Clock Fields and Logarithmic Decay of Dark Energy
Abstract
:1. Introduction
2. Back-Reaction of Cosmological Perturbations
3. Review of the Work by Kitamoto et al.
4. Physical Measurability
5. Decay in the Presence of a Clock Field
6. Conclusions and Discussion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
1 | |
2 | The TCC condition can also be obtained by demanding that the entanglement entropy between sub- and super-Hubble modes does not exceed the radiation entropy after inflation [56]. |
3 | In the context of inflation, the scalar modes are enhanced by a factor of compared to the tensor modes, where is the inflationary slow-roll parameter. |
4 | |
5 | Recall that we are computing the contribution of the super-Hubble modes. |
6 | The dark energy fluid is irrelevant for this discussion. |
7 | |
8 | |
9 | This result was based on earlier work of [84]. |
10 |
References
- Guth, A.H. The Inflationary Universe: A Possible Solution to the Horizon and Flatness Problems. Phys. Rev. D 1981, 23, 347, reprinted in Adv. Ser. Astrophys. Cosmol. 1987, 3, 139. [Google Scholar] [CrossRef]
- Brout, R.; Englert, F.; Gunzig, E. The Creation of the Universe as a Quantum Phenomenon. Ann. Phys. 1978, 115, 78. [Google Scholar] [CrossRef]
- Starobinsky, A.A. A New Type of Isotropic Cosmological Models without Singularity. Phys. Lett. B 1980, 91, 99. [Google Scholar] [CrossRef]
- Sato, K. First Order Phase Transition of a Vacuum and Expansion of the Universe. Mon. Not. Roy. Astron. Soc. 1981, 195, 467. [Google Scholar] [CrossRef]
- Martin, J. Everything You Always Wanted to Know about the Cosmological Constant Problem (but Were Afraid to Ask). Comptes Rendus Phys. 2012, 13, 566–665. [Google Scholar] [CrossRef]
- Li, M.; Li, X.D.; Wang, S.; Wang, Y. Dark Energy. Commun. Theor. Phys. 2011, 56, 525. [Google Scholar] [CrossRef]
- Frieman, J.; Turner, M.; Huterer, D. Dark Energy and the Accelerating Universe. Ann. Rev. Astron. Astrophys. 2008, 46, 385. [Google Scholar] [CrossRef]
- Sahni, V. Dark matter and dark energy. Lect. Notes Phys. 2004, 653, 141. [Google Scholar] [CrossRef]
- Weinberg, S. The Cosmological constant problems. In Sources and Detection of Dark Matter and Dark Energy in the Universe, Proceedings of the Fourth International Symposium, Marina del Rey, CA, USA, 23–25 February 2000; Springer: Berlin/Heidelberg, Germany, 2001. [Google Scholar]
- Spradlin, M.; Strominger, A.; Volovich, A. Les Houches lectures on de Sitter space. arXiv 2001, arXiv:hep-th/0110007. [Google Scholar]
- Polyakov, A.M. Phase Transitions And The Universe. Sov. Phys. Usp. 1982, 25, 187, reprinted in Usp. Fiz. Nauk 1982, 136, 538. [Google Scholar] [CrossRef]
- Polyakov, A.M. De Sitter space and eternity. Nucl. Phys. B 2008, 797, 199. [Google Scholar] [CrossRef]
- Polyakov, A.M. Infrared instability of the de Sitter space. arXiv 2012, arXiv:1209.4135. [Google Scholar]
- Mottola, E. Particle Creation in de Sitter Space. Phys. Rev. D 1985, 31, 754. [Google Scholar] [CrossRef]
- Mazur, P.; Mottola, E. Spontaneous Breaking of De Sitter Symmetry by Radiative Effects. Nucl. Phys. B 1986, 278, 694. [Google Scholar] [CrossRef]
- Mottola, E. A Quantum Fluctuation Dissipation Theorem for General Relativity. Phys. Rev. D 1986, 33, 2136. [Google Scholar] [CrossRef]
- Mottola, E. Thermodynamic Instability Of De Sitter Space. Phys. Rev. D 1986, 33, 1616. [Google Scholar] [CrossRef]
- Antoniadis, I.; Mottola, E. Graviton Fluctuations in De Sitter Space. J. Math. Phys. 1991, 32, 1037. [Google Scholar] [CrossRef]
- Anderson, P.R.; Mottola, E. Instability of global de Sitter space to particle creation. Phys. Rev. D 2014, 89, 104038. [Google Scholar] [CrossRef]
