Jet Feedback in Star-Forming Galaxies
Abstract
:1. Introduction
2. Jet–Environment Interaction in General
3. The Central Kiloparsec
4. Small Radio Galaxies and Jet-Induced Star Formation
5. Emission Line Lobes and Alignment Effect
6. Associated Absorption Line Systems
7. Indirect Feedback via Halo Heating
8. Summary
Funding
Acknowledgments
Conflicts of Interest
References
- Magorrian, J.; Tremaine, S.; Richstone, D.; Bender, R.; Bower, G.; Dressler, A.; Faber, S.M.; Gebhardt, K.; Green, R.; Grillmair, C.; et al. The Demography of Massive Dark Objects in Galaxy Centers. Astron. J. 1998, 115, 2285–2305. [Google Scholar] [CrossRef]
- Ferrarese, L.; Merritt, D. A Fundamental Relation between Supermassive Black Holes and Their Host Galaxies. Astrophys. J. 2000, 539, L9–L12. [Google Scholar] [CrossRef]
- Häring, N.; Rix, H.W. On the Black Hole Mass-Bulge Mass Relation. Astrophys. J. 2004, 604, L89–L92. [Google Scholar] [CrossRef]
- Onken, C.A.; Ferrarese, L.; Merritt, D.; Peterson, B.M.; Pogge, R.W.; Vestergaard, M.; Wandel, A. Supermassive Black Holes in Active Galactic Nuclei. II. Calibration of the Black Hole Mass-Velocity Dispersion Relationship for Active Galactic Nuclei. Astrophys. J. 2004, 615, 645–651. [Google Scholar] [CrossRef]
- Gültekin, K.; Richstone, D.O.; Gebhardt, K.; Lauer, T.R.; Tremaine, S.; Aller, M.C.; Bender, R.; Dressler, A.; Faber, S.M.; Filippenko, A.V.; et al. The M-σ and M-L Relations in Galactic Bulges, and Determinations of Their Intrinsic Scatter. Astrophys. J. 2009, 698, 198–221. [Google Scholar] [CrossRef]
- Bennert, V.N.; Auger, M.W.; Treu, T.; Woo, J.H.; Malkan, M.A. The Relation between Black Hole Mass and Host Spheroid Stellar Mass Out to z2. Astrophys. J. 2011, 742, 107. [Google Scholar] [CrossRef]
- Bennert, V.N.; Treu, T.; Ding, X.; Stomberg, I.; Birrer, S.; Snyder, T.; Malkan, M.A.; Stephens, A.W.; Auger, M.W. A Local Baseline of the Black Hole Mass Scaling Relations for Active Galaxies. IV. Correlations Between MBH and Host Galaxy σ, Stellar Mass, and Luminosity. Astrophys. J. 2021, 921, 36. [Google Scholar] [CrossRef]
- Batiste, M.; Bentz, M.C.; Raimundo, S.I.; Vestergaard, M.; Onken, C.A. Recalibration of the M BH-σ ⋆ Relation for AGN. Astrophys. J. 2017, 838, L10. [Google Scholar] [CrossRef]
- Bentz, M.C.; Manne-Nicholas, E. Black Hole – Galaxy Scaling Relationships for Active Galactic Nuclei with Reverberation Masses. Astrophys. J. 2018, 864, 1469. [Google Scholar] [CrossRef]
- Silk, J.; Rees, M.J. Quasars and galaxy formation. Astron. Astrophys. 1998, 331, L1–L4. [Google Scholar]
- King, A. The Supermassive Black Hole—Galaxy Connection. Space Sci. Rev. 2014, 183, 427–451. [Google Scholar] [CrossRef]
- Çatmabacak, O.; Feldmann, R.; Anglés-Alcázar, D.; Faucher-Giguère, C.A.; Hopkins, P.F.; Kereš, D. Black hole-galaxy scaling relations in FIRE: The importance of black hole location and mergers. Mon. Not. R. Astron. Soc. 2022, 511, 506–535. [Google Scholar] [CrossRef]
- Sijacki, D.; Vogelsberger, M.; Genel, S.; Springel, V.; Torrey, P.; Snyder, G.F.; Nelson, D.; Hernquist, L. The Illustris simulation: The evolving population of black holes across cosmic time. Mon. Not. R. Astron. Soc. 2015, 452, 575–596. [Google Scholar] [CrossRef]
- Li, Y.; Habouzit, M.; Genel, S.; Somerville, R.; Terrazas, B.A.; Bell, E.F.; Pillepich, A.; Nelson, D.; Weinberger, R.; Rodriguez-Gomez, V.; et al. Correlations between Black Holes and Host Galaxies in the Illustris and IllustrisTNG Simulations. Astrophys. J. 2020, 895, 102. [Google Scholar] [CrossRef]
- Ding, X.; Silverman, J.D.; Treu, T.; Li, J.; Bhowmick, A.K.; Menci, N.; Volonteri, M.; Blecha, L.; Matteo, T.D.; Dubois, Y. Concordance between Observations and Simulations in the Evolution of the Mass Relation between Supermassive Black Holes and Their Host Galaxies. Astrophys. J. 2022, 933, 132. [Google Scholar] [CrossRef]
- Croton, D.J.; Springel, V.; White, S.D.M.; De Lucia, G.; Frenk, C.S.; Gao, L.; Jenkins, A.; Kauffmann, G.; Navarro, J.F.; Yoshida, N. The many lives of active galactic nuclei: Cooling flows, black holes and the luminosities and colours of galaxies. Mon. Not. R. Astron. Soc. 2006, 365, 11–28. [Google Scholar] [CrossRef]
- Sijacki, D.; Springel, V.; Di Matteo, T.; Hernquist, L. A unified model for AGN feedback in cosmological simulations of structure formation. Mon. Not. R. Astron. Soc. 2007, 380, 877–900. [Google Scholar] [CrossRef]
- Correa, C.A.; Schaye, J.; Trayford, J.W. The origin of the red-sequence galaxy population in the EAGLE simulation. Mon. Not. R. Astron. Soc. 2019, 484, 4401–4412. [Google Scholar] [CrossRef]
- Davé, R.; Anglés-Alcázar, D.; Narayanan, D.; Li, Q.; Rafieferantsoa, M.H.; Appleby, S. SIMBA: Cosmological simulations with black hole growth and feedback. Mon. Not. R. Astron. Soc. 2019, 486, 2827–2849. [Google Scholar] [CrossRef]
