of Cancer Biomarkers. Available online: https://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm587273.htm (accessed on 1 December 2017).
- National Cancer Institute NCI-MATCH Trial (Molecular Analysis for Therapy Choice). Available online: https://www.cancer.gov/about-cancer/treatment/clinical-trials/nci-supported/nci-match (accessed on 10 November 2017).
- American Society of Clinical Oncology About the TAPUR Study. Available online: https://www.tapur.org/ (accessed on 9 November 2017).
- Global Alliance for Genomics and Health Enabling Genomic Data Sharing for the Benefit of Human Health. Available online: https://www.ga4gh.org/ (accessed on 11 April 2018).
- Prasad, V. Why the US Centers for Medicare and Medicaid Services (CMS) should have required a randomized trial of Foundation Medicine (F1CDx) before paying for it. Ann. Oncol. 2018, 29, 298–300. [Google Scholar] [CrossRef] [PubMed]
- Krop, I.E.; Jegede, O.; Grilley-Olson, J.E.; Lauring, J.D.; Hamilton, S.R.; Zwiebel, J.A.; Li, S.; Rubinstein, L.; Doyle, A.; Patton, D.R.; et al. Results from molecular analysis for therapy choice (MATCH) arm I: Taselisib for PIK3CA-mutated tumors. J. Clin. Oncol. 2018. [Google Scholar] [CrossRef]
- Jhaveri, K.L.; Makker, V.; Wang, X.V.; Chen, A.P.; Flaherty, K.; Conley, B.A.; O’Dwyer, P.J.; Williams, P.M.; Hamilton, S.R.; Harris, L.; et al. Ado-trastuzumab emtansine (T-DM1) in patients (pts) with HER2 amplified (amp) tumors excluding breast and gastric/gastro-esophageal junction (GEJ) adenocarcinomas: Results from the National Cancer Institute (NCI) Molecular Analysis for Therapy Choice (MATCH) trial. J. Clin. Oncol. 2018. [Google Scholar] [CrossRef]
- Chae, Y.K.; Vaklavas, C.; Cheng, H.H.; Hong, F.; Harris, L.; Mitchell, E.P.; Zwiebel, J.A.; McShane, L.; Gray, R.J.; Li, S.; et al. Molecular analysis for therapy choice (MATCH) arm W: Phase II study of AZD4547 in patients with tumors with aberrations in the FGFR pathway. J. Clin. Oncol. 2018. [Google Scholar] [CrossRef]
Study | Sample Size | Most Prevalent Tumor Types | Outcomes Reported |
---|---|---|---|
Tsimberidou et al. Clin. Cancer Res. 2012 [5] | 291 patients with one molecular aberration (175 treated with matched therapy, 116 control) | Colorectal, melanoma, lung, ovarian | Matched group had improved ORR (27% vs. 5%), TTF (median 5.2 vs. 2.2 month), OS (median 13.4 vs. 9.0 month) |
Radovich et al. Oncotarget 2016 [6] | 101 patients with sequencing and follow up (44 treated with matched therapy, 57 control) | Soft tissue sarcoma, breast, colorectal | Matched group had improved PFS (86 vs. 49 days) |
Schwaederle et al. Mol. Cancer Ther. 2016 [7] | 180 patients with sequencing and follow up (87 treated with matched therapy, 93 control) | Gastrointestinal, breast, brain | Matched group had improved PFS (4.0 vs. 3.0 month), TRR (34.5% vs. 16.1% achieving SD/PR/CR) |
Kris et al. JAMA 2014 [8] | 578 patients with oncogenic driver and followup (260 with matched therapy, 318 control) | Lung only | Matched group had improved survival (median 3.5 vs. 2.4 years) |
Aisner et al. J. Clin. Oncol. 2016 [9] | 187 patients with targetable alteration and follow up (112 with matched therapy, 74 control) | Lung only | Matched group had improved survival (median 2.8 vs. 1.5 years) |
Stockley et al. Genome Med. 2016 [10] | 245 patients with sequencing matched to clinical trials (84 on matched trial, 161 control) | Gynecological, lung, breast | Matched group had improved ORR (19% vs. 9%) |
LeTourneau et al. Lancet Oncol. 2015 [11] | RCT with 195 patients with molecular aberration (99 treated with matched therapy, 96 control) | Gastrointestinal, breast, brain | No difference in PFS between groups |
Study | Sample Size with Molecular Analysis | Sample Size with Actionable Mutation | Sample Size on Matched Therapy |
---|---|---|---|
Tsimberidou et al. Clin. Cancer. Res. 2012 [5] | 1144 | 460 (40%) | 211 (18%) |
Radovich et al. Oncotarget 2016 [6] | 101 | NR | 44 (44%) |
Schwaederle et al. Mol. Cancer. Ther. 2016 [7] | 347 | NR | 87 (25%) |
Kris et al. JAMA 2014 [8] | 999 | 617 (62%) | 275 (28%) |
Aisner et al. J. Clin. Oncol. 2016 [9] | 919 | 529 (58%) | 127 (14%) |
Stockley et al. Genome Med. 2016 [10] | 1640 | 938 (57%) | 84 (5%) |
LeTourneau et al. Lancet Oncol. 2015 [11] | 496 | 293 (59%) | 99 (20%) |
Beltran et al. JAMA Oncol. 2015 [23] | 97 | 91 (94%) | 5 (5%) |
Sohal et al. J. Natl. Cancer. Inst. 2015 [20] | 233 | 109 (47%) | 24 (10%) |
Meric-Bernstam et al. J. Clin. Oncol. 2015 [21] | 2000 | 789 (40%) | 83 (4%) |
Andre et al. Lancet Oncol. 2014 [22] | 281 | 195 (69%) | 55 (20%) |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Morash, M.; Mitchell, H.; Beltran, H.; Elemento, O.; Pathak, J. The Role of Next-Generation Sequencing in Precision Medicine: A Review of Outcomes in Oncology. J. Pers. Med. 2018, 8, 30. https://doi.org/10.3390/jpm8030030
Morash M, Mitchell H, Beltran H, Elemento O, Pathak J. The Role of Next-Generation Sequencing in Precision Medicine: A Review of Outcomes in Oncology. Journal of Personalized Medicine. 2018; 8(3):30. https://doi.org/10.3390/jpm8030030
Chicago/Turabian StyleMorash, Margaret, Hannah Mitchell, Himisha Beltran, Olivier Elemento, and Jyotishman Pathak. 2018. "The Role of Next-Generation Sequencing in Precision Medicine: A Review of Outcomes in Oncology" Journal of Personalized Medicine 8, no. 3: 30. https://doi.org/10.3390/jpm8030030
APA StyleMorash, M., Mitchell, H., Beltran, H., Elemento, O., & Pathak, J. (2018). The Role of Next-Generation Sequencing in Precision Medicine: A Review of Outcomes in Oncology. Journal of Personalized Medicine, 8(3), 30. https://doi.org/10.3390/jpm8030030