The Influence of the Galactic Bar on the Dynamics of Globular Clusters
Abstract
:1. Introduction
2. Observational Data
3. The Models
3.1. Galactic Potential Models
3.1.1. Axisymmetric Time-Independent Potential
3.1.2. Non-Axisymmetric Time-Dependent Potential with Elongated Bar/Bulge
3.2. Rotation Curves: Comparison of Axisymmetric and Non-Axisymmetric Models
4. Results and Discussion
5. Summary
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
GSE | Gaia-Sausage/Enceladus |
NFW | Navarro–Frenk–White |
References
- Amorisco, N.C. On feathers, bifurcations and shells: The dynamics of tidal streams across the mass scale. Mon. Not. R. Astron. Soc. 2015, 450, 575–591. [Google Scholar] [CrossRef]
- Chang, J.; Yuan, Z.; Xue, X.X.; Simion, I.T.; Kang, X.; Li, T.S.; Zhao, J.K.; Zhao, G. Is NGC 5824 the Core of the Progenitor of the Cetus Stream? Astrophys. J. 2020, 905, 100. [Google Scholar] [CrossRef]
- Dekel, A.; Birnboim, Y.; Engel, G.; Freundlich, J.; Goerdt, T.; Mumcuoglu, M.; Neistein, E.; Pichon, C.; Teyssier, R.; Zinger, E. Cold streams in early massive hot haloes as the main mode of galaxy formation. Nature 2009, 457, 451–454. [Google Scholar] [CrossRef] [PubMed]
- Naidu, R.P.; Conroy, C.; Bonaca, A.; Zaritsky, D.; Weinberger, R.; Ting, Y.S.; Caldwell, N.; Tacchella, S.; Han, J.J.; Speagle, J.S.; et al. Reconstructing the Last Major Merger of the Milky Way with the H3 Survey. Astrophys. J. 2021, 923, 92. [Google Scholar] [CrossRef]
- Ibata, R.A.; Gilmore, G.; Irwin, M.J. A dwarf satellite galaxy in Sagittarius. Nature 1994, 370, 194–196. [Google Scholar] [CrossRef]
- Belokurov, V.; Erkal, D.; Evans, N.W.; Koposov, S.E.; Deason, A.J. Co-formation of the disc and the stellar halo. Mon. Not. R. Astron. Soc. 2018, 478, 611–619. [Google Scholar] [CrossRef]
- Besla, G.; Kallivayalil, N.; Hernquist, L.; Robertson, B.; Cox, T.J.; van der Marel, R.P.; Alcock, C. Are the Magellanic Clouds on Their First Passage about the Milky Way? Astrophys. J. 2007, 668, 949–967. [Google Scholar] [CrossRef]
- Portail, M.; Wegg, C.; Gerhard, O.; Martinez-Valpuesta, I. Made-to-measure models of the Galactic box/peanut bulge: Stellar and total mass in the bulge region. Mon. Not. R. Astron. Soc. 2015, 448, 713–731. [Google Scholar] [CrossRef]
- Portail, M.; Gerhard, O.; Wegg, C.; Ness, M. Dynamical modelling of the galactic bulge and bar: The Milky Way’s pattern speed, stellar and dark matter mass distribution. Mon. Not. R. Astron. Soc. 2017, 465, 1621–1644. [Google Scholar] [CrossRef]
- Carollo, D.; Beers, T.C.; Lee, Y.S.; Chiba, M.; Norris, J.E.; Wilhelm, R.; Sivarani, T.; Marsteller, B.; Munn, J.A.; Bailer-Jones, C.A.L.; et al. Two stellar components in the halo of the Milky Way. Nature 2008, 451, 216. [Google Scholar] [CrossRef] [Green Version]
