Feasibility of a mHealth Approach to Nutrition Counseling in an Appalachian State
Abstract
:1. Introduction
2. Materials and Methods
2.1. Intervention Design
2.2. Participants
2.3. Study Design
2.4. Measures
2.5. Statistical Methods
3. Results
3.1. Baseline Demographics
3.2. GMs Application Usage
3.3. Attitude Measurements
4. Discussion
5. Conclusions
Supplementary Files
Supplementary File 1Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Sacks, F.M.; Carey, V.J.; Anderson, C.A.; Miller, E.R.; Copeland, T.; Charleston, J.; Harshfield, B.J.; Laranjo, N.; McCarron, P.; Swain, J. Effects of high vs low glycemic index of dietary carbohydrate on cardiovascular disease risk factors and insulin sensitivity: The OmniCarb randomized clinical trial. JAMA 2014, 312, 2531–2541. [Google Scholar] [CrossRef]
- Pilic, L.; Pedlar, C.R.; Mavrommatis, Y. Salt-sensitive hypertension: Mechanisms and effects of dietary and other lifestyle factors. Nutr. Rev. 2016, 74, 645–658. [Google Scholar] [CrossRef] [PubMed]
- Estruch, R.; Ros, E.; Salas-Salvadó, J.; Covas, M.-I.; Corella, D.; Arós, F.; Gómez-Gracia, E.; Ruiz-Gutiérrez, V.; Fiol, M.; Lapetra, J. Primary prevention of cardiovascular disease with a Mediterranean diet supplemented with extra-virgin olive oil or nuts. N. Engl. J. Med. 2018, 378, e34. [Google Scholar] [CrossRef] [PubMed]
- Ando, K.; Matsui, H.; Fujita, M.; Fujita, T. Protective effect of dietary potassium against cardiovascular damage in salt-sensitive hypertension: Possible role of its antioxidant action. Curr. Vasc. Pharmacol. 2010, 8, 59–63. [Google Scholar] [CrossRef] [PubMed]
- Kaczmarczyk, M.M.; Miller, M.J.; Freund, G.G. The health benefits of dietary fiber: Beyond the usual suspects of type 2 diabetes mellitus, cardiovascular disease and colon cancer. Metabolism 2012, 61, 1058–1066. [Google Scholar] [CrossRef]
- Sun, Y.; You, W.; Almeida, F.; Estabrooks, P.; Davy, B. The effectiveness and cost of lifestyle interventions including nutrition education for diabetes prevention: A systematic review and meta-analysis. J. Acad. Nutr. Diet. 2017, 117, 404–421.e436. [Google Scholar] [CrossRef]
- Spieker, E.A.; Pyzocha, N. Economic impact of obesity. Prim. Care Clin. Off. Pract. 2016, 43, 83–95. [Google Scholar] [CrossRef]
- Tremmel, M.; Gerdtham, U.-G.; Nilsson, P.; Saha, S. Economic burden of obesity: A systematic literature review. Int. J. Environ. Res. Public Health 2017, 14, 435. [Google Scholar] [CrossRef]
- Zhang, D.; Wang, G.; Zhang, P.; Fang, J.; Ayala, C. Medical expenditures associated with hypertension in the US, 2000–2013. Am. J. Prev. Med. 2017, 53, S164–S171. [Google Scholar] [CrossRef]
- Yoon, S.S.; Burt, V.; Louis, T.; Carroll, M.D. Hypertension among adults in the United States, 2009–2010. NCHS Data Brief 2012, 1–8. [Google Scholar]
- Arrieta, A.; Qiao, N.; Woods, J.R.; Jay, S.J.; Veledar, E.; Nasir, K. Cost of Cardiovascular Disease Episodes among Patients with Hypertension. Circ. Cardiovasc. Qual. Outcomes 2015, 8, A144. [Google Scholar]
- Benjamin, E.J.; Muntner, P.; Bittencourt, M.S. Heart disease and stroke statistics-2019 update: A report from the American Heart Association. Circulation 2019, 139, e56–e528. [Google Scholar] [PubMed]
- Moran, A.E.; Odden, M.C.; Thanataveerat, A.; Tzong, K.Y.; Rasmussen, P.W.; Guzman, D.; Williams, L.; Bibbins-Domingo, K.; Coxson, P.G.; Goldman, L. Cost-effectiveness of hypertension therapy according to 2014 guidelines. N. Engl. J. Med. 2015, 372, 447–455. [Google Scholar] [CrossRef] [PubMed]
- The State of Obesity in West Virginia. Available online: https://www.stateofobesity.org/states/wv/ (accessed on 29 August 2019).