- Rodríguez Montero, F.; Davé, R.; Wild, V.; Anglés-Alcázar, D.; Narayanan, D. Mergers, starbursts, and quenching in the SIMBA simulation. Mon. Not. R. Astron. Soc. 2019, 490, 2139–2154. [Google Scholar] [CrossRef]
- Davies, J.J.; Pontzen, A.; Crain, R.A. Galaxy mergers can initiate quenching by unlocking an AGN-driven transformation of the baryon cycle. Mon. Not. R. Astron. Soc. 2022, 515, 1430–1443. [Google Scholar] [CrossRef]
- Xu, Y.; Luo, Y.; Kang, X.; Li, Z.; Li, Z.; Wang, P.; Libeskind, N. Quenching of Massive Disk Galaxies in the IllustrisTNG Simulation. Astrophys. J. 2022, 928, 100. [Google Scholar] [CrossRef]
- Best, P.N.; Kaiser, C.R.; Heckman, T.M.; Kauffmann, G. AGN-controlled cooling in elliptical galaxies. Mon. Not. R. Astron. Soc. 2006, 368, L67–L71. [Google Scholar] [CrossRef]
- Kaviraj, S.; Shabala, S.S.; Deller, A.T.; Middelberg, E. Radio AGN in spiral galaxies. Mon. Not. R. Astron. Soc. 2015, 454, 1595–1604. [Google Scholar] [CrossRef]
- Turner, R.J.; Shabala, S.S. Energetics and Lifetimes of Local Radio Active Galactic Nuclei. Astrophys. J. 2015, 806, 59. [Google Scholar] [CrossRef]
- Hardcastle, M.J.; Williams, W.L.; Best, P.N.; Croston, J.H.; Duncan, K.J.; Röttgering, H.J.A.; Sabater, J.; Shimwell, T.W.; Tasse, C.; Callingham, J.R.; et al. Radio-loud AGN in the first LoTSS data release. The lifetimes and environmental impact of jet-driven sources. Astron. Astrophys. 2019, 622, A12. [Google Scholar] [CrossRef]
- Sabater, J.; Best, P.N.; Hardcastle, M.J.; Shimwell, T.W.; Tasse, C.; Williams, W.L.; Brüggen, M.; Cochrane, R.K.; Croston, J.H.; de Gasperin, F.; et al. The LoTSS view of radio AGN in the local Universe. The most massive galaxies are always switched on. Astron. Astrophys. 2019, 622, A17. [Google Scholar] [CrossRef]
- Davis, F.; Kaviraj, S.; Hardcastle, M.J.; Martin, G.; Jackson, R.A.; Kraljic, K.; Malek, K.; Peirani, S.; Smith, D.J.B.; Volonteri, M.; et al. Radio AGN in nearby dwarf galaxies: The important role of AGN in dwarf galaxy evolution. Mon. Not. R. Astron. Soc. 2022, 511, 4109–4122. [Google Scholar] [CrossRef]
- McNamara, B.R.; Nulsen, P.E.J. Heating Hot Atmospheres with Active Galactic Nuclei. Annu. Rev. Astron. Astrophys. 2007, 45, 117–175. [Google Scholar] [CrossRef]
- Fabian, A.C. Observational Evidence of Active Galactic Nuclei Feedback. Annu. Rev. Astron. Astrophys. 2012, 50, 455–489. [Google Scholar] [CrossRef]
- Hardcastle, M.J.; Croston, J.H. Radio galaxies and feedback from AGN jets. New Astron. Rev. 2020, 88, 101539. [Google Scholar] [CrossRef]
- Reynolds, C.S.; Heinz, S.; Begelman, M.C. Shocks and Sonic Booms in the Intracluster Medium: X-ray Shells and Radio Galaxy Activity. Astrophys. J. 2001, 549, L179–L182. [Google Scholar] [CrossRef]
- Krause, M. Very light jets II: Bipolar large scale simulations in King atmospheres. Astron. Astrophys. 2005, 431, 45–64. [Google Scholar] [CrossRef]
- Dopita, M.A.; Groves, B.A.; Sutherland, R.S.; Binette, L.; Cecil, G. Are the Narrow-Line Regions in Active Galaxies Dusty and Radiation Pressure Dominated? Astrophys. J. 2002, 572, 753–761. [Google Scholar] [CrossRef]
- Stern, J.; Laor, A.; Baskin, A. Radiation pressure confinement-I. Ionized gas in the ISM of AGN hosts. Mon. Not. R. Astron. Soc. 2014, 438, 901–921. [Google Scholar] [CrossRef]
- Davies, R.L.; Dopita, M.A.; Kewley, L.; Groves, B.; Sutherland, R.; Hampton, E.J.; Shastri, P.; Kharb, P.; Bhatt, H.; Scharwächter, J.; et al. The Role of Radiation Pressure in the Narrow Line Regions of Seyfert Host Galaxies. Astrophys. J. 2016, 824, 50. [Google Scholar] [CrossRef]
- Bianchi, S.; Guainazzi, M.; Laor, A.; Stern, J.; Behar, E. Evidence for radiation pressure compression in the X-ray narrow-line region of Seyfert galaxies. Mon. Not. R. Astron. Soc. 2019, 485, 416–427. [Google Scholar] [CrossRef]
- Somalwar, J.; Johnson, S.D.; Stern, J.; Goulding, A.D.; Greene, J.E.; Zakamska, N.L.; Alexandroff, R.M.; Chen, H.W. Spatially Resolved UV Diagnostics of AGN Feedback: Radiation Pressure Dominates in a Prototypical Quasar-driven Superwind. Astrophys. J. 2020, 890, L28. [Google Scholar] [CrossRef]
- Deconto-Machado, A.; Riffel, R.A.; Ilha, G.S.; Rembold, S.B.; Storchi-Bergmann, T.; Riffel, R.; Schimoia, J.S.; Schneider, D.P.; Bizyaev, D.; Feng, S.; et al. Ionised gas kinematics in MaNGA AGN. Extents of the narrow-line and kinematically disturbed regions. Astron. Astrophys. 2022, 659, A131. [Google Scholar] [CrossRef]
- Schartmann, M.; Krause, M.; Burkert, A. Radiation feedback on dusty clouds during Seyfert activity. Mon. Not. R. Astron. Soc. 2011, 415, 741–752. [Google Scholar] [CrossRef]
- Krause, M.; Schartmann, M.; Burkert, A. Magnetohydrodynamic stability of broad line region clouds. Mon. Not. R. Astron. Soc. 2012, 425, 3172–3187. [Google Scholar] [CrossRef]