- Helmi, A.; Babusiaux, C.; Koppelman, H.H.; Massari, D.; Veljanoski, J.; Brown, A.G.A. The merger that led to the formation of the Milky Way’s inner stellar halo and thick disk. Nature 2018, 563, 85–88. [Google Scholar] [CrossRef] [PubMed]
- Perryman, M.A.C.; de Boer, K.S.; Gilmore, G.; Høg, E.; Lattanzi, M.G.; Lindegren, L.; Luri, X.; Mignard, F.; Pace, O.; de Zeeuw, P.T. GAIA: Composition, formation and evolution of the Galaxy. Astron. Astrophys. 2001, 369, 339–363. [Google Scholar] [CrossRef]
- Lindegren, L.; Lammers, U.; Bastian, U.; Hernández, J.; Klioner, S.; Hobbs, D.; Bombrun, A.; Michalik, D.; Ramos-Lerate, M.; Butkevich, A.; et al. Gaia Data Release 1. Astrometry: One billion positions, two million proper motions and parallaxes. Astron. Astrophys. 2016, 595, A4. [Google Scholar] [CrossRef]
- Fabricius, C.; Bastian, U.; Portell, J.; Castañeda, J.; Davidson, M.; Hambly, N.C.; Clotet, M.; Biermann, M.; Mora, A.; Busonero, D.; et al. Gaia Data Release 1. Pre-processing and source list creation. Astron. Astrophys. 2016, 595, A3. [Google Scholar] [CrossRef]
- Evans, D.W.; Riello, M.; De Angeli, F.; Carrasco, J.M.; Montegriffo, P.; Fabricius, C.; Jordi, C.; Palaversa, L.; Diener, C.; Busso, G.; et al. Gaia Data Release 2. Photometric content and validation. Astron. Astrophys. 2018, 616, A4. [Google Scholar] [CrossRef]
- Wu, Y.; Valluri, M.; Panithanpaisal, N.; Sanderson, R.E.; Freese, K.; Wetzel, A.; Sharma, S. Using action space clustering to constrain the recent accretion history of Milky Way-like galaxies. Mon. Not. R. Astron. Soc. 2022, 509, 5882–5901. [Google Scholar] [CrossRef]
- Vasiliev, E.; Baumgardt, H. Gaia EDR3 view on galactic globular clusters. Mon. Not. R. Astron. Soc. 2021, 505, 5978–6002. [Google Scholar] [CrossRef]
- Baumgardt, H.; Vasiliev, E. Accurate distances to Galactic globular clusters through a combination of Gaia EDR3, HST, and literature data. Mon. Not. R. Astron. Soc. 2021, 505, 5957–5977. [Google Scholar] [CrossRef]
- Ibata, R.; Malhan, K.; Martin, N.; Aubert, D.; Famaey, B.; Bianchini, P.; Monari, G.; Siebert, A.; Thomas, G.F.; Bellazzini, M.; et al. Charting the Galactic Acceleration Field. I. A Search for Stellar Streams with Gaia DR2 and EDR3 with Follow-up from ESPaDOnS and UVES. Astrophys. J. 2021, 914, 123. [Google Scholar] [CrossRef]
- Li, T.S.; Ji, A.P.; Pace, A.B.; Erkal, D.; Koposov, S.E.; Shipp, N.; Da Costa, G.S.; Cullinane, L.R.; Kuehn, K.; Lewis, G.F.; et al. S 5: The Orbital and Chemical Properties of One Dozen Stellar Streams. Astrophys. J. 2022, 928, 30. [Google Scholar] [CrossRef]
- Battaglia, G.; Taibi, S.; Thomas, G.F.; Fritz, T.K. Gaia early DR3 systemic motions of Local Group dwarf galaxies and orbital properties with a massive Large Magellanic Cloud. Astron. Astrophys. 2022, 657, A54. [Google Scholar] [CrossRef]
- McConnachie, A.W.; Venn, K.A. Updated Proper Motions for Local Group Dwarf Galaxies Using Gaia Early Data Release 3. Res. Notes Am. Astron. Soc. 2020, 4, 229. [Google Scholar] [CrossRef]