- Tsamis, N.C.; Woodard, R.P. Relaxing the cosmological constant. Phys. Lett. B 1993, 301, 351. [Google Scholar] [CrossRef]
- Tsamis, N.C.; Woodard, R.P. Strong infrared effects in quantum gravity. Ann. Phys. 1995, 238, 1. [Google Scholar] [CrossRef]
- Tsamis, N.C.; Woodard, R.P. Quantum gravity slows inflation. Nucl. Phys. B 1996, 474, 235. [Google Scholar] [CrossRef]
- Tsamis, N.C.; Woodard, R.P. The Quantum gravitational back reaction on inflation. Ann. Phys. 1997, 253, 1. [Google Scholar] [CrossRef]
- Mukhanov, V.F.; Abramo, L.R.W.; Brandenberger, R.H. On the Back reaction problem for gravitational perturbations. Phys. Rev. Lett. 1997, 78, 1624. [Google Scholar] [CrossRef]
- Abramo, L.R.W.; Brandenberger, R.H.; Mukhanov, V.F. The Energy-momentum tensor for cosmological perturbations. Phys. Rev. D 1997, 56, 3248. [Google Scholar] [CrossRef]
- Brandenberger, R.H. Back reaction of cosmological perturbations and the cosmological constant problem. arXiv 2002, arXiv:hep-th/0210165. [Google Scholar]
- Marolf, D.; Morrison, I.A. The IR stability of de Sitter QFT: Results at all orders. Phys. Rev. D 2011, 84, 044040. [Google Scholar] [CrossRef]
- Green, S.R.; Wald, R.M. A simple, heuristic derivation of our “no backreaction” results. Class. Quant. Grav. 2016, 33, 125027. [Google Scholar] [CrossRef]
- Banks, T.; Dine, M.; Gorbatov, E. Is there a string theory landscape? J. High Energy Phys. 2004, 0408, 058. [Google Scholar] [CrossRef]
- Dvali, G.; Gomez, C.; Zell, S. Quantum Break-Time of de Sitter. J. Cosmol. Astropart. Phys. 2017, 1706, 028. [Google Scholar] [CrossRef]
- Dvali, G.; Gomez, C. On Exclusion of Positive Cosmological Constant. Fortsch. Phys. 2019, 67, 1800092. [Google Scholar] [CrossRef]
- Dvali, G.; Gomez, C.; Zell, S. Quantum Breaking Bound on de Sitter and Swampland. Fortsch. Phys. 2019, 67, 1800094. [Google Scholar] [CrossRef]
- Brahma, S.; Dasgupta, K.; Tatar, R. Four-dimensional de Sitter space is a Glauber-Sudarshan state in string theory. J. High Energy Phys. 2021, 7, 114. [Google Scholar] [CrossRef]
- Brahma, S.; Dasgupta, K.; Tatar, R. De Sitter Space as a Glauber-Sudarshan State. J. High Energy Phys. 2021, 2, 104. [Google Scholar] [CrossRef]
- Bernardo, H.; Brahma, S.; Dasgupta, K.; Tatar, R. Crisis on Infinite Earths: Short-lived de Sitter Vacua in the String Theory Landscape. J. High Energy Phys. 2021, 4, 37. [Google Scholar] [CrossRef]
- Bernardo, H.; Brahma, S.; Dasgupta, K.; Faruk, M.M.; Tatar, R. De Sitter Space as a Glauber-Sudarshan State: II. Fortsch. Phys. 2021, 69, 2100131. [Google Scholar] [CrossRef]
- Obied, G.; Ooguri, H.; Spodyneiko, L.; Vafa, C. De Sitter Space and the Swampland. arXiv 2018, arXiv:1806.08362. [Google Scholar]
- Agrawal, P.; Obied, G.; Steinhardt, P.J.; Vafa, C. On the Cosmological Implications of the String Swampland. Phys. Lett. B 2018, 784, 271. [Google Scholar] [CrossRef]
- Brennan, T.D.; Carta, F.; Vafa, C. The String Landscape, the Swampland, and the Missing Corner. PoS TASI 2017, 2017, 015. [Google Scholar] [CrossRef]
- Palti, E. The Swampland: Introduction and Review. Fortsch. Phys. 2019, 67, 1900037. [Google Scholar] [CrossRef]
- Heisenberg, L.; Bartelmann, M.; Brandenberger, R.; Refregier, A. Dark Energy in the Swampland. Phys. Rev. D 2018, 98, 123502. [Google Scholar] [CrossRef]
- Banerjee, A.; Cai, H.; Heisenberg, L.; Colgáin, E. Sheikh-Jabbari, M.M.; Yang, T. Hubble sinks in the low-redshift swampland. Phys. Rev. D 2021, 103, L081305. [Google Scholar] [CrossRef]
- Bedroya, A.; Vafa, C. Trans-Planckian Censorship and the Swampland. J. High Energy Phys. 2020, 9, 123. [Google Scholar] [CrossRef]