- Levine, J.A. Poverty and obesity in the US. Am. Diabetes Assoc. 2011, 60, 2667–2668. [Google Scholar] [CrossRef] [PubMed]
- Befort, C.A.; Nazir, N.; Perri, M.G. Prevalence of obesity among adults from rural and urban areas of the United States: Findings from NHANES (2005–2008). J. Rural Health 2012, 28, 392–397. [Google Scholar] [CrossRef] [PubMed]
- Garcia, M.C.; Faul, M.; Massetti, G.; Thomas, C.C.; Hong, Y.; Bauer, U.E.; Iademarco, M.F. Reducing potentially excess deaths from the five leading causes of death in the rural United States. MMWR Surveill. Summ. 2017, 66, 1. [Google Scholar] [CrossRef]
- Chan, L.; Hart, L.G.; Goodman, D.C. Geographic access to health care for rural Medicare beneficiaries. J. Rural Health 2006, 22, 140–146. [Google Scholar] [CrossRef]
- Haggerty, T.; Xiang, J.; Doyle, G. Patient Attitudes toward Weight Related Discussions in Rural Appalachian Primary Care Clinics. W. Va. Med. J. OA 2016, 988. [Google Scholar] [CrossRef]
- Kushner, R.F. Barriers t o providing nutrition counseling by physicians: A survey of primary care practitioners. Prev. Med. 1995, 24, 546–552. [Google Scholar] [CrossRef]
- Parker, W.-A.; Steyn, N.P.; Levitt, N.S.; Lombard, C.J. They think they know but do they? Misalignment of perceptions of lifestyle modification knowledge among health professionals. Public Health Nutr. 2011, 14, 1429–1438. [Google Scholar] [CrossRef]
- Barratt, J. Diet-related knowledge, beliefs and actions of health professionals compared with the general population: An investigation in a community Trust. J. Hum. Nutr. Diet. 2001, 14, 25–32. [Google Scholar] [CrossRef] [PubMed]
- Anderson-Lewis, C.; Darville, G.; Mercado, R.E.; Howell, S.; Di Maggio, S. mHealth technology use and implications in historically underserved and minority populations in the United States: Systematic literature review. JMIR mHealth uHealth 2018, 6, e128. [Google Scholar] [CrossRef] [PubMed]
- Miyamoto, S.W.; Henderson, S.; Young, H.M.; Pande, A.; Han, J.J. Tracking health data is not enough: A qualitative exploration of the role of healthcare partnerships and mHealth technology to promote physical activity and to sustain behavior change. JMIR mHealth uHealth 2016, 4, e5. [Google Scholar] [CrossRef] [PubMed]
- Cluxton-Keller, F.; Buteau, J.; Williams, M.; Stolte, P.; Monroe-Cassel, M.; Bruce, M. Engaging rural young mothers in a technology-based intervention for depression. Child Youth Serv. 2019, 1–26. [Google Scholar] [CrossRef] [PubMed]
- Murry, V.M.; Berkel, C.; Inniss-Thompson, M.N.; Debreaux, M.L. Pathways for African American Success: Results of Three-Arm Randomized Trial to Test the Effects of Technology-Based Delivery for Rural African American Families. J. Pediatr. Psychol. 2019, 44, 375–387. [Google Scholar] [CrossRef] [PubMed]
- Dallery, J.; Raiff, B.R.; Grabinski, M.J.; Marsch, L.A. Technology-Based Contingency Management in the Treatment of Substance-Use Disorders. Perspect. Behav. Sci. 2019, 42, 445–464. [Google Scholar] [CrossRef]
- Gore, M.O.; Krantz, M.J.; Albright, K.; Beaty, B.; Coronel-Mockler, S.; Bull, S.; Estacio, R.O. A controlled trial of mobile short message service among participants in a rural cardiovascular disease prevention program. Prev. Med. Rep. 2019, 13, 126–131. [Google Scholar] [CrossRef]