- Helmi, A.; de Zeeuw, P.T. Mapping the substructure in the Galactic halo with the next generation of astrometric satellites. Mon. Not. R. Astron. Soc. 2000, 319, 657–665. [Google Scholar] [CrossRef]
- Myeong, G.C.; Vasiliev, E.; Iorio, G.; Evans, N.W.; Belokurov, V. Evidence for two early accretion events that built the Milky Way stellar halo. Mon. Not. R. Astron. Soc. 2019, 488, 1235–1247. [Google Scholar] [CrossRef]
- Reina-Campos, M.; Kruijssen, J.M.D.; Pfeffer, J.L.; Bastian, N.; Crain, R.A. Formation histories of stars, clusters, and globular clusters in the E-MOSAICS simulations. Mon. Not. R. Astron. Soc. 2019, 486, 5838–5852. [Google Scholar] [CrossRef]
- Malhan, K.; Ibata, R.A.; Sharma, S.; Famaey, B.; Bellazzini, M.; Carlberg, R.G.; D’Souza, R.; Yuan, Z.; Martin, N.F.; Thomas, G.F. The Global Dynamical Atlas of the Milky Way Mergers: Constraints from Gaia EDR3-based Orbits of Globular Clusters, Stellar Streams, and Satellite Galaxies. Astrophys. J. 2022, 926, 107. [Google Scholar] [CrossRef]
- Malhan, K. A New Member of the Milky Way’s Family Tree: Characterizing the Pontus Merger of Our Galaxy. Astrophys. J. Lett. 2022, 930, L9. [Google Scholar] [CrossRef]
- Pagnini, G.; Di Matteo, P.; Khoperskov, S.; Mastrobuono-Battisti, A.; Haywood, M.; Renaud, F.; Combes, F. The distribution of globular clusters in kinematic spaces does not trace the accretion history of the host galaxy. arXiv 2022, arXiv:2210.04245. [Google Scholar]
- Binney, J.; Tremaine, S. Galactic Dynamics; Princeton University Press: Princeton, NJ, USA, 2011; Volume 20. [Google Scholar]
- Chemel, A.A.; Glushkova, E.V.; Dambis, A.K.; Rastorguev, A.S.; Yalyalieva, L.N.; Klinichev, A.D. Globular Clusters: Absolute Proper Motions and Galactic Orbits. Astrophys. Bull. 2018, 73, 162–177. [Google Scholar] [CrossRef]
- Hattori, K.; Erkal, D.; Sanders, J.L. Shepherding tidal debris with the Galactic bar: The Ophiuchus stream. Mon. Not. R. Astron. Soc. 2016, 460, 497–512. [Google Scholar] [CrossRef]
- Hunt, J.A.S.; Bovy, J. The 4:1 outer Lindblad resonance of a long-slow bar as an explanation for the Hercules stream. Mon. Not. R. Astron. Soc. 2018, 477, 3945–3953. [Google Scholar] [CrossRef]
- Robitaille, T.P.; Tollerud, E.J.; Greenfield, P.; Droettboom, M.; Bray, E.; Aldcroft, T.; Davis, M.; Ginsburg, A.; Price-Whelan, A.M. et al. [Astropy Collaboration] Astropy: A community Python package for astronomy. Astron. Astrophys. 2013, 558, A33. [Google Scholar] [CrossRef]
- Price-Whelan, A.M.; Sipocz, B.M.; Günther, H.M.; Lim, P.L.; Crawford, S.M.; Conseil, S.; Shupe, D.L.; Craig, M.W.; Dencheva, N. et al. [Astropy Collaboration] The Astropy Project: Building an Open-science Project and Status of the v2.0 Core Package. Astron. J. 2018, 156, 123. [Google Scholar] [CrossRef]