- Bedroya, A.; Brandenberger, R.; Loverde, M.; Vafa, C. Trans-Planckian Censorship and Inflationary Cosmology. Phys. Rev. D 2020, 101, 103502. [Google Scholar] [CrossRef]
- Brandenberger, R.; Wilson-Ewing, E. Strengthening the TCC Bound on Inflationary Cosmology. J. Cosmol. Astropart. Phys. 2020, 2003, 047. [Google Scholar] [CrossRef]
- Cai, Y.; Piao, Y.S. Pre-inflation and Trans-Planckian Censorship. Sci. China Phys. Mech. Astron. 2020, 63, 110411. [Google Scholar] [CrossRef]
- Mizuno, S.; Mukohyama, S.; Pi, S.; Zhang, Y.L. Universal Upper Bound on the Inflationary Energy Scale from the Trans-Planckian Censorship Conjecture. Phys. Rev. D 2020, 102, 021301. [Google Scholar] [CrossRef]
- Dhuria, M.; Goswami, G. Trans-Planckian Censorship Conjecture and Non-thermal post-inflationary history. Phys. Rev. D 2019, 100, 123518. [Google Scholar] [CrossRef]
- Torabian, M. Non-Standard Cosmological Models and the trans-Planckian Censorship Conjecture. Fortsch. Phys. 2020, 68, 1900092. [Google Scholar] [CrossRef]
- Li, H.H.; Ye, G.; Cai, Y.; Piao, Y.S. Trans-Planckian censorship of multi-stage inflation and dark energy. Phys. Rev. D 2020, 101, 063527. [Google Scholar] [CrossRef]
- Kamali, V.; Brandenberger, R. Relaxing the TCC Bound on Inflationary Cosmology? Eur. Phys. J. C 2020, 80, 339. [Google Scholar] [CrossRef]
- Brandenberger, R. Fundamental Physics, the Swampland of Effective Field Theory and Early Universe Cosmology. arXiv 2019, arXiv:1911.06058. [Google Scholar]
- Brandenberger, R. Trans-Planckian Censorship Conjecture and Early Universe Cosmology. arXiv 2021, arXiv:2102.09641. [Google Scholar] [CrossRef]
- Brandenberger, R. String Cosmology and the Breakdown of Local Effective Field Theory. arXiv 2022, arXiv:2112.04082. [Google Scholar]
- Penrose, R. Naked singularities. Ann. N. Y. Acad. Sci. 1973, 224, 125. [Google Scholar] [CrossRef]
- Brahma, S.; Alaryani, O.; Brandenberger, R. Entanglement entropy of cosmological perturbations. Phys. Rev. D 2020, 102, 043529. [Google Scholar] [CrossRef]
- Kitamoto, H.; Kitazawa, Y.; Matsubara, T. De Sitter duality and logarithmic decay of dark energy. Phys. Rev. D 2020, 101, 023504. [Google Scholar] [CrossRef]
- Kitamoto, H.; Kitazawa, Y. Entropy generation at the horizon diffuses the cosmological constant in 2D de Sitter space. Phys. Rev. D 2019, 99, 085015. [Google Scholar] [CrossRef]
- Kitamoto, H.; Kitazawa, Y. Time Dependent Couplings as Observables in de Sitter Space. Int. J. Mod. Phys. A 2014, 29, 1430016. [Google Scholar] [CrossRef]
- Kitamoto, H.; Kitazawa, Y. Soft Graviton effects on Gauge theories in de Sitter Space. Phys. Rev. D 2013, 87, 124004. [Google Scholar] [CrossRef]
- Kitamoto, H.; Kitazawa, Y. Soft Gravitons Screen Couplings in de Sitter Space. Phys. Rev. D 2013, 87, 124007. [Google Scholar] [CrossRef]
- Kitamoto, H.; Kitazawa, Y. Non-linear sigma model in de Sitter space. Phys. Rev. D 2011, 83, 104043. [Google Scholar] [CrossRef]
- Mukhanov, V.F.; Feldman, H.A.; Brandenberger, R.H. Theory of Cosmological Perturbations. Phys. Rep. 1992, 215, 203. [Google Scholar] [CrossRef]
- Brandenberger, R.H. Lectures on the theory of cosmological perturbations. Lect. Notes Phys. 2004, 646, 127–167. [Google Scholar] [CrossRef]
- Martin, J.; Brandenberger, R.H. The TransPlanckian problem of inflationary cosmology. Phys. Rev. D 2001, 63, 123501. [Google Scholar] [CrossRef]
- Brill, D.R.; Hartle, J.B. Method of the Self-Consistent Field in General Relativity and its Application to the Gravitational Geon. Phys. Rev. 1964, 135, B271. [Google Scholar] [CrossRef]
- Isaacson, R.A. Gravitational Radiation in the Limit of High Frequency. I. The Linear Approximation and Geometrical Optics. Phys. Rev. 1968, 166, 1263. [Google Scholar] [CrossRef]