- Krumholz, M.R.; Thompson, T.A. Direct Numerical Simulation of Radiation Pressure-driven Turbulence and Winds in Star Clusters and Galactic Disks. Astrophys. J. 2012, 760, 155. [Google Scholar] [CrossRef]
- Proga, D.; Waters, T. Cloud Formation and Acceleration in a Radiative Environment. Astrophys. J. 2015, 804, 137. [Google Scholar] [CrossRef]
- Waters, T.; Proga, D. On the efficient acceleration of clouds in active galactic nuclei. Mon. Not. R. Astron. Soc. 2016, 460, L79–L83. [Google Scholar] [CrossRef]
- Proga, D.; Waters, T.; Dyda, S.; Zhu, Z. Thermal Instability in Radiation Hydrodynamics: Instability Mechanisms, Position-dependent S-curves, and Attenuation Curves. Astrophys. J. 2022, 935, L37. [Google Scholar] [CrossRef]
- Das, V.; Crenshaw, D.M.; Kraemer, S.B. Dynamics of the Narrow-Line Region in the Seyfert 2 Galaxy NGC 1068. Astrophys. J. 2007, 656, 699–708. [Google Scholar] [CrossRef]
- Meena, B.; Crenshaw, D.M.; Schmitt, H.R.; Revalski, M.; Fischer, T.C.; Polack, G.E.; Kraemer, S.B.; Dashtamirova, D. Radiative Driving of the AGN Outflows in the Narrow-line Seyfert 1 Galaxy NGC 4051. Astrophys. J. 2021, 916, 31. [Google Scholar] [CrossRef]
- Rawlings, S.; Jarvis, M.J. Evidence that powerful radio jets have a profound influence on the evolution of galaxies. Mon. Not. R. Astron. Soc. 2004, 355, L9–L12. [Google Scholar] [CrossRef]
- Harris, D.E.; Carilli, C.L.; Perley, R.A. X-ray emission from the radio hotspots of Cygnus A. Nature 1994, 367, 713–716. [Google Scholar] [CrossRef]
- Hardcastle, M.J.; Harris, D.E.; Worrall, D.M.; Birkinshaw, M. The Origins of X-Ray Emission from the Hot Spots of FR II Radio Sources. Astrophys. J. 2004, 612, 729–748. [Google Scholar] [CrossRef]
- Sunada, Y.; Morimoto, A.; Tashiro, M.S.; Terada, Y.; Katsuda, S.; Sato, K.; Tateishi, D.; Sasaki, N. NuSTAR discovery of the hard X-ray emission and a wide-band X-ray spectrum from the Pictor A western hotspot. Publ. Astron. Soc. Jpn. 2022, 74, 602–611. [Google Scholar] [CrossRef]
- Britzen, S.; Vermeulen, R.C.; Campbell, R.M.; Taylor, G.B.; Pearson, T.J.; Readhead, A.C.S.; Xu, W.; Browne, I.W.; Henstock, D.R.; Wilkinson, P. A multi-epoch VLBI survey of the kinematics of CFJ sources. II. Analysis of the kinematics. Astron. Astrophys. 2008, 484, 119–142. [Google Scholar] [CrossRef]
- Lister, M.L.; Aller, M.F.; Aller, H.D.; Homan, D.C.; Kellermann, K.I.; Kovalev, Y.Y.; Pushkarev, A.B.; Richards, J.L.; Ros, E.; Savolainen, T. MOJAVE. X. Parsec-scale Jet Orientation Variations and Superluminal Motion in Active Galactic Nuclei. Astron. J. 2013, 146, 120. [Google Scholar] [CrossRef]
- Lister, M.L.; Aller, M.F.; Aller, H.D.; Homan, D.C.; Kellermann, K.I.; Kovalev, Y.Y.; Pushkarev, A.B.; Richards, J.L.; Ros, E.; Savolainen, T. MOJAVE: XIII. Parsec-scale AGN Jet Kinematics Analysis Based on 19 years of VLBA Observations at 15 GHz. Astron. J. 2016, 152, 12. [Google Scholar] [CrossRef]
- Lister, M.L.; Homan, D.C.; Hovatta, T.; Kellermann, K.I.; Kiehlmann, S.; Kovalev, Y.Y.; Max-Moerbeck, W.; Pushkarev, A.B.; Readhead, A.C.S.; Ros, E.; et al. MOJAVE. XVII. Jet Kinematics and Parent Population Properties of Relativistically Beamed Radio-loud Blazars. Astrophys. J. 2019, 874, 43. [Google Scholar] [CrossRef]
- Lister, M. AGN Jet Kinematics on Parsec-Scales: The MOJAVE Program. Galaxies 2016, 4, 29. [Google Scholar] [CrossRef]
- Weaver, Z.R.; Jorstad, S.G.; Marscher, A.P.; Morozova, D.A.; Troitsky, I.S.; Agudo, I.; Gómez, J.L.; Lähteenmäki, A.; Tammi, J.; Tornikoski, M. Kinematics of Parsec-scale Jets of Gamma-Ray Blazars at 43 GHz during 10 yr of the VLBA-BU-BLAZAR Program. Astrophys. J. Suppl. Ser. 2022, 260, 12. [Google Scholar] [CrossRef]
- Komissarov, S.S.; Barkov, M.V.; Vlahakis, N.; Königl, A. Magnetic acceleration of relativistic active galactic nucleus jets. Mon. Not. R. Astron. Soc. 2007, 380, 51–70. [Google Scholar] [CrossRef]
- Porth, O.; Fendt, C. Acceleration and Collimation of Relativistic Magnetohydrodynamic Disk Winds. Astrophys. J. 2010, 709, 1100–1118. [Google Scholar] [CrossRef]
- Gracia, J.; Vlahakis, N.; Agudo, I.; Tsinganos, K.; Bogovalov, S.V. Synthetic Synchrotron Emission Maps from MHD Models for the Jet of M87. Astrophys. J. 2009, 695, 503–510. [Google Scholar] [CrossRef]
- Chatterjee, K.; Liska, M.; Tchekhovskoy, A.; Markoff, S.B. Accelerating AGN jets to parsec scales using general relativistic MHD simulations. Mon. Not. R. Astron. Soc. 2019, 490, 2200–2218. [Google Scholar] [CrossRef]
- Alexander, P. Models of young powerful radio sources. Mon. Not. R. Astron. Soc. 2006, 368, 1404–1410. [Google Scholar] [CrossRef]
- Krause, M.; Alexander, P.; Riley, J.; Hopton, D. A new connection between the jet opening angle and the large-scale morphology of extragalactic radio sources. Mon. Not. R. Astron. Soc. 2012, 427, 3196–32089. [Google Scholar] [CrossRef]