- Price-Whelan, A.M.; Lim, P.L.; Earl, N.; Starkman, N.; Bradley, L.; Shupe, D.L.; Patil, A.A.; Corrales, L.; Brasseur, C.E. et al. [Astropy Collaboration] The Astropy Project: Sustaining and Growing a Community-oriented Open-source Project and the Latest Major Release (v5.0) of the Core Package. Astrophys. J. 2022, 935, 167. [Google Scholar] [CrossRef]
- Abuter, R.; Amorim, A.; Anugu, N.; Bauböck, M.; Benisty, M.; Berger, J.P.; Blind, N.; Bonnet, H.; Brandner, W. et al. [GRAVITY Collaboration] Detection of the gravitational redshift in the orbit of the star S2 near the Galactic centre massive black hole. Astron. Astrophys. 2018, 615, L15. [Google Scholar] [CrossRef]
- Drimmel, R.; Poggio, E. On the Solar Velocity. Res. Notes Am. Astron. Soc. 2018, 2, 210. [Google Scholar] [CrossRef]
- Reid, M.J.; Brunthaler, A. The Proper Motion of Sagittarius A*. II. The Mass of Sagittarius A*. Astrophys. J. 2004, 616, 872–884. [Google Scholar] [CrossRef]
- Bennett, M.; Bovy, J. Vertical waves in the solar neighbourhood in Gaia DR2. Mon. Not. R. Astron. Soc. 2019, 482, 1417–1425. [Google Scholar] [CrossRef]
- Bovy, J. galpy: A python Library for Galactic Dynamics. Astrophys. J. Suppl. Ser. 2015, 216, 29. [Google Scholar] [CrossRef]
- Alexander, R. Solving Ordinary Differential Equations I: Nonstiff Problems (E. Hairer, SP Norsett, and G. Wanner). SIAM Rev. 1990, 32, 485–486. [Google Scholar] [CrossRef]
- Griffen, B.F.; Ji, A.P.; Dooley, G.A.; Gómez, F.A.; Vogelsberger, M.; O’Shea, B.W.; Frebel, A. The Caterpillar Project: A Large Suite of Milky Way Sized Halos. Astrophys. J. 2016, 818, 10. [Google Scholar] [CrossRef]
- Sellwood, J.A.; Wilkinson, A. Dynamics of barred galaxies. Rep. Prog. Phys. 1993, 56, 173–256. [Google Scholar] [CrossRef]
- Pfenniger, D.; Friedli, D. Structure and dynamics of 3D N-body barred galaxies. Astron. Astrophys. 1991, 252, 75–93. [Google Scholar]
- McMillan, P.J. The mass distribution and gravitational potential of the Milky Way. Mon. Not. R. Astron. Soc. 2017, 465, 76–94. [Google Scholar] [CrossRef]
- Bissantz, N.; Gerhard, O. Spiral arms, bar shape and bulge microlensing in the Milky Way. Mon. Not. R. Astron. Soc. 2002, 330, 591–608. [Google Scholar] [CrossRef]
- Gilmore, G.; Reid, N. New light on faint stars—III. Galactic structure towards the South Pole and the Galactic thick disc. Mon. Not. R. Astron. Soc. 1983, 202, 1025–1047. [Google Scholar] [CrossRef]
- Navarro, J.F.; Frenk, C.S.; White, S.D.M. A Universal Density Profile from Hierarchical Clustering. Astrophys. J. 1997, 490, 493–508. [Google Scholar] [CrossRef]
- Hernquist, L.; Ostriker, J.P. A Self-consistent Field Method for Galactic Dynamics. Astrophys. J. 1992, 386, 375. [Google Scholar] [CrossRef]
- Kuijken, K.; Dubinski, J. Nearly Self-Consistent Disc / Bulge / Halo Models for Galaxies. Mon. Not. R. Astron. Soc. 1995, 277, 1341. [Google Scholar] [CrossRef]