- Hageman, P.A.; Mroz, J.E.; Yoerger, M.A.; Pullen, C.H. User Engagement Associated with Web-Intervention Features to Attain Clinically Meaningful Weight Loss and Weight Maintenance in Rural Women. J. Obes. 2019. [Google Scholar] [CrossRef]
- Khan, K.M.; Evans, S.S.; Bielko, S.L.; Rohlman, D.S. Efficacy of technology-based interventions to increase the use of hearing protections among adolescent farmworkers. Int. J. Audiol. 2018, 57, 124–134. [Google Scholar] [CrossRef]
- Downs, D.S.; Smyth, J.M.; Heron, K.E.; Feinberg, M.E.; Hillemeier, M.; Materia, F.T. Beliefs about Using Smartphones for Health Behavior Change: An Elicitation Study with Overweight and Obese Rural Women. J. Technol. Behav. Sci. 2019, 4, 33–41. [Google Scholar] [CrossRef]
- Dicianno, B.E.; Parmanto, B.; Fairman, A.D.; Crytzer, T.M.; Yu, D.X.; Pramana, G.; Coughenour, D.; Petrazzi, A.A. Perspectives on the evolution of mobile (mHealth) technologies and application to rehabilitation. Phys. Ther. 2015, 95, 397–405. [Google Scholar] [CrossRef] [PubMed]
- Hebden, L.; Cook, A.; Van der Ploeg, H.; King, L.; Bauman, A.; Allman-Farinelli, M. A mobile health intervention for weight management among young adults: A pilot randomised controlled trial. J. Hum. Nutr. Dietetics 2014, 27, 322–332. [Google Scholar] [CrossRef] [PubMed]
- Gan, K.O.; Allman-Farinelli, M. A scientific audit of smartphone applications for the management of obesity. Aust. N. Z. J. Public Health 2011, 35, 293–294. [Google Scholar] [CrossRef] [PubMed]
- Waterlander, W.; Whittaker, R.; McRobbie, H.; Dorey, E.; Ball, K.; Maddison, R.; Smith, K.M.; Crawford, D.; Jiang, Y.; Gu, Y. Development of an evidence-based mHealth weight management program using a formative research process. JMIR mHealth uHealth 2014, 2, e18. [Google Scholar] [CrossRef] [Green Version]
- Mhurchu, C.N.; Whittaker, R.; McRobbie, H.; Ball, K.; Crawford, D.; Michie, J.; Jiang, Y.; Maddison, R.; Waterlander, W.; Myers, K. Feasibility, acceptability and potential effectiveness of a mobile health (mHealth) weight management programme for New Zealand adults. BMC Obes. 2014, 1, 10. [Google Scholar] [CrossRef] [Green Version]
- Probst, Y.; Nguyen, D.T.; Rollo, M.; Li, W. mHealth diet and nutrition guidance. In mHealth Multidisciplinary Verticals; CRC Press: Boca Raton, FL, USA, 2014; pp. 87–104. [Google Scholar]
- McCarroll, R.; Eyles, H.; Mhurchu, C.N. Effectiveness of mobile health (mHealth) interventions for promoting healthy eating in adults: A systematic review. Prev. Med. 2017, 105, 156–168. [Google Scholar] [CrossRef]
- Mallow, J.A.; Theeke, L.A.; Walls, R.; Theeke, E.; Mallow, B.K. Part B: The feasibility and acceptability of mI SMART, a nurse-led technology intervention for multiple chronic conditions. Open J. Nurs. 2016, 6, 323. [Google Scholar] [CrossRef] [Green Version]
- What is Rural America. Available online: https://www.census.gov/library/stories/2017/08/rural-america.html (accessed on 29 August 2019).
- Service, E.R. State Fact Sheets: West Virginia. Available online: https://data.ers.usda.gov/reports.aspx?StateFIPS=54&StateName=West%20Virginia&ID=17854 (accessed on 29 August 2019).