- Bicknell, G.V. A model for the surface brightness of a turbulent low Mach number jet. I-Theoretical development and application to 3C 31. Astrophys. J. 1984, 286, 68–87. [Google Scholar] [CrossRef]
- Massaglia, S.; Bodo, G.; Rossi, P.; Capetti, S.; Mignone, A. Making Faranoff-Riley I radio sources. I. Numerical hydrodynamic 3D simulations of low-power jets. Astron. Astrophys. 2016, 596, A12. [Google Scholar] [CrossRef]
- Meisenheimer, K.; Yates, M.G.; Roeser, H.J. The synchrotron spectra of radio hot spots. II. Infrared imaging. Astron. Astrophys. 1997, 325, 57–73. [Google Scholar]
- Hardcastle, M.J.; Croston, J.H.; Kraft, R.P. A Chandra Study of Particle Acceleration in the Multiple Hot Spots of Nearby Radio Galaxies. Astrophys. J. 2007, 669, 893–904. [Google Scholar] [CrossRef]
- Norman, M.L.; Winkler, K.H.A.; Smarr, L.; Smith, M.D. Structure and dynamics of supersonic jets. Astron. Astrophys. 1982, 113, 285–302. [Google Scholar]
- Alexander, P.; Pooley, G.G. Cygnus A–Study of a Radio Galaxy; Carilli, C.L., Harris, D.E., Eds.; Cambridge University Press: Cambridge, UK, 1996; p. 149. [Google Scholar]
- Krause, M. Very light jets. I. Axisymmetric parameter study and analytic approximation. Astron. Astrophys. 2003, 398, 113–125. [Google Scholar] [CrossRef]
- Gaibler, V.; Krause, M.; Camenzind, M. Very light magnetized jets on large scales-I. Evolution and magnetic fields. Mon. Not. R. Astron. Soc. 2009, 400, 1785–1802. [Google Scholar] [CrossRef]
- Hardcastle, M.J.; Krause, M.G.H. Numerical modelling of the lobes of radio galaxies in cluster environments. Mon. Not. R. Astron. Soc. 2013, 430, 174–196. [Google Scholar] [CrossRef]
- Hardcastle, M.J.; Krause, M.G.H. Numerical modelling of the lobes of radio galaxies in cluster environments-II. Magnetic field configuration and observability. Mon. Not. R. Astron. Soc. 2014, 443, 1482–1499. [Google Scholar] [CrossRef]
- Iles, E.J.; Pettitt, A.R.; Okamoto, T. Differences in star formation activity between tidally triggered and isolated bars: A case study of NGC 4303 and NGC 3627. Mon. Not. R. Astron. Soc. 2022, 510, 3899–3916. [Google Scholar] [CrossRef]
- Kennicutt, R.C.; Evans, N.J. Star Formation in the Milky Way and Nearby Galaxies. Annu. Rev. Astron. Astrophys. 2012, 50, 531–608. [Google Scholar] [CrossRef]
- Armillotta, L.; Krumholz, M.R.; Di Teodoro, E.M.; McClure-Griffiths, N.M. The life cycle of the Central Molecular Zone-I. Inflow, star formation, and winds. Mon. Not. R. Astron. Soc. 2019, 490, 4401–4418. [Google Scholar] [CrossRef]
- Narayan, C.A.; Jog, C.J. Vertical scaleheights in a gravitationally coupled, three-component Galactic disk. Astron. Astrophys. 2002, 394, 89–96. [Google Scholar] [CrossRef]
- Langer, W.D.; Pineda, J.L.; Velusamy, T. The scale height of gas traced by [C ii] in the Galactic plane. Astron. Astrophys. 2014, 564, A101. [Google Scholar] [CrossRef]
- Patra, N.N. H I scale height in spiral galaxies. Mon. Not. R. Astron. Soc. 2020, 499, 2063–2075. [Google Scholar] [CrossRef]
- Zheng, Y.; Wang, J.; Irwin, J.; Daniel Wang, Q.; Li, J.; English, J.; Ma, Q.; Wang, R.; Wang, K.; Krause, M.; et al. H I Vertical Structure of Nearby Edge-on Galaxies from CHANG-ES. Res. Astron. Astrophys. 2022, 22, 085004. [Google Scholar] [CrossRef]
- Whittle, M.; Wilson, A.S. Jet-Gas Interactions in Markarian 78. I. Morphology and Kinematics. Astron. J. 2004, 127, 606–624. [Google Scholar] [CrossRef]
- Mundell, C.G.; Wrobel, J.M.; Pedlar, A.; Gallimore, J.F. The Nuclear Regions of the Seyfert Galaxy NGC 4151: Parsec-Scale H I Absorption and a Remarkable Radio Jet. Astrophys. J. 2003, 583, 192–204. [Google Scholar] [CrossRef]
- Das, V.; Crenshaw, D.M.; Kraemer, S.B.; Deo, R.P. Kinematics of the Narrow-Line Region in the Seyfert 2 Galaxy NGC 1068: Dynamical Effects of the Radio Jet. Astron. J. 2006, 132, 620–632. [Google Scholar] [CrossRef]
- Rosario, D.J.; Whittle, M.; Nelson, C.H.; Wilson, A.S. The Radio Jet Interaction in NGC 5929: Direct Detection of Shocked Gas. Astrophys. J. 2010, 711, L94–L98. [Google Scholar] [CrossRef]
- Riffel, R.A.; Storchi-Bergmann, T.; Riffel, R. Feeding versus feedback in active galactic nuclei from near-infrared integral field spectroscopy-X. NGC 5929. Mon. Not. R. Astron. Soc. 2015, 451, 3587–3605. [Google Scholar] [CrossRef]
- Bicknell, G.V.; Mukherjee, D.; Wagner, A.Y.; Sutherland, R.S.; Nesvadba, N.P.H. Relativistic jet feedback-II. Relationship to gigahertz peak spectrum and compact steep spectrum radio galaxies. Mon. Not. R. Astron. Soc. 2018, 475, 3493–3501. [Google Scholar] [CrossRef]
- O’Dea, C.P.; Saikia, D.J. Compact steep-spectrum and peaked-spectrum radio sources. Astron. Astrophys. Rev. 2021, 29, 3. [Google Scholar] [CrossRef]
- Sutherland, R.S.; Bicknell, G.V. Interactions of a Light Hypersonic Jet with a Nonuniform Interstellar Medium. Astrophys. J. Suppl. Ser. 2007, 173, 37–69. [Google Scholar] [CrossRef]
- Wagner, A.Y.; Bicknell, G.V. Relativistic Jet Feedback in Evolving Galaxies. Astrophys. J. 2011, 728, 29. [Google Scholar] [CrossRef]
- Wagner, A.Y.; Bicknell, G.V.; Umemura, M. Driving Outflows with Relativistic Jets and the Dependence of Active Galactic Nucleus Feedback Efficiency on Interstellar Medium Inhomogeneity. Astrophys. J. 2012, 757, 136. [Google Scholar] [CrossRef]
- Mukherjee, D.; Bicknell, G.V.; Sutherland, R.; Wagner, A. Relativistic jet feedback in high-redshift galaxies-I. Dynamics. Mon. Not. R. Astron. Soc. 2016, 461, 967–983. [Google Scholar] [CrossRef]
- Mukherjee, D.; Bicknell, G.V.; Wagner, A.Y.; Sutherland, R.S.; Silk, J. Relativistic jet feedback-III. Feedback on gas discs. Mon. Not. R. Astron. Soc. 2018, 479, 5544–5566. [Google Scholar] [CrossRef]
- Mandal, A.; Mukherjee, D.; Federrath, C.; Nesvadba, N.P.H.; Bicknell, G.V.; Wagner, A.Y.; Meenakshi, M. Impact of relativistic jets on the star formation rate: A turbulence-regulated framework. Mon. Not. R. Astron. Soc. 2021, 508, 4738–4757. [Google Scholar] [CrossRef]
- Meenakshi, M.; Mukherjee, D.; Wagner, A.Y.; Nesvadba, N.P.H.; Bicknell, G.V.; Morganti, R.; Janssen, R.M.J.; Sutherland, R.S.; Mandal, A. Modelling observable signatures of jet-ISM interaction: Thermal emission and gas kinematics. Mon. Not. R. Astron. Soc. 2022, 516, 766–786. [Google Scholar] [CrossRef]
- Mukherjee, D.; Wagner, A.Y.; Bicknell, G.V.; Morganti, R.; Oosterloo, T.; Nesvadba, N.; Sutherland, R.S. The jet-ISM interactions in IC 5063. Mon. Not. R. Astron. Soc. 2018, 476, 80–95. [Google Scholar] [CrossRef]
- Krause, M.G.H.; Gaibler, V. AGN Feedback in Galaxy Formation. In Proceedings of the AGN Feedback in Galaxy Formation, Workshop, Vulcano, Italy, 18–22 May 2008; Antonuccio-Delogu, V., Silk, J., Eds.; Cambridge University Press: Cambridge, UK, 2010; pp. 183–193, ISBN 9780521192545. [Google Scholar] [CrossRef]
- Meenakshi, M.; Mukherjee, D.; Wagner, A.Y.; Nesvadba, N.P.H.; Morganti, R.; Janssen, R.M.J.; Bicknell, G.V. The extent of ionization in simulations of radio-loud AGNs impacting kpc gas discs. Mon. Not. R. Astron. Soc. 2022, 511, 1622–1636. [Google Scholar] [CrossRef]
- Gaibler, V.; Khochfar, S.; Krause, M. Asymmetries in extragalactic double radio sources: Clues from 3D simulations of jet-disc interaction. Mon. Not. R. Astron. Soc. 2011, 411, 155–161. [Google Scholar] [CrossRef]
- Jeffreson, S.M.R.; Sun, J.; Wilson, C.D. On the scale height of the molecular gas disc in Milky Way-like galaxies. Mon. Not. R. Astron. Soc. 2022, 515, 1663–1675. [Google Scholar] [CrossRef]
- Silk, J.; Antonuccio-Delogu, V.; Dubois, Y.; Gaibler, V.; Haas, M.R.; Khochfar, S.; Krause, M. Jet interactions with a giant molecular cloud in the Galactic centre and ejection of hypervelocity stars. Astron. Astrophys. 2012, 545, L11. [Google Scholar] [CrossRef]
- Chen, Y.M.; Shi, Y.; Wild, V.; Tremonti, C.; Rowlands, K.; Bizyaev, D.; Yan, R.; Lin, L.; Riffel, R. Post-starburst galaxies in SDSS-IV MaNGA. Mon. Not. R. Astron. Soc. 2019, 489, 5709–5722. [Google Scholar] [CrossRef]
- Otter, J.A.; Rowlands, K.; Alatalo, K.; Leung, H.H.; Wild, V.; Luo, Y.; Petric, A.O.; Sazonova, E.; Stark, D.V.; Heckman, T.; et al. Resolved Molecular Gas Observations of MaNGA Post-starbursts Reveal a Tumultuous Past. Astrophys. J. 2022, 941, 93. [Google Scholar] [CrossRef]
- Kaviraj, S.; Kirkby, L.A.; Silk, J.; Sarzi, M. The UV properties of E+A galaxies: Constraints on feedback-driven quenching of star formation. Mon. Not. R. Astron. Soc. 2007, 382, 960–970. [Google Scholar] [CrossRef]
- Kaviraj, S.; Shabala, S.S.; Deller, A.T.; Middelberg, E. The triggering of local AGN and their role in regulating star formation. Mon. Not. R. Astron. Soc. 2015, 452, 774–783. [Google Scholar] [CrossRef]
- Krause, M.G.H.; Hardcastle, M.J.; Shabala, S.S. Probing gaseous halos of galaxies with radio jets. Astron. Astrophys. 2019, 627, A113. [Google Scholar] [CrossRef]
- Bovy, J.; Rix, H.W. A Direct Dynamical Measurement of the Milky Way’s Disk Surface Density Profile, Disk Scale Length, and Dark Matter Profile at 4 kpc ≤ R ≤ 9 kpc. Astrophys. J. 2013, 779, 115. [Google Scholar] [CrossRef]
- Taylor, C.; Boylan-Kolchin, M.; Torrey, P.; Vogelsberger, M.; Hernquist, L. The mass profile of the Milky Way to the virial radius from the Illustris simulation. Mon. Not. R. Astron. Soc. 2016, 461, 3483–3493. [Google Scholar] [CrossRef]
- Gupta, A.; Mathur, S.; Krongold, Y.; Nicastro, F.; Galeazzi, M. A Huge Reservoir of Ionized Gas around the Milky Way: Accounting for the Missing Mass? Astrophys. J. 2012, 756, L8. [Google Scholar] [CrossRef]
- Su, M.; Slatyer, T.R.; Finkbeiner, D.P. Giant Gamma-ray Bubbles from Fermi-LAT: Active Galactic Nucleus Activity or Bipolar Galactic Wind? Astrophys. J. 2010, 724, 1044–1082. [Google Scholar] [CrossRef]
- Yang, H.Y.K.; Ruszkowski, M.; Ricker, P.M.; Zweibel, E.; Lee, D. The Fermi Bubbles: Supersonic Active Galactic Nucleus Jets with Anisotropic Cosmic-Ray Diffusion. Astrophys. J. 2012, 761, 185. [Google Scholar] [CrossRef]
- Predehl, P.; Sunyaev, R.A.; Becker, W.; Brunner, H.; Burenin, R.; Bykov, A.; Cherepashchuk, A.; Chugai, N.; Churazov, E.; Doroshenko, V.; et al. Detection of large-scale X-ray bubbles in the Milky Way halo. Nature 2020, 588, 227–231. [Google Scholar] [CrossRef]
- Yang, H.Y.K.; Ruszkowski, M.; Zweibel, E.G. Fermi and eROSITA bubbles as relics of the past activity of the Galaxy’s central black hole. Nat. Astron. 2022, 6, 584–591. [Google Scholar] [CrossRef]
- Mingo, B.; Hardcastle, M.J.; Croston, J.H.; Evans, D.A.; Kharb, P.; Kraft, R.P.; Lenc, E. Shocks, Seyferts, and the Supernova Remnant Connection: A Chandra Observation of the Circinus Galaxy. Astrophys. J. 2012, 758, 95. [Google Scholar] [CrossRef]
- Pshirkov, M.S.; Vasiliev, V.V.; Postnov, K.A. Evidence of Fermi bubbles around M31. Mon. Not. R. Astron. Soc. 2016, 459, L76–L80. [Google Scholar] [CrossRef]
- Hodges-Kluck, E.J.; Bregman, J.N.; Li, J.t. The Hot, Accreted Halo of NGC 891. Astrophys. J. 2018, 866, 126. [Google Scholar] [CrossRef]
- Cecil, G.; Bland-Hawthorn, J.; Veilleux, S. Tightly Correlated X-ray/Hα-emitting Filaments in the Superbubble and Large-Scale Superwind of NGC 3079. Astrophys. J. 2002, 576, 745–752. [Google Scholar] [CrossRef]
- Owen, E.R.; Yang, H.Y.K. Emission from hadronic and leptonic processes in galactic jet-driven bubbles. Mon. Not. R. Astron. Soc. 2022, 516, 1539–1556. [Google Scholar] [CrossRef]
- Smith, D.J.B.; Krause, M.G.; Hardcastle, M.J.; Drake, A.B. Relic jet activity in ’Hanny’s Voorwerp’ revealed by the LOFAR two metre sky survey. Mon. Not. R. Astron. Soc. 2022, 514, 3879–3885. [Google Scholar] [CrossRef]
- Nesvadba, N.P.H.; Wagner, A.Y.; Mukherjee, D.; Mandal, A.; Janssen, R.M.J.; Zovaro, H.; Neumayer, N.; Bagchi, J.; Bicknell, G. Jet-driven AGN feedback on molecular gas and low star-formation efficiency in a massive local spiral galaxy with a bright X-ray halo. Astron. Astrophys. 2021, 654, A8. [Google Scholar] [CrossRef]
- Van Ojik, R.; Röttgering, H.J.A.; Miley, G.K.; Hunstead, R.W. The gaseous environments of radio galaxies in the early Universe: Kinematics of the Lyman α emission and spatially resolved H I absorption. Astron. Astrophys. 1997, 317, 358–384. [Google Scholar]
- Gaibler, V.; Khochfar, S.; Krause, M.; Silk, J. Jet-induced star formation in gas-rich galaxies. Mon. Not. R. Astron. Soc. 2012, 425, 438–449. [Google Scholar] [CrossRef]
- Bieri, R.; Dubois, Y.; Silk, J.; Mamon, G.A.; Gaibler, V. External pressure-triggering of star formation in a disc galaxy: A template for positive feedback. Mon. Not. R. Astron. Soc. 2016, 455, 4166–4182. [Google Scholar] [CrossRef]
- De Young, D.S. Star formation in radio galaxies at large redshift. Astrophys. J. 1989, 342, L59–L62. [Google Scholar] [CrossRef]
- Antonuccio-Delogu, V.; Silk, J. AGN Jet-induced Feedback in Galaxies. I. Suppression of Star Formation. Mon. Not. R. Astron. Soc. 2008, in press. [Google Scholar] [CrossRef]
- Tortora, C.; Antonuccio-Delogu, V.; Kaviraj, S.; Silk, J.; Romeo, A.D.; Becciani, U. AGN jet-induced feedback in galaxies-II. Galaxy colours from a multicloud simulation. Mon. Not. R. Astron. Soc. 2009, 396, 61–77. [Google Scholar] [CrossRef]
- Krause, M.; Alexander, P. Simulations of multiphase turbulence in jet cocoons. Mon. Not. R. Astron. Soc. 2007, 376, 465–478. [Google Scholar] [CrossRef]
- Krause, M.G.H. Jets and multi-phase turbulence. MmSAI 2008, 79, 1162. [Google Scholar]
- McCarthy, P.J. High redshift radio galaxies. Annu. Rev. Astron. Astrophys. 1993, 31, 639–688. [Google Scholar] [CrossRef]
- Miley, G.; De Breuck, C. Distant radio galaxies and their environments. Astron. Astrophys. Rev. 2008, 15, 67–144. [Google Scholar] [CrossRef]
- Nesvadba, N.P.H.; Lehnert, M.D.; De Breuck, C.; Gilbert, A.M.; van Breugel, W. Evidence for powerful AGN winds at high redshift: Dynamics of galactic outflows in radio galaxies during the “Quasar Era”. Astron. Astrophys. 2008, 491, 407–424. [Google Scholar] [CrossRef]
- Meisenheimer, K.; Hippelein, H. The emission-line lobes of 3C 368. Astron. Astrophys. 1992, 264, 455–471. [Google Scholar]
- Best, P.N.; Longair, M.S.; Roettgering, J.H.A. HST, radio and infrared observations of 28 3CR radio galaxies at redshift Z of about 1. I-The observations. Mon. Not. R. Astron. Soc. 1997, 292, 758–794. [Google Scholar] [CrossRef]
- Best, P.N.; Röttgering, H.J.A.; Longair, M.S. Ionization, shocks and evolution of the emission-line gas of distant 3CR radio galaxies. Mon. Not. R. Astron. Soc. 2000, 311, 23–36. [Google Scholar] [CrossRef]
- Yates-Jones, P.M.; Turner, R.J.; Shabala, S.S.; Krause, M.G.H. PRAiSE: Resolved spectral evolution in simulated radio sources. Mon. Not. R. Astron. Soc. 2022, 511, 5225–5240. [Google Scholar] [CrossRef]
- Chon, G.; Böhringer, H.; Krause, M.; Trümper, J. Discovery of an X-ray cavity near the radio lobes of Cygnus A indicating previous AGN activity. Astron. Astrophys. 2012, 545, L3. [Google Scholar] [CrossRef]
- McKean, J.P.; Godfrey, L.E.H.; Vegetti, S.; Wise, M.W.; Morganti, R.; Hardcastle, M.J.; Rafferty, D.; Anderson, J.; Avruch, I.M.; Beck, R.; et al. LOFAR imaging of Cygnus A-direct detection of a turnover in the hotspot radio spectra. Mon. Not. R. Astron. Soc. 2016, 463, 3143–3150. [Google Scholar] [CrossRef]
- Privon, G.C.; Baum, S.A.; O’Dea, C.P.; Gallimore, J.; Noel-Storr, J.; Axon, D.J.; Robinson, A. Modeling the Infrared Emission in Cygnus A. Astrophys. J. 2012, 747, 46. [Google Scholar] [CrossRef]
- Heath, D.; Krause, M.; Alexander, P. Chemical enrichment of the intracluster medium by FR II radio sources. Mon. Not. R. Astron. Soc. 2007, 374, 787–792. [Google Scholar] [CrossRef]
- Dubois, Y.; Teyssier, R. On the onset of galactic winds in quiescent star forming galaxies. Astron. Astrophys. 2008, 477, 79–94. [Google Scholar] [CrossRef]
- von Glasow, W.; Krause, M.G.H.; Sommer-Larsen, J.; Burkert, A. Galactic winds-how to launch galactic outflows in typical Lyman-break galaxies. Mon. Not. R. Astron. Soc. 2013, 434, 1151–1170. [Google Scholar] [CrossRef]
- Rodgers-Lee, D.; Krause, M.G.H.; Dale, J.; Diehl, R. Synthetic 26Al emission from galactic-scale superbubble simulations. Mon. Not. R. Astron. Soc. 2019, 490, 1894–1912. [Google Scholar] [CrossRef]
- Dey, A.; van Breugel, W.; Vacca, W.D.; Antonucci, R. Triggered Star Formation in a Massive Galaxy at Z = 3.8: 4C 41.17. Astrophys. J. 1997, 490, 698. [Google Scholar] [CrossRef]
- Bicknell, G.V.; Sutherland, R.S.; van Breugel, W.J.M.; Dopita, M.A.; Dey, A.; Miley, G.K. Jet-induced Emission-Line Nebulosity and Star Formation in the High-Redshift Radio Galaxy 4C 41.17. Astrophys. J. 2000, 540, 678–686. [Google Scholar] [CrossRef]
- Jarvis, M.E.; Harrison, C.M.; Mainieri, V.; Alexander, D.M.; Arrigoni Battaia, F.; Calistro Rivera, G.; Circosta, C.; Costa, T.; De Breuck, C.; Edge, A.C.; et al. The quasar feedback survey: Discovering hidden Radio-AGN and their connection to the host galaxy ionized gas. Mon. Not. R. Astron. Soc. 2021, 503, 1780–1797. [Google Scholar] [CrossRef]
- Jimenez-Gallardo, A.; Sani, E.; Ricci, F.; Mazzucchelli, C.; Balmaverde, B.; Massaro, F.; Capetti, A.; Forman, W.R.; Kraft, R.P.; Venturi, G.; et al. The Cavity of 3CR 196.1: Hα Emission Spatially Associated with an X-Ray Cavity. Astrophys. J. 2022, 941, 114. [Google Scholar] [CrossRef]
- De Breuck, C.; Röttgering, H.; Miley, G.; van Breugel, W.; Best, P. A statistical study of emission lines from high redshift radio galaxies. Astron. Astrophys. 2000, 362, 519–543. [Google Scholar]
- Jarvis, M.J.; Wilman, R.J.; Röttgering, H.J.A.; Binette, L. Probing the absorbing haloes around two high-redshift radio galaxies with VLT-UVES*. Mon. Not. R. Astron. Soc. 2003, 338, 263–272. [Google Scholar] [CrossRef]
- Swinbank, A.M.; Vernet, J.D.R.; Smail, I.; De Breuck, C.; Bacon, R.; Contini, T.; Richard, J.; Röttgering, H.J.A.; Urrutia, T.; Venemans, B. Mapping the dynamics of a giant Ly α halo at z = 4.1 with MUSE: The energetics of a large-scale AGN-driven outflow around a massive, high-redshift galaxy. Mon. Not. R. Astron. Soc. 2015, 449, 1298–1308. [Google Scholar] [CrossRef]
- Kolwa, S.; Vernet, J.; De Breuck, C.; Villar-Martín, M.; Humphrey, A.; Arrigoni-Battaia, F.; Gullberg, B.; Falkendal, T.; Drouart, G.; Lehnert, M.D.; et al. MUSE unravels the ionisation and origin of metal-enriched absorbers in the gas halo of a z = 2.92 radio galaxy. Astron. Astrophys. 2019, 625, A102. [Google Scholar] [CrossRef]
- Wang, W.; Wylezalek, D.; De Breuck, C.; Vernet, J.; Humphrey, A.; Villar Martín, M.; Lehnert, M.D.; Kolwa, S. Mapping the “invisible” circumgalactic medium around a z ∼ 4.5 radio galaxy with MUSE. Astron. Astrophys. 2021, 654, A88. [Google Scholar] [CrossRef]
- Krause, M. Galactic wind shells and high redshift radio galaxies. On the nature of associated absorbers. Astron. Astrophys. 2005, 436, 845–851. [Google Scholar] [CrossRef]
- Binette, L.; Kurk, J.D.; Villar-Martín, M.; Röttgering, H.J.A. A vestige low metallicity gas shell surrounding the radio galaxy 0943-242 at z = 2.92. Astron. Astrophys. 2000, 356, 23–32. [Google Scholar]
- Binette, L.; Wilman, R.J.; Villar-Martín, M.; Fosbury, R.A.E.; Jarvis, M.J.; Röttgering, H.J.A. Ionization of large-scale absorbing haloes and feedback events from high-redshift radio galaxies. Astron. Astrophys. 2006, 459, 31–42. [Google Scholar] [CrossRef]
- Krause, M. Absorbers and Globular Cluster Formation in Powerful High Redshift Radio Galaxies. Astron. Astrophys. 2002, 386, L1–L4. [Google Scholar] [CrossRef]
- Schaerer, D.; Verhamme, A. 3D Lyα radiation transfer. II. Fitting the Lyman break galaxy MS 1512-cB58 and implications for Lyα emission in high-z starbursts. Astron. Astrophys. 2008, 480, 369–377. [Google Scholar] [CrossRef]
- Verhamme, A.; Schaerer, D.; Atek, H.; Tapken, C. 3D Lyα radiation transfer. III. Constraints on gas and stellar properties of z ~ 3 Lyman break galaxies (LBG) and implications for high-z LBGs and Lyα emitters. Astron. Astrophys. 2008, 491, 89–111. [Google Scholar] [CrossRef]
- Schaerer, D.; Hayes, M.; Verhamme, A.; Teyssier, R. Grid of Lyα radiation transfer models for interpreting distant galaxies. Astron. Astrophys. 2011, 531, A12. [Google Scholar] [CrossRef]
- Hashimoto, T.; Verhamme, A.; Ouchi, M.; Shimasaku, K.; Schaerer, D.; Nakajima, K.; Shibuya, T.; Rauch, M.; Ono, Y.; Goto, R. A Close Comparison between Observed and Modeled Lyα Lines for z2.2 Lyα Emitters. Astrophys. J. 2015, 812, 157. [Google Scholar] [CrossRef]
- Birnboim, Y.; Dekel, A. Virial shocks in galactic haloes? Mon. Not. R. Astron. Soc. 2003, 345, 349–364. [Google Scholar] [CrossRef]
- Babul, A.; Sharma, P.; Reynolds, C.S. Isotropic Heating of Galaxy Cluster Cores via Rapidly Reorienting Active Galactic Nucleus Jets. Astrophys. J. 2013, 768, 11. [Google Scholar] [CrossRef]
- Yang, H.Y.K.; Reynolds, C.S. How AGN Jets Heat the Intracluster Medium—Insights from Hydrodynamic Simulations. Astrophys. J. 2016, 829, 90. [Google Scholar] [CrossRef]
- Krause, M.G.H.; Shabala, S.S.; Hardcastle, M.J.; Bicknell, G.V.; Böhringer, H.; Chon, G.; Nawaz, M.A.; Sarzi, M.; Wagner, A.Y. How frequent are close supermassive binary black holes in powerful jet sources? Mon. Not. R. Astron. Soc. 2019, 482, 240–261. [Google Scholar] [CrossRef]
- Shabala, S.S.; Jurlin, N.; Morganti, R.; Brienza, M.; Hardcastle, M.J.; Godfrey, L.E.H.; Krause, M.G.H.; Turner, R.J. The duty cycle of radio galaxies revealed by LOFAR: Remnant and restarted radio source populations in the Lockman Hole. Mon. Not. R. Astron. Soc. 2020, 496, 1706–1717. [Google Scholar] [CrossRef]
- Fabian, A.C.; Reynolds, C.S.; Taylor, G.B.; Dunn, R.J.H. On viscosity, conduction and sound waves in the intracluster medium. Mon. Not. R. Astron. Soc. 2005, 363, 891–896. [Google Scholar] [CrossRef]
- Wang, S.C.; Yang, H.Y.K. Production efficiencies of sound waves in the intracluster medium driven by AGN jets. Mon. Not. R. Astron. Soc. 2022, 512, 5100–5109. [Google Scholar] [CrossRef]
- Iqbal, A.; Majumdar, S.; Nath, B.B.; Roychowdhury, S. Heating of the intracluster medium by buoyant bubbles and sound waves. Mon. Not. R. Astron. Soc. 2023, 518, 2735–2745. [Google Scholar] [CrossRef]
- Raouf, M.; Shabala, S.S.; Croton, D.J.; Khosroshahi, H.G.; Bernyk, M. The many lives of active galactic nuclei-II: The formation and evolution of radio jets and their impact on galaxy evolution. Mon. Not. R. Astron. Soc. 2017, 471, 658–670. [Google Scholar] [CrossRef]
- van Ojik, R.; Röttgering, H.J.A.; Carilli, C.L.; Miley, G.K.; Bremer, M.N.; Macchetto, F. A powerful radio galaxy at z=3.6 in a giant rotating Lyman α halo. Astron. Astrophys. 1996, 313, 25–44. [Google Scholar]
- Reuland, M.; van Breugel, W.; de Vries, W.; Dopita, M.A.; Dey, A.; Miley, G.; Röttgering, H.; Venemans, B.; Stanford, S.A.; Lacy, M.; et al. Metal-Enriched Gaseous Halos around Distant Radio Galaxies: Clues to Feedback in Galaxy Formation. Astron. J. 2007, 133, 2607–2623. [Google Scholar] [CrossRef]
- Pentericci, L.; McCarthy, P.J.; Röttgering, H.J.A.; Miley, G.K.; van Breugel, W.J.M.; Fosbury, R. NICMOS Observations of High-Redshift Radio Galaxies: Witnessing the Formation of Bright Elliptical Galaxies? Astrophys. J. Suppl. Ser. 2001, 135, 63–85. [Google Scholar] [CrossRef]
- Reuland, M.; van Breugel, W.; Röttgering, H.; de Vries, W.; Stanford, S.A.; Dey, A.; Lacy, M.; Bland-Hawthorn, J.; Dopita, M.; Miley, G. Giant Lyα Nebulae Associated with High-Redshift Radio Galaxies. Astrophys. J. 2003, 592, 755–766. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Krause, M.G.H. Jet Feedback in Star-Forming Galaxies. Galaxies 2023, 11, 29. https://doi.org/10.3390/galaxies11010029
Krause MGH. Jet Feedback in Star-Forming Galaxies. Galaxies. 2023; 11(1):29. https://doi.org/10.3390/galaxies11010029
Chicago/Turabian StyleKrause, Martin G. H. 2023. "Jet Feedback in Star-Forming Galaxies" Galaxies 11, no. 1: 29. https://doi.org/10.3390/galaxies11010029
APA StyleKrause, M. G. H. (2023). Jet Feedback in Star-Forming Galaxies. Galaxies, 11(1), 29. https://doi.org/10.3390/galaxies11010029