- Yeh, F.C.; Carraro, G.; Korchagin, V.I.; Pianta, C.; Ortolani, S. The origin of globular cluster FSR 1758. Astron. Astrophys. 2020, 635, A125. [Google Scholar] [CrossRef]
- Kent, S.M. Galactic Structure from the Spacelab Infrared Telescope. III. A Dynamical Model for the Milky Way Bulge. Astrophys. J. 1992, 387, 181. [Google Scholar] [CrossRef]
- Zhao, H.; Spergel, D.N.; Rich, R.M. Signature of Bulge Triaxiality From Kinematics in Baade’s Window. Astron. J. 1994, 108, 2154. [Google Scholar] [CrossRef] [Green Version]
- Bland-Hawthorn, J.; Gerhard, O. The Galaxy in Context: Structural, Kinematic, and Integrated Properties. Annu. Rev. Astron. Astrophys. 2016, 54, 529–596. [Google Scholar] [CrossRef]
- Kipper, R.; Tenjes, P.; Tuvikene, T.; Ganeshaiah Veena, P.; Tempel, E. Quantifying torque from the Milky Way bar using Gaia DR2. Mon. Not. R. Astron. Soc. 2020, 494, 3358–3367. [Google Scholar] [CrossRef]
- Pfenniger, D. The 3D dynamics of barred galaxies. Astron. Astrophys. 1984, 134, 373–386. [Google Scholar]
- Sanders, J.L.; Smith, L.; Evans, N.W.; Lucas, P. Transverse kinematics of the Galactic bar-bulge from VVV and Gaia. Mon. Not. R. Astron. Soc. 2019, 487, 5188–5208. [Google Scholar] [CrossRef]
- Wegg, C.; Gerhard, O. Mapping the three-dimensional density of the Galactic bulge with VVV red clump stars. Mon. Not. R. Astron. Soc. 2013, 435, 1874–1887. [Google Scholar] [CrossRef]
- Debattista, V.P.; Gerhard, O.; Sevenster, M.N. The pattern speed of the OH/IR stars in the Milky Way. Mon. Not. R. Astron. Soc. 2002, 334, 355–368. [Google Scholar] [CrossRef]
- Clarke, J.P.; Wegg, C.; Gerhard, O.; Smith, L.C.; Lucas, P.W.; Wylie, S.M. The Milky Way bar/bulge in proper motions: A 3D view from VIRAC and Gaia. Mon. Not. R. Astron. Soc. 2019, 489, 3519–3538. [Google Scholar] [CrossRef]
- Shen, J.; Zheng, X.W. The bar and spiral arms in the Milky Way: Structure and kinematics. Res. Astron. Astrophys. 2020, 20, 159. [Google Scholar] [CrossRef]
- Sormani, M.C.; Binney, J.; Magorrian, J. Gas flow in barred potentials—III. Effects of varying the quadrupole. Mon. Not. R. Astron. Soc. 2015, 454, 1818–1839. [Google Scholar] [CrossRef]
- Bovy, J.; Leung, H.W.; Hunt, J.A.S.; Mackereth, J.T.; García-Hernández, D.A.; Roman-Lopes, A. Life in the fast lane: A direct view of the dynamics, formation, and evolution of the Milky Way’s bar. Mon. Not. R. Astron. Soc. 2019, 490, 4740–4747. [Google Scholar] [CrossRef] [Green Version]
Name | R.A. (deg) | Decl. (deg) | (kpc) | () | () | () |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 |
Pontus clusters: | ||||||
NGC 6341/M 92 | 259.281 | 43.136 | 8.50 (0.07) | −120.55 (0.27) | −4.9349 (0.0243) | −0.6251 (0.0239) |
NGC 6779/M 56 | 289.148 | 30.183 | 10.43 (0.14) | −136.97 (0.45) | −2.0179 (0.0251) | 1.6176 (0.0252) |