- Müller, A.M.; Alley, S.; Schoeppe, S.; Vandelanotte, C. The effectiveness of e-& mHealth interventions to promote physical activity and healthy diets in developing countries: A systematic review. Int. J. Behav. Nutr. Phys. Act. 2016, 13, 109. [Google Scholar]
- Sheeran, P.; Maki, A.; Montanaro, E.; Avishai-Yitshak, A.; Bryan, A.; Klein, W.M.; Miles, E.; Rothman, A.J. The impact of changing attitudes, norms, and self-efficacy on health-related intentions and behavior: A meta-analysis. Health Psychol. 2016, 35, 1178. [Google Scholar] [CrossRef]
- Bailey, J.; Davies, C.; McCrossin, T.; Kiernan, M.; Skinner, R.; Steinbeck, K.; Mendis, K. Fit4YAMs: Structuring a lifestyle intervention for rural overweight and obese young adult males using participatory design. J. Adolesc. Health 2018, 62, S65–S71. [Google Scholar] [CrossRef] [Green Version]
- Martin, T. Assessing mHealth: Opportunities and barriers to patient engagement. J. Health Care Poor Underserved 2012, 23, 935–941. [Google Scholar] [CrossRef] [PubMed]
- Sankaranarayanan, J.; Sallach, R.E. Rural patients’ access to mobile phones and willingness to receive mobile phone-based pharmacy and other health technology services: A pilot study. Telemed. e-Health 2014, 20, 182–185. [Google Scholar] [CrossRef] [PubMed]
- Beck, A.M.; Eyler, A.A.; Hipp, J.A.; King, A.C.; Tabak, R.G.; Yan, Y.; Reis, R.S.; Duncan, D.D.; Gilbert, A.S.; Serrano, N.H. A multilevel approach for promoting physical activity in rural communities: A cluster randomized controlled trial. BMC Public Health 2019, 19, 126. [Google Scholar] [CrossRef] [PubMed]
- Yoost, J.; Gerlach, J.; Sinning, K.; Cyphert, H. The Use of Fitbit Technology Among Rural Obese Adolescents. J. Obes. Nutr. Disord. 2018, 10. [Google Scholar] [CrossRef]
- Chen, J.; Lieffers, J.; Bauman, A.; Hanning, R.; Allman-Farinelli, M. The use of smartphone health apps and other mobile health (mHealth) technologies in dietetic practice: A three country study. J. Hum. Nutr. Diet. 2017, 30, 439–452. [Google Scholar] [CrossRef] [PubMed]
- Gagnon, M.-P.; Ngangue, P.; Payne-Gagnon, J.; Desmartis, M. m-Health adoption by healthcare professionals: A systematic review. J. Am. Med. Inform. Assoc. 2015, 23, 212–220. [Google Scholar] [CrossRef] [Green Version]
- O’Donovan, J.; Bersin, A.; O’Donovan, C. The effectiveness of mobile health (mHealth) technologies to train healthcare professionals in developing countries: A review of the literature. BMJ Innov. 2015, 1, 33–36. [Google Scholar] [CrossRef]
- Chen, J.; Gemming, L.; Hanning, R.; Allman-Farinelli, M. Smartphone apps and the nutrition care process: Current perspectives and future considerations. Patient Educ. Couns. 2018, 101, 750–757. [Google Scholar] [CrossRef]
- Weinstein, R.S.; Lopez, A.M.; Joseph, B.A.; Erps, K.A.; Holcomb, M.; Barker, G.P.; Krupinski, E.A. Telemedicine, telehealth, and mobile health applications that work: Opportunities and barriers. Am. J. Med. 2014, 127, 183–187. [Google Scholar] [CrossRef]
- Vidmar, A.P.; Salvy, S.J.; Pretlow, R.; Mittelman, S.D.; Wee, C.P.; Fink, C.; Fox, D.S.; Raymond, J.K. An addiction-based mobile health weight loss intervention: Protocol of a randomized controlled trial. Contemp. Clin. Trials 2019, 78, 11–19. [Google Scholar] [CrossRef]
Variable | Total |
---|---|
(n = 64) | |
Demographic | |
Age (years) | 44.9 |
Gender | |
Male | 15 |
Female | 49 |
Race/Ethnicity | |
White only | 59 |
Other (including black only, Asian only, and bi-racial) | 6 |
Geography | |