- Unruh, W. Cosmological long wavelength perturbations. arXiv 1998, arXiv:astro-ph/9802323. [Google Scholar]
- Geshnizjani, G.; Brandenberger, R. Back reaction and local cosmological expansion rate. Phys. Rev. D 2002, 66, 123507. [Google Scholar] [CrossRef]
- Abramo, L.R.; Woodard, R.P. No one loop back reaction in chaotic inflation. Phys. Rev. D 2002, 65, 063515. [Google Scholar] [CrossRef]
- Afshordi, N.; Brandenberger, R.H. Super Hubble nonlinear perturbations during inflation. Phys. Rev. D 2001, 63, 123505. [Google Scholar] [CrossRef]
- Urakawa, Y.; Tanaka, T. IR divergence does not affect the gauge-invariant curvature perturbation. Phys. Rev. D 2010, 82, 121301. [Google Scholar] [CrossRef]
- Geshnizjani, G.; Brandenberger, R. Back reaction of perturbations in two scalar field inflationary models. J. Cosmol. Astropart. Phys. 2005, 504, 006. [Google Scholar] [CrossRef]
- Abramo, L.R.; Woodard, R.P. Back reaction is for real. Phys. Rev. D 2002, 65, 063516. [Google Scholar] [CrossRef]
- Losic, B.; Unruh, W.G. Long-wavelength metric backreactions in slow-roll inflation. Phys. Rev. D 2005, 72, 123510. [Google Scholar] [CrossRef]
- Losic, B.; Unruh, W.G. On leading order gravitational backreactions in de Sitter spacetime. Phys. Rev. D 2006, 74, 023511. [Google Scholar] [CrossRef]
- Marozzi, G.; Vacca, G.P.; Brandenberger, R.H. Cosmological Backreaction for a Test Field Observer in a Chaotic Inflationary Model. J. Cosmol. Astropart. Phys. 2013, 1302, 027. [Google Scholar] [CrossRef]
- Brandenberger, R.; Graef, L.L.; Marozzi, G.; Vacca, G.P. Backreaction of super-Hubble cosmological perturbations beyond perturbation theory. Phys. Rev. D 2018, 98, 103523. [Google Scholar] [CrossRef]
- Senatore, L.; Zaldarriaga, M. On Loops in Inflation. J. High Energy Phys. 2010, 12, 008. [Google Scholar] [CrossRef]
- Senatore, L.; Zaldarriaga, M. On Loops in Inflation II: IR Effects in Single Clock Inflation. J. High Energy Phys. 2013, 1, 109. [Google Scholar] [CrossRef]
- Creminelli, P.; Hershkovits, O.; Senatore, L.; Vasy, A. A de Sitter no-hair theorem for 3+1d Cosmologies with isometry group forming 2-dimensional orbits. Adv. Math. 2023, 434, 109296. [Google Scholar] [CrossRef]
- Kolb, E.W.; Matarrese, S.; Notari, A.; Riotto, A. The Effect of inhomogeneities on the expansion rate of the universe. Phys. Rev. D 2005, 71, 023524. [Google Scholar] [CrossRef]
- Brandenberger, R.H.; Lam, C.S. Back-reaction of cosmological perturbations in the infinite wavelength approximation. arXiv 2004, arXiv:hep-th/0407048. [Google Scholar]
- Finelli, F.; Marozzi, G.; Vacca, G.P.; Venturi, G. Backreaction during inflation: A Physical gauge invariant formulation. Phys. Rev. Lett. 2011, 106, 121304. [Google Scholar] [CrossRef] [PubMed]
- Mukhanov, V.F.; Chibisov, G.V. Quantum Fluctuations and a Nonsingular Universe. JETP Lett. 1981, 33, 532, reprinted in Pisma Zh. Eksp. Teor. Fiz. 1981, 33, 549. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brandenberger, R.; Comeau, V.; Fossati, L.; Heisenberg, L. Clock Fields and Logarithmic Decay of Dark Energy. Galaxies 2024, 12, 56. https://doi.org/10.3390/galaxies12050056
Brandenberger R, Comeau V, Fossati L, Heisenberg L. Clock Fields and Logarithmic Decay of Dark Energy. Galaxies. 2024; 12(5):56. https://doi.org/10.3390/galaxies12050056
Chicago/Turabian StyleBrandenberger, Robert, Vincent Comeau, Leonardo Fossati, and Lavinia Heisenberg. 2024. "Clock Fields and Logarithmic Decay of Dark Energy" Galaxies 12, no. 5: 56. https://doi.org/10.3390/galaxies12050056
APA StyleBrandenberger, R., Comeau, V., Fossati, L., & Heisenberg, L. (2024). Clock Fields and Logarithmic Decay of Dark Energy. Galaxies, 12(5), 56. https://doi.org/10.3390/galaxies12050056