NGC 6205/M 13 | 250.422 | 36.460 | 7.42 (0.08) | −244.90 (0.30) | −3.1493 (0.0227) | −2.5735 (0.0231) |
NGC 7099/M 30 | 325.092 | −23.180 | 8.46 (0.09) | −185.19 (0.17) | −0.7374 (0.0246) | −7.2987 (0.0244) |
NGC 5286 | 206.612 | −51.374 | 11.10 (0.14) | 62.38 (0.40) | 0.1984 (0.0255) | −0.1533 (0.0253) |
NGC 288 | 13.188 | −26.583 | 8.99 (0.09) | −44.45 (0.13) | 4.1641 (0.0241) | −5.7053 (0.0243) |
NGC 362 | 15.809 | −70.849 | 8.83 (0.10) | 223.12 (0.28) | 6.6935 (0.0245) | −2.5354 (0.0242) |
tentative cluster: | ||||||
NGC 6864/M 75 | 301.520 | −21.921 | 20.52 (0.45) | −189.08 (1.12) | −0.5975 (0.0262) | −2.8099 (0.0258) |
Gaia-Sausage/Enceladus clusters: | ||||||
NGC 6229 | 251.745 | 47.528 | 30.11 (0.47) | −137.89 (0.71) | −1.1706 (0.0263) | −0.4665 (0.0267) |
NGC 7492 | 347.111 | −15.611 | 24.39 (0.57) | −176.70 (0.27) | 0.7558 (0.0279) | −2.3200 (0.0276) |
NGC 6584 | 274.657 | −52.216 | 13.61 (0.17) | 260.64 (1.58) | −0.0898 (0.0258) | −7.2021 (0.0254) |
NGC 5634 | 217.405 | −5.976 | 25.96 (0.62) | −16.07 (0.60) | −1.6918 (0.0269) | −1.4781 (0.0263) |
IC 1257 | 261.785 | −7.093 | 26.59 (1.43) | −137.97 (2.04) | −1.0069 (0.0400) | −1.4916 (0.0321) |
NGC 1851 | 78.528 | −40.047 | 11.95 (0.13) | 321.40 (1.55) | 2.1452 (0.0240) | −0.6496 (0.0242) |
NGC 2298 | 102.248 | −36.005 | 9.83 (0.17) | 147.15 (0.57) | 3.3195 (0.0255) | −2.1755 (0.0256) |
NGC 4147 | 182.526 | 18.543 | 18.54 (0.21) | 179.35 (0.31) | −1.7070 (0.0273) | −2.0896 (0.0274) |
NGC 1261 | 48.068 | −55.216 | 16.40 (0.19) | 71.34 (0.21) | 1.5957 (0.0249) | −2.0642 (0.0251) |
NGC 6981/M 72 | 313.365 | −12.537 | 16.66 (0.18) | −331.39 (1.47) | −1.2736 (0.0262) | −3.3608 (0.0257) |
NGC 1904/M 79 | 81.044 | −24.524 | 13.08 (0.18) | 205.76 (0.20) | 2.4690 (0.0249) | −1.5938 (0.0251) |
NGC 7089/M 2 | 323.363 | −0.823 | 11.69 (0.11) | −3.78 (0.30) | 3.4346 (0.0247) | −2.1588 (0.0244) |
NGC 5904/M 5 | 229.638 | 2.081 | 7.48 (0.06) | 53.50 (0.25) | 4.0856 (0.0230) | −9.8696 (0.0231) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tkachenko, R.; Korchagin, V.; Jmailova, A.; Carraro, G.; Jmailov, B. The Influence of the Galactic Bar on the Dynamics of Globular Clusters. Galaxies 2023, 11, 26. https://doi.org/10.3390/galaxies11010026
Tkachenko R, Korchagin V, Jmailova A, Carraro G, Jmailov B. The Influence of the Galactic Bar on the Dynamics of Globular Clusters. Galaxies. 2023; 11(1):26. https://doi.org/10.3390/galaxies11010026
Chicago/Turabian StyleTkachenko, Roman, Vladimir Korchagin, Anna Jmailova, Giovanni Carraro, and Boris Jmailov. 2023. "The Influence of the Galactic Bar on the Dynamics of Globular Clusters" Galaxies 11, no. 1: 26. https://doi.org/10.3390/galaxies11010026
APA StyleTkachenko, R., Korchagin, V., Jmailova, A., Carraro, G., & Jmailov, B. (2023). The Influence of the Galactic Bar on the Dynamics of Globular Clusters. Galaxies, 11(1), 26. https://doi.org/10.3390/galaxies11010026