Peri-urban | 26 |
Rural | 38 |
Co-morbidities | |
Diabetes | 17 |
Hypertension | 28 |
Heart Disease | 5 |
Cancer | 1 |
COPD | 4 |
Sleep apnea | 9 |
Other | 11 |
Taking prescribed medication | |
Yes | 56 |
No | 9 |
Technology capabilities | |
Internet | 63 |
Smartphone | 51 |
Use Apps | 28 |
Anthropometric | |
Weight (lbs) | 256.8 ± 63.7 |
Systolic Blood Pressure (mmHg) | 128.8 ± 16.0 |
Diastolic Blood Pressure (mmHg) | 78.3 ± 11.0 |
Total | Peri-Urban | Rural | |
---|---|---|---|
n = 64 | n = 26 | n = 38 | |
Number of Meals Logged | 169.5 ± 155.1 | 172.5 ± 142.3 | 167.5 ± 165.1 |
Number of Exercise Sessions Logged | 25.3 ± 32.1 | 23.4 ± 29.4 | 26.6 ± 34.2 |
Number of Days logged | 55.3 ± 41.4 | 57.8 ± 32.6 | 53.5 ± 46.8 |
Total RDN Interactions | 20.0 ± 17.0 | 21.6 ± 17.4 | 18.9 ± 16.8 |
GMI Improvement | 12.0 ± 10.4 | 10.0 ± 7.8 | 13.7 ± 12.2 |
Total (n = 64) | Peri-Urban (n = 26) | Rural (n = 38) | ||||
---|---|---|---|---|---|---|
Variable | 4 | 12 | 4 | 12 | 4 | 12 |
Nutrition important for health | 2.27 | 2.08 | 2.68 | 2.71 * | 1.96 | 1.61 |
GM increase access to nutritional services | 2.18 | 2.29 * | 2.43 | 2.82 * | 2.00 | 1.90 |
GM helps to reach goals | 2.25 | 3.45 * | 2.61 | 4.10 * | 2.00 | 2.97 * |
GM helps to choose healthy food | 2.40 | 2.46 * | 2.74 | 2.73 | 2.16 | 2.25 * |
A smartphone is a barrier to using GM | 6.67 | 6.41 * | 7.35 | 7.73 | 6.19 | 6.17 * |
The Internet is a barrier to using GM | 6.53 | 6.68 | 7.70 | 7.18 * | 5.69 | 6.29 |
GM is easy to understand | 2.15 | 2.25 * | 2.23 | 2.95 * | 2.10 | 1.72 |
GM description made me want to use it | 2.26 | 2.41 * | 2.52 | 3.23 * | 2.10 | 1.79 |
Daily activities prevent me from using GM | 5.62 | 5.06 * | 5.43 | 4.68 * | 5.75 | 5.34 * |
I would recommend GM | 2.05 | 2.31 * | 2.39 | 2.95 * | 1.81 | 1.83 * |
Question Topic | Themes | Related Quotes |
---|---|---|
Positives of the program | 1.1 Access to the dietitian 1.2 Range of food and meal options 1.3 Calorie counting |
|
2 Room for Improvement | 2.1 More food and restaurant options 2.2 Need for in-person meetings 2.3 Longer program access |
|
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Olfert, M.D.; Barr, M.L.; Hagedorn, R.L.; Long, D.M.; Haggerty, T.S.; Weimer, M.; Golden, J.; Maurer, M.A.; Cochran, J.D.; Hendershot, T.; et al. Feasibility of a mHealth Approach to Nutrition Counseling in an Appalachian State. J. Pers. Med. 2019, 9, 50. https://doi.org/10.3390/jpm9040050
Olfert MD, Barr ML, Hagedorn RL, Long DM, Haggerty TS, Weimer M, Golden J, Maurer MA, Cochran JD, Hendershot T, et al. Feasibility of a mHealth Approach to Nutrition Counseling in an Appalachian State. Journal of Personalized Medicine. 2019; 9(4):50. https://doi.org/10.3390/jpm9040050
Chicago/Turabian StyleOlfert, Melissa D., Makenzie L. Barr, Rebecca L. Hagedorn, Dustin M. Long, Treah S. Haggerty, Mathew Weimer, Joseph Golden, Mary Ann Maurer, Jill D. Cochran, Tracy Hendershot, and et al. 2019. "Feasibility of a mHealth Approach to Nutrition Counseling in an Appalachian State" Journal of Personalized Medicine 9, no. 4: 50. https://doi.org/10.3390/jpm9040050
APA StyleOlfert, M. D., Barr, M. L., Hagedorn, R. L., Long, D. M., Haggerty, T. S., Weimer, M., Golden, J., Maurer, M. A., Cochran, J. D., Hendershot, T., Whanger, S. L., Mason, J. D., & Hodder, S. L. (2019). Feasibility of a mHealth Approach to Nutrition Counseling in an Appalachian State. Journal of Personalized Medicine, 9(4), 50. https://doi.org/10.3390/jpm9040050