Numerical Study of Bar Suppression in Galaxy Models Due to Disc Heating
Abstract
:1. Introduction
Paper Overview
2. Methods
2.1. Choice of Parameters
2.2. Initial Conditions
2.2.1. Dark Matter Halo
2.2.2. Stellar Disc
2.3. Simulations
3. Analysis Framework
Model | Steps | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
(1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) | (10) | (11) | (12) |
SGS1 | 0.035 | 0.1 | 1.13 | 0.386 | 0.086 | 0.088 | 0.248 | 32,768 | 2.87 | 27.63 | |
SGS2 | - | 0.05 | 1.13 | 0.383 | 0.089 | 0.100 | 0.229 | 56,518 | - | 24.29 | |
SGS3 | - | 0.025 | 1.11 | 0.389 | 0.092 | 0.098 | 0.217 | 65,536 | - | 23.93 | |
SGS4 | - | 0.010 | 1.07 | 0.421 | 0.117 | 0.112 | 0.217 | 131,115 | - | 22.39 | |
SGS5 | - | 0.005 | 1.07 | 0.434 | 0.113 | 0.108 | 0.126 | 375,840 | - | 23.22 | |
SGS6 | - | 0.001 | 1.08 | 0.489 | 0.177 | 0.165 | 0.008 | 3,433,757 | - | 6.23 | |
SGS7 | 0.038 | 0.1 | 1.14 | 0.335 | 0.054 | 0.068 | 0.234 | 32,768 | 3.08 | 23.26 | |
SGS8 | - | 0.05 | 1.14 | 0.358 | 0.066 | 0.065 | 0.213 | 53,683 | - | 23.03 | |
SGS9 | - | 0.025 | 1.13 | 0.373 | 0.078 | 0.076 | 0.211 | 65,536 | - | 22.23 | |
SGS10 | - | 0.010 | 1.13 | 0.372 | 0.089 | 0.101 | 0.221 | 131,109 | - | 22.96 | |
SGS11 | - | 0.005 | 1.12 | 0.396 | 0.082 | 0.083 | 0.036 | 348,741 | - | 10.51 | |
SGS12 | - | 0.001 | 1.05 | 0.433 | 0.128 | 0.110 | 0.015 | 2,748,011 | - | 6.10 | |
SGS13 | 0.041 | 0.1 | 1.14 | 0.316 | 0.044 | 0.068 | 0.179 | 32,768 | 3.29 | 17.73 | |
SGS14 | - | 0.05 | 1.15 | 0.336 | 0.074 | 0.089 | 0.248 | 53,687 | - | 24.68 | |
SGS15 | - | 0.025 | 1.14 | 0.342 | 0.066 | 0.082 | 0.185 | 65,536 | - | 21.00 | |
SGS16 | - | 0.010 | 1.14 | 0.347 | 0.070 | 0.074 | 0.159 | 131,093 | - | 19.05 | |
SGS17 | - | 0.005 | 1.11 | 0.349 | 0.065 | 0.089 | 0.006 | 345,694 | - | 5.98 | |
SGS18 | - | 0.001 | 1.11 | 0.395 | 0.103 | 0.099 | 0.010 | 2,752,160 | - | 4.87 | |
SGS19 | 0.044 | 0.1 | 1.16 | 0.297 | 0.040 | 0.041 | 0.187 | 32,768 | 3.50 | 17.17 | |
SGS20 | - | 0.05 | 1.15 | 0.300 | 0.039 | 0.056 | 0.102 | 34,016 | - | 12.13 | |
SGS21 | - | 0.025 | 1.15 | 0.331 | 0.042 | 0.051 | 0.166 | 65,536 | - | 16.58 | |
SGS22 | - | 0.010 | 1.14 | 0.335 | 0.060 | 0.078 | 0.152 | 131,093 | - | 16.16 | |
SGS23 | - | 0.005 | 1.14 | 0.319 | 0.069 | 0.064 | 0.017 | 322,834 | - | 8.16 | |
SGS24 | - | 0.001 | 1.14 | 0.363 | 0.081 | 0.086 | 0.006 | 2,489,617 | - | 5.14 | |
SGS25 | 0.047 | 0.1 | 1.17 | 0.280 | 0.026 | 0.045 | 0.184 | 32,768 | 3.71 | 19.98 | |
SGS26 | - | 0.05 | 1.17 | 0.291 | 0.037 | 0.065 | 0.211 | 44,219 | - | 21.34 | |
SGS27 | - | 0.025 | 1.16 | 0.300 | 0.044 | 0.043 | 0.127 | 65,536 | - | 13.39 | |
SGS28 | - | 0.010 | 1.13 | 0.297 | 0.048 | 0.064 | 0.116 | 131,093 | - | 13.38 | |
SGS29 | - | 0.005 | 1.10 | 0.298 | 0.041 | 0.055 | 0.005 | 325,608 | - | 4.48 | |
SGS30 | - | 0.001 | 1.10 | 0.334 | 0.067 | 0.069 | 0.014 | 2,845,525 | - | 4.49 | |
SGS31 | 0.05 | 0.1 | 1.18 | 0.268 | 0.022 | 0.031 | 0.112 | 32,768 | 3.92 | 12.11 | |
SGS32 | - | 0.05 | 1.18 | 0.275 | 0.031 | 0.050 | 0.144 | 32,949 | - | 14.67 | |
SGS33 | - | 0.025 | 1.18 | 0.289 | 0.033 | 0.049 | 0.164 | 65,536 | - | 17.65 | |
SGS34 | - | 0.010 | 1.15 | 0.298 | 0.040 | 0.044 | 0.129 | 131,078 | - | 16.70 | |
SGS35 | - | 0.005 | 1.14 | 0.287 | 0.041 | 0.044 | 0.029 | 315,762 | - | 9.19 | |
SGS36 | - | 0.001 | 1.14 | 0.312 | 0.053 | 0.061 | 0.005 | 2,481,852 | - | 3.57 |
3.1. Kinematics
3.2. Stability of Galactic Discs
3.3. Distortion Parameter
3.4. Fourier Magnitude
4. Results and Discussion
4.1. Bar’s Impact on the Tangential Velocity Curves
4.2. Evolution of Parameter
4.3. Particle Resolution
4.4. Vertical Acceleration Profiles
5. Conclusions
- ⋄
- The set of galaxy models considered here vary in mass and disc extension but have, by construction, nearly the same initial value of (1.1). In this sense, the models are marginally stable against bar formation.
- ⋄
- Further evolution of Toomre’s criterion does not reflect bar instability for all of our models, particularly for models with the lowest softening values, i.e., kpc (see Section 2.3). This behaviour still occurs after increasing the number of particles of the models.
- ⋄
- We find that yields an accurate picture of the bar’s formation and evolution (see Figure 8). We confirm that a threshold of effectively indicates recent bar formation. Additionally, this parameter allows us to observe the formation, destruction and resurgence of the bar, which is not possible with other indicators such as the bar strength, . The distortion parameter is more apt at measuring when the bar has formed and is more apt at identifying the different phases of bar evolution (rapid growth, buckling, secular growth). In this case, we are inclined to use the distortion parameter because we are interested in when the bar appears instead of determining how strong it might become.
- ⋄
- We find a close relationship between and that affects how fast the bar forms, its strength and its length. We notice that the