What Have We Learned about the Life Cycle of Radio Galaxies from New Radio Surveys
Abstract
:1. Introduction
2. Using Multiple Criteria to Select Samples of Remnants and Restarted Radio Galaxies
- Deep low-frequency (≲200 MHz) surveys (i.e., the LOFAR Two-metre Sky Survey LoTSS, [29]; the Galactic and Extra-Galactic All-Sky MWA Survey (GLEAM), [30], and TIFR-GMRT Sky Survey (TGSS) [31]), tracing low surface-brightness radio structures. This emission is particularly sensitive to the location of old (remnant) electrons.
- Surveys at higher frequencies (e.g., at 1.4 GHz using the APERture Tile In Focus (Apertif) on the WSRT telescope [32] and the Australian Square Kilometre Array Pathfinder (ASKAP) [33]) and surveys at high spatial resolution (e.g., at 3 GHz, the Very Large Array Sky Survey (VLASS), [34,35]). The latter is particularly useful for characterising the spectral properties of the central regions (e.g., cores).
- Spectral indices1 extended to low frequencies can be derived over large areas of the sky. Furthermore, by combining some of the surveys, spectral index images can be obtained.
3. Selecting Samples of Remnant and Restarted Radio Sources
3.1. Remnants Radio Sources
3.2. The Presence of Cores in Candidates Remnant
3.3. Candidates Restarted Radio Sources
4. Implications for the Timing of the Life Cycle
5. Life Cycle and Gas
6. Conclusions and Future Possibilities
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AGN | Active galactic nucleus |
Apertif | APERture Tile In Focus |
ASKAP | Australian Square Kilometre Array Pathfinder |
ATCA | Australian Telescope Compact Array |
CP | core prominence, / |
DDRG | Double–double radio galaxy |
FIRST | Faint Images of the Radio Sky at Twenty centimetres |
GLEAM | Galactic and Extra-Galactic All-Sky MWA Survey |
uGMRT | upgraded Giant Metrewave Radio Telescope |
HBA | High-band Array |
LBA | Low-Band Array |
LH | Lockman Hole region |
LoLSS | LOFAR LBA Sky Survey |
LOFAR | LOw Frequency ARray |
LoTSS | LOFAR Two-metre Sky Survey |
MWA | Murchison Widefield Array |
NVSS | The NRAO VLA Sky Survey |
SMBH | Super Massive Black Hole |
TGSS | TIFR-GMRT Sky Survey |
USS | Ultra Steep Spectra |
VLA | Karl G. Jansky Very Large Array |
VLASS | Very Large Array Sky Survey |
WSRT | Westerbork Synthesis Radio Telescope |
1 | In this paper, the spectral index is defined through . |
References
- Fabian, A.C. Observational Evidence of Active Galactic Nuclei Feedback. Annu. Rev. Astron. Astrophys. 2012, 50, 455–489. [Google Scholar] [CrossRef]
- Gaspari, M.; Temi, P.; Brighenti, F. Raining on black holes and massive galaxies: The top-down multiphase condensation model. Mon. Not. R. Astron. Soc. 2017, 466, 677–704. [Google Scholar] [CrossRef]
- Silk, J.; Rees, M.J. Quasars and galaxy formation. Astron. Astrophys. 1998, 331, L1–L4. [Google Scholar] [CrossRef]
- Best, P.N.; Kauffmann, G.; Heckman, T.M.; Brinchmann, J.; Charlot, S.; Ivezić, Z.; White, S.D.M. The host galaxies of radio-loud active galactic nuclei: Mass dependences, gas cooling and active galactic nuclei feedback. Mon. Not. R. Astron. Soc. 2005, 362, 25–40. [Google Scholar] [CrossRef]
- Sabater, J.; Best, P.N.; Hardcastle, M.J.; Shimwell, T.W.; Tasse, C.; Williams, W.L.; Brüggen, M.; Cochrane, R.K.; Croston, J.H.; de Gasperin, F.; et al. The LoTSS view of radio AGN in the local Universe. The most massive galaxies are always switched on. Astron. Astrophys. 2019, 622, 17. [Google Scholar] [CrossRef]
- Capetti, A.; Brienza, M.; Balmaverde, B.; Best, P.N.; Baldi, R.D.; Drabent, A.; Gürkan, G.; Rottgering, H.J.A.; Tasse, C.; Webster, B. The LOFAR view of giant, early-type galaxies: Radio emission from active nuclei and star formation. Astron. Astrophys. 2022, 660, 93. [Google Scholar] [CrossRef]
- Biava, N.; Brienza, M.; Bonafede, A.; Gitti, M.; Bonnassieux, E.; Harwood, J.; Edge, A.C.; Riseley, C.J.; Vantyghem, A. Constraining the AGN duty cycle in the cool-core cluster MS 0735.6+7421 with LOFAR data. Astron. Astrophys. 2021, 650, 170. [Google Scholar] [CrossRef]
- Randall, S.W.; Forman, W.R.; Giacintucci, S.; Nulsen, P.E.J.; Sun, M.; Jones, C.; Churazov, E.; David, L.P.; Kraft, R.; Donahue, M. et al. Shocks and Cavities from Multiple Outbursts in the Galaxy Group NGC 5813: A Window to Active Galactic Nucleus Feedback. Astrophys. J. 2011, 726, 86. [Google Scholar] [CrossRef]
- Vantyghem, A.N.; McNamara, B.R.; Russell, H.; Main, R.; Nulsen, P.; Wise, M.W.; Hoekstra, H.; Gitti, M. Cycling of the powerful AGN in MS 0735.6+7421 and the duty cycle of radio AGN in clusters. Mon. Not. R. Astron. Soc. 2014, 442, 3192–3205. [Google Scholar] [CrossRef]
- Harwood, J.J.; Hardcastle, M.J.; Croston, J.H.; Goodger, J.L. Spectral ageing in the lobes of FR-II radio galaxies: New methods of analysis for broad-band radio data. Mon. Not. R. Astron. Soc. 2013, 435, 3353–3375. [Google Scholar] [CrossRef]
- Fanti, R.; Fanti, C.; Schilizzi, R.T.; Spencer, R.E.; Nan, R.; Parma, P.; van Breugel, W.J.M.; Venturi, T. On the nature of compact steep spectrum radio sources. Astron. Astrophys. 1990, 231, 333–346. [Google Scholar]
- O’Dea, C.P. The Compact Steep-Spectrum and Gigahertz Peaked-Spectrum Radio Sources. Publ. Astron. Soc. Pac. 1998, 110, 493–532. [Google Scholar] [CrossRef]
- O’Dea, C.P.; Saikia, D.J. Compact steep-spectrum and peaked-spectrum radio sources. Astron. Astrophys. Rev. 2021, 29, 3. [Google Scholar] [CrossRef]
- Komissarov, S.S.; Gubanov, A.G. Relic radio galaxies: Evolution of synchrotron spectrum. Astron. Astrophys. 1994, 285, 27–43. [Google Scholar]
- Murgia, M.; Parma, P.; Mack, K.-H.; De Ruiter, H.R.; Fanti, R.; Govoni, F.; Tarchi, A.; Giacintucci, S.; Markevitch, M. Dying radio galaxies in clusters. Astron. Astrophys. 2011, 526, A148. [Google Scholar] [CrossRef]
- Schoenmakers, A.P.; De Bruyn, A.G.; Röttgering, H.J.A.; Van Der Laan, H.; Kaiser, C.R. Radio galaxies with a ‘double–double morphology’—I. Analysis of the radio properties and evidence for interrupted activity in active galactic nuclei. Mon. Not. R. Astron. Soc. 2000, 315, 371–380. [Google Scholar] [CrossRef]
- Brienza, M.; Godfrey, L.; Morganti, R.; Vilchez, N.; Maddox, N.; Murgia, M.; Orru, E.; Shulevski, A.; Best, P.N.; Brüggen, M.; et al. LOFAR discovery of a 700-kpc remnant radio galaxy at low redshift. Astron. Astrophys. 2015, 585, A29. [Google Scholar] [CrossRef]
- Brienza, M.; Morganti, R.; Harwood, J.; Duchet, T.; Rajpurohit, K.; Shulevski, A.; Hardcastle, M.J.; Mahatma, V.; Godfrey, L.E.H.; Prandoni, I.; et al. Radio spectral properties and jet duty cycle in the restarted radio galaxy 3C388. Astron. Astrophys. 2020, 638, 29. [Google Scholar] [CrossRef]
- Candini, S.; Brienza, M.; Bonafede, A.; Rajpurohit, K.; Biava, N.; Murgia, M.; Loi, F.; van Weeren, R.J.; Vazza, F. New filamentary remnant radio emission and duty cycle constraints in the radio galaxy NGC 6086. Astron. Astrophys. 2023, 677, 4. [Google Scholar] [CrossRef]
- Cordey, R.A. IC 2476: A possible relic radio galaxy. Mon. Not. R. Astron. Soc. 1987, 227, 695–700. [Google Scholar] [CrossRef]
- Konar, C.; Hardcastle, M.; Jamrozy, M.; Croston, J.H. Episodic radio galaxies J0116-4722 and J1158+2621: Can we constrain the quiescent phase of nuclear activity? Mon. Not. R. Astron. Soc. 2013, 430, 2137–2153. [Google Scholar] [CrossRef]
- Kukreti, P.; Morganti, R.; Shimwell, T.W.; Morabito, L.K.; Beswick, R.J.; Brienza, M.; Hardcastle, M.J.; Sweijen, F.; Jackson, N.; Miley, G.K.; et al. Unmasking the history of 3C 293 with LOFAR sub-arcsecond imaging. Astron. Astrophys. 2022, 658, 6. [Google Scholar] [CrossRef]
- Maccagni, F.M.; Murgia, M.; Serra, P.; Govoni, F.; Morokuma-Matsui, K.; Kleiner, D.; Buchner, S.; Józsa, G.I.G.; Kamphuis, P.; Makhathini, S.; et al. The flickering nuclear activity of Fornax A. Astron. Astrophys. 2020, 634, 9. [Google Scholar] [CrossRef]
- Shulevski, A.; Morganti, R.; Harwood, J.J.; Barthel, P.D.; Jamrozy, M.; Brienza, M.; Brunetti, G.; Röttgering, H.J.A.; Murgia, M.; White, G.J.; et al. Radiative age mapping of the remnant radio galaxy B2 0924+30: The LOFAR perspective. Astron. Astrophys. 2017, 600, A65. [Google Scholar] [CrossRef]
- Hardcastle, M.; Croston, J. Radio galaxies and feedback from AGN jets. New Astron. Rev. 2020, 88, 101539. [Google Scholar] [CrossRef]
- Mahatma, V.H. The Dynamics and Energetics of Remnant and Restarting RLAGN. Galaxies 2023, 11, 74. [Google Scholar] [CrossRef]
- Morganti, R. Archaeology of active galaxies across the electromagnetic spectrum. Nat. Astron. 2017, 1, 39–48. [Google Scholar] [CrossRef]
- Morganti, R.; Jurlin, N.; Oosterloo, T.; Brienza, M.; Orrú, E.; Kutkin, A.; Prandoni, I.; Adams, E.A.K.; Dénes, H.; Hess, K.M.; et al. Combining LOFAR and Apertif Data for Understanding the Life Cycle of Radio Galaxies. Galaxies 2021, 9, 88. [Google Scholar] [CrossRef]
- Shimwell, T.W.; Hardcastle, M.J.; Tasse, C.; Best, P.N.; Röttgering, H.J.A.; Williams, W.L.; Botteon, A.; Drabent, A.; Mechev, A.; Shulevski, A.; et al. The LOFAR Two-metre Sky Survey. V. Second data release. Astron. Astrophys. 2022, 659, 1. [Google Scholar] [CrossRef]
- Hurley-Walker, N.; Galvin, T.J.; Duchesne, S.W.; Zhang, X.; Morgan, J.; Hancock, P.J.; An, T.; Franzen, T.M.O.; Heald, G.; Ross, K.; et al. GaLactic and Extragalactic All-sky Murchison Widefield Array survey eXtended (GLEAM-X) I: Survey description and initial data release. Publ. Astron. Soc. Aust. 2022, 39, 35. [Google Scholar] [CrossRef]
- Intema, H.T.; Jagannathan, P.; Mooley, K.P.; Frail, D.A. The GMRT 150 MHz all-sky radio survey. First alternative data release TGSS ADR1. Astron. Astrophys. 2017, 598, 78. [Google Scholar] [CrossRef]
- Adams, E.A.K.; Adebahr, B.; de Blok, W.J.G.; Dénes, H.; Hess, K.M.; van der Hulst, J.M.; Kutkin, A.; Lucero, D.M.; Morganti, R.; Moss, V.A.; et al. First release of Apertif imaging survey data. Astron. Astrophys. 2022, 667, 38. [Google Scholar] [CrossRef]
- McConnell, D.; Hale, C.L.; Lenc, E.; Banfield, J.K.; Heald, G.; Hotan, A.W.; Leung, J.K.; Moss, V.A.; Murphy, T.; O’Brien, A.; et al. The Rapid ASKAP Continuum Survey I: Design and first results. Publ. Astron. Soc. Aust. 2020, 37, 48. [Google Scholar] [CrossRef]
- Gordon, Y.A.; Boyce, M.M.; O’Dea, C.P.; Rudnick, L.; Andernach, H.; Vantyghem, A.N.; Baum, S.A.; Bui, J.-P.; Dionyssiou, M.; Safi-Harb, S.; et al. A Quick Look at the 3 GHz Radio Sky. I. Source Statistics from the Very Large Array Sky Survey. Astrophys. J. Suppl. Ser. 2021, 255, 30. [Google Scholar] [CrossRef]
- Lacy, M.; Baum, S.A.; Chandler, C.J.; Chatterjee, S.; Clarke, T.E.; Deustua, S.; English, J.; Farnes, J.; Gaensler, B.M.; Gugliucci, N.; et al. Jansky Very Large Array Sky Survey (VLASS). Science Case and Survey Design. Publ. Astron. Soc. Pac. 2020, 132, 035001. [Google Scholar] [CrossRef]
- DESI Collaboration; Adame, A.G.; Aguilar, J.; Ahlen, S.; Alam, S.; Aldering, G.; Alexander, D.M.; Alfarsy, R.; Allende Prieto, C.; Alvarez, M.; et al. The Early Data Release of the Dark Energy Spectroscopic Instrument. arXiv 2023, arXiv:2306.06308. [Google Scholar] [CrossRef]
- Duncan, K.J.; Kondapally, R.; Brown, M.J.I.; Bonato, M.; Best, P.N.; Röttgering, H.J.A.; Bondi, M.; Bowler, R.A.A.; Cochrane, R.K.; Gürkan, G.; et al. The LOFAR Two-meter Sky Survey: Deep Fields Data Release 1. IV. Photometric redshifts and stellar masses. Astron. Astrophys. 2021, 648, 4. [Google Scholar] [CrossRef]
- Hardcastle, M.J.; Horton, M.A.; Williams, W.L.; Duncan, K.J.; Alegre, L.; Barkus, B.; Croston, J.H.; Dickinson, H.; Osinga, E.; Röttgering, H.J.A.; et al. The LOFAR Two-Metre Sky Survey. VI. Optical identifications for the second data release. Astron. Astrophys. 2023, 678, 151. [Google Scholar] [CrossRef]
- Roettiger, K.; Burns, J.O.; Clarke, D.A.; Christiansen, W.A. Relic Radio Emission in 3C 388. Astrophys. J. 1994, 421, L23. [Google Scholar] [CrossRef]
- Saripalli, L.; Subrahmanyan, R.; Thorat, K.; Ekers, R.; Hunstead, R.W.; Johnston, H.; Sadler, E. ATLBS Extended Source Sample: The Evolution in Radio Source Morphology with Flux Density. Astrophys. J. Suppl. Ser. 2012, 199, 27. [Google Scholar] [CrossRef]
- Giovannini, G.; Feretti, L.; Gregorini, L.; Parma, P. Radio nuclei in elliptical galaxies. Astron. Astrophys. 1988, 199, 73–84. [Google Scholar]
- Parma, P.; Murgia, M.; de Ruiter, H.R.; Fanti, R.; Mack, K.-H.; Govoni, F. In search of dying radio sources in the local universe. Astron. Astrophys. 2007, 470, 875–888. [Google Scholar] [CrossRef]
- Brienza, M.; Godfrey, L.; Morganti, R.; Prandoni, I.; Harwood, J.; Mahony, E.; Hardcastle, M.J.; Murgia, M.; Röttgering, H.J.A.; Shimwell, T.W.; et al. Search and modelling of remnant radio galaxies in the LOFAR Lockman Hole field. Astron. Astrophys. 2017, 606, A98. [Google Scholar] [CrossRef]
- Tasse, C.; Shimwell, T.; Hardcastle, M.J.; O’Sullivan, S.P.; van Weeren, R.; Best, P.N.; Bester, L.; Hugo, B.; Smirnov, O.; Sabater, J.; et al. The LOFAR Two-meter Sky Survey: Deep Fields Data Release 1. I. Direction-dependent calibration and imaging. Astron. Astrophys. 2021, 648, 1. [Google Scholar] [CrossRef]
- Jurlin, N.; Brienza, M.; Morganti, R.; Wadadekar, Y.; Ishwara- Chandra, C.H.; Maddox, N.; Mahatma, V. Multi-frequency characterisation of remnant radio galaxies in the Lockman Hole field. Astron. Astrophys. 2021, 653, 110. [Google Scholar] [CrossRef]
- Morganti, R.; Oosterloo, T.A.; Brienza, M.; Jurlin, N.; Prandoni, I.; Orrù, E.; Shabala, S.S.; Adams, E.A.K.; Adebahr, B.; Best, P.N.; et al. The best of both worlds: Combining LOFAR and Apertif to derive resolved radio spectral index images. Astron. Astrophys. 2021, 648, 9. [Google Scholar] [CrossRef]
- Mahatma, V.H.; Hardcastle, M.J.; Williams, W.L.; Brienza, M.; Brüggen, M.; Croston, J.H.; Gürkan, G.; Harwood, J.J.; Kunert-Bajraszewska, M.; Morganti, R.; et al. Remnant radio-loud AGN in the Herschel-ATLAS field. Mon. Not. R. Astron. Soc. 2018, 475, 4557–4578. [Google Scholar] [CrossRef]
- Hardcastle, M.J.; Gürkan, G.; van Weeren, R.J.; Williams, W.L.; Best, P.N.; de Gasperin, F.; Rafferty, D.A.; Read, S.C.; Sabater, J.; Shimwell, T.W.; et al. LOFAR/H-ATLAS: A deep low-frequency survey of the Herschel-ATLAS North Galactic Pole field. Mon. Not. R. Astron. Soc. 2016, 462, 1910–1936. [Google Scholar] [CrossRef]
- Quici, B.; Hurley-Walker, N.; Seymour, N.; Turner, R.J.; Shabala, S.S.; Huynh, M.; Andernach, H.; Kapińska, A.D.; Collier, J.D.; Johnston-Hollitt, M.; et al. Remnant radio galaxies discovered in a multi-frequency survey. Publ. Astron. Soc. Aust. 2021, 38, e008. [Google Scholar] [CrossRef]
- Dutta, S.; Singh, V.; Chandra, C.H.I.; Wadadekar, Y.; Kayal, A.; Heywood, I. Search and Characterization of Remnant Radio Galaxies in the XMM-LSS Deep Field. Astrophys. J. 2023, 944, 176. [Google Scholar] [CrossRef]
- Brienza, M.; Lovisari, L.; Rajpurohit, K.; Bonafede, A.; Gastaldello, F.; Murgia, M.; Vazza, F.; Bonnassieux, E.; Botteon, A.; Brunetti, G.; et al. The galaxy group NGC 507: Newly detected AGN remnant plasma transported by sloshing. Astron. Astrophys. 2022, 661, 92. [Google Scholar] [CrossRef]
- Brocksopp, C.; Kaiser, C.R.; Schoenmakers, A.P.; de Bruyn, A.G. Three episodes of jet activity in the Fanaroff-Riley type II radio galaxy B0925+420. Mon. Not. R. Astron. Soc. 2007, 382, 1019–1028. [Google Scholar] [CrossRef]
- Chavan, K.; Dabhade, P.; Saikia, D.J. A giant radio galaxy with three cycles of episodic jet activity from LoTSS DR2. Mon. Not. R. Astron. Soc. 2023, 525, L87–L92. [Google Scholar] [CrossRef]
- Mahatma, V.H.; Hardcastle, M.J.; Williams, W.L.; Best, P.N.; Croston, J.H.; Duncan, K.; Mingo, B.; Morganti, R.; Brienza, M.; Cochrane, R.K.; et al. LoTSS DR1: Double-double radio galaxies in the HETDEX field. Astron. Astrophys. 2019, 622, 13. [Google Scholar] [CrossRef]
- Jurlin, N.; Morganti, R.; Brienza, M.; Mandal, S.; Maddox, N.; Duncan, K.J.; Shabala, S.S.; Hardcastle, M.J.; Prandoni, I.; Röttgering, H.J.A.; et al. The life cycle of radio galaxies in the LOFAR Lockman Hole field. Astron. Astrophys. 2020, 638, 34. [Google Scholar] [CrossRef]
- Sweijen, F.; van Weeren, R.J.; Röttgering, H.J.A.; Morabito, L.K.; Jackson, N.; Offringa, A.R.; van der Tol, S.; Veenboer, B.; Oonk, J.B.R.; Best, P.N.; et al. Deep sub-arcsecond wide-field imaging of the Lockman Hole field at 144 MHz. Nat. Astron. 2022, 6, 350–356. [Google Scholar] [CrossRef]
- Jurlin, N.; Morganti, R.; Sweijen, F.; Morabito, L.K.; Brienza, M.; Barthel, P.; Miley, G.K. Nuclear regions as seen with LOFAR international baselines: A high-resolution study of the recurrent activity. Astron. Astrophys. 2024, 682, 118. [Google Scholar] [CrossRef]
- Kutkin, A.M.; Oosterloo, T.A.; Morganti, R.; Offringa, A.R.; Adams, E.A.K.; Adebahr, B.; Dénes, H.; Hess, K.M.; van der Hulst, J.M.; de Blok, W.J.G.; et al. Apertif 1.4 GHz continuum observations of the Boötes field and their combined view with LOFAR. Astron. Astrophys. 2023, 676, 37. [Google Scholar] [CrossRef]
- Kunert-Bajraszewska, M.; Marecki, A.; Thomasson, P. FIRST-based survey of compact steep spectrum sources. Astron. Astrophys. 2006, 450, 945–958. [Google Scholar] [CrossRef]
- Orienti, M.; Murgia, M.; Dallacasa, D.; Migliori, G.; D’Ammando, F. Young but fading radio sources: Searching for remnants among compact steep-spectrum radio sources. Mon. Not. R. Astron. Soc. 2023, 522, 3877–3889. [Google Scholar] [CrossRef]
- Webster, B.; Croston, J.H.; Harwood, J.J.; Baldi, R.D.; Hardcastle, M.J.; Mingo, B.; Röttgering, H.J.A. Investigating the spectra and physical nature of galaxy scale jets. Mon. Not. R. Astron. Soc. 2021, 508, 5972–5990. [Google Scholar] [CrossRef]
- Godfrey, L.E.H.; Morganti, R.; Brienza, M. On the population of remnant Fanaroff–Riley type II radio galaxies and implications for radio source dynamics. Mon. Not. R. Astron. Soc. 2017, 471, 891–907. [Google Scholar] [CrossRef]
- Shabala, S.S.; Jurlin, N.; Morganti, R.; Brienza, M.; Hardcastle, M.J.; Godfrey, L.E.H.; Krause, M.G.H.; Turner, R. The duty cycle of radio galaxies revealed by LOFAR: Remnant and restarted radio source populations in the Lockman Hole. Mon. Not. R. Astron. Soc. 2020, 496, 1706–1717. [Google Scholar] [CrossRef]
- Orrù, E.; van Velzen, S.; Pizzo, R.F.; Yatawatta, S.; Paladino, R.; Iacobelli, M.; Murgia, M.; Falcke, H.; Morganti, R.; de Bruyn, A.G.; et al. Wide-field LOFAR imaging of the field around the double-double radio galaxy B1834+620. A fresh view on a restarted AGN and doubeltjes. Astron. Astrophys. 2015, 584, 112. [Google Scholar] [CrossRef]
- Hardcastle, M.J. A simulation-based analytic model of radio galaxies. Mon. Not. R. Astron. Soc. 2018, 475, 2768–2786. [Google Scholar] [CrossRef]
- Turner, R.J.; Shabala, S.S. Dynamics of Powerful Radio Galaxies. Galaxies 2023, 11, 87. [Google Scholar] [CrossRef]
- Turner, R.J.; Shabala, S.S. Energetics and Lifetimes of Local Radio Active Galactic Nuclei. Astrophys. J. 2015, 806, 59. [Google Scholar] [CrossRef]
- Safouris, V.; Subrahmanyan, R.; Bicknell, G.V.; Saripalli, L. PKS B1545-321: Bow shocks of a relativistic jet? Mon. Not. R. Astron. Soc. 2008, 385, 2117–2135. [Google Scholar] [CrossRef]
- Walg, S.; Achterberg, A.; Markoff, S.; Keppens, R.; Porth, O. Relativistic AGN jets - II. Jet properties and mixing effects for episodic jet activity. Mon. Not. R. Astron. Soc. 2014, 439, 3969–3985. [Google Scholar] [CrossRef]
- Ramos Almeida, C.; Bessiere, P.S.; Tadhunter, C.N.; Pérez-González, P.G.; Barro, G.; Inskip, K.J.; Morganti, R.; Holt, J.; Dicken, D. Are luminous radio-loud active galactic nuclei triggered by galaxy interactions? Mon. Not. R. Astron. Soc. 2012, 419, 687–705. [Google Scholar] [CrossRef]
- Combes, F. Fueling Processes on (Sub-)kpc Scales. Galaxies 2023, 11, 120. [Google Scholar] [CrossRef]
- Storchi-Bergmann, T.; Schnorr-Müller, A. Observational constraints on the feeding of supermassive black holes. Nat. Astron. 2019, 3, 48–61. [Google Scholar] [CrossRef]
- Czerny, B.; Siemiginowska, A.; Janiuk, A.; Nikiel-Wroczyński, B.; Stawarz, Ł. Accretion Disk Model of Short-Timescale Intermittent Activity in Young Radio Sources. Astrophys. J. 2009, 698, 840–851. [Google Scholar] [CrossRef]
- Holt, J.; Tadhunter, C.N.; Morganti, R. Fast outflows in compact radio sources: Evidence for AGN-induced feedback in the early stages of radio source evolution. Mon. Not. R. Astron. Soc. 2008, 387, 639–659. [Google Scholar] [CrossRef]
- McNamara, B.R.; Nulsen, P.E.J. Mechanical feedback from active galactic nuclei in galaxies, groups and clusters. New J. Phys. 2012, 14, 055023. [Google Scholar] [CrossRef]
- Mukherjee, D.; Bicknell, G.V.; Wagner, A.Y.; Sutherl, R.S.; Silk, J. Relativistic jet feedback—III. Feedback on gas discs. Mon. Not. R. Astron. Soc. 2018, 479, 5544–5566. [Google Scholar] [CrossRef]
- Sutherl, R.S.; Bicknell, G.V. Interactions of a Light Hypersonic Jet with a Nonuniform Interstellar Medium. Astrophys. J. Suppl. Ser. 2007, 173, 37–69. [Google Scholar] [CrossRef]
- Molyneux, S.J.; Harrison, C.M.; Jarvis, M.E. Extreme ionised outflows are more common when the radio emission is compact in AGN host galaxies. Astron. Astrophys. 2019, 631, A132. [Google Scholar] [CrossRef]
- Shih, H.-Y.; Stockton, A.; Kewley, L. Ionized Outflows from Compact Steep Spectrum Sources. Astrophys. J. 2013, 772, 138. [Google Scholar] [CrossRef]
- Kukreti, P.; Morganti, R.; Tadhunter, C.; Santoro, F. Ionised gas outflows over the radio AGN life cycle. Astron. Astrophys. 2023, 674, 198. [Google Scholar] [CrossRef]
- Galvin, T.J.; Huynh, M.T.; Norris, R.P.; Wang, X.R.; Hopkins, E.; Polsterer, K.; Ralph, N.O.; O’Brien, A.N.; Heald, G.H. Cataloguing the radio-sky with unsupervised machine learning: A new approach for the SKA era. Mon. Not. R. Astron. Soc. 2020, 497, 2730–2758. [Google Scholar] [CrossRef]
- Ndung’u, S.; Grobler, T.; Wijnholds, S.J.; Karastoyanova, D.; Azzopardi, G. Advances on the morphological classification of radio galaxies: A review. New Astron. Rev. 2023, 97, 101685. [Google Scholar] [CrossRef]
- Mostert, R.I.J.; Morganti, R.; Brienza, M.; Duncan, K.J.; Oei, M.S.S.L.; Röttgering, H.J.A.; Alegre, L.; Hardcastle, M.J.; Jurlin, N. Finding AGN remnant candidates based on radio morphology with machine learning. Astron. Astrophys. 2023, 674, 208. [Google Scholar] [CrossRef]
- de Gasperin, F.; Edler, H.W.; Williams, W.L.; Callingham, J.R.; Asabere, B.; Brüggen, M.; Brunetti, G.; Dijkema, T.J.; Hardcastle, M.J.; Iacobelli, M.; et al. The LOFAR LBA Sky Survey. II. First data release. Astron. Astrophys. 2023, 673, 165. [Google Scholar] [CrossRef]
- Morabito, L.K.; Jackson, N.J.; Mooney, S.; Sweijen, F.; Badole, S.; Kukreti, P.; Venkattu, D.; Groeneveld, C.; Kappes, A.; Bonnassieux, E.; et al. Sub-arcsecond imaging with the International LOFAR Telescope. I. Foundational calibration strategy and pipeline. Astron. Astrophys. 2022, 658, 1. [Google Scholar] [CrossRef]
- Jin, S.; Trager, S.C.; Dalton, G.B.; Aguerri, J.A.L.; Drew, J.E.; Falcón-Barroso, J.; Gänsicke, B.T.; Hill, V.; Iovino, A.; Pieri, M.M.; et al. The wide-field, multiplexed, spectroscopic facility WEAVE: Survey design, overview, and simulated implementation. Mon. Not. R. Astron. Soc. 2023, stad557. [Google Scholar] [CrossRef]
- de Jong, R.S.; Bellido-Tirado, O.; Brynnel, J.G.; Ezzati Amini, A.; Frey, S.; Füßlein, C.; Gäbler, M.; Giannone, D.; Johl, D.; Kuba, S.; et al. 4MOST: The 4-metre multi-object spectroscopic telescope project in the assembly, integration, and test phase. In Proceedings of the Ground-Based and Airborne Instrumentation for Astronomy IX, Montréal, QC, Canada, 17–23 July 2022; Volume 12184. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Morganti, R. What Have We Learned about the Life Cycle of Radio Galaxies from New Radio Surveys. Galaxies 2024, 12, 11. https://doi.org/10.3390/galaxies12020011
Morganti R. What Have We Learned about the Life Cycle of Radio Galaxies from New Radio Surveys. Galaxies. 2024; 12(2):11. https://doi.org/10.3390/galaxies12020011
Chicago/Turabian StyleMorganti, Raffaella. 2024. "What Have We Learned about the Life Cycle of Radio Galaxies from New Radio Surveys" Galaxies 12, no. 2: 11. https://doi.org/10.3390/galaxies12020011
APA StyleMorganti, R. (2024). What Have We Learned about the Life Cycle of Radio Galaxies from New Radio Surveys. Galaxies, 12(2), 11. https://doi.org/10.3390/galaxies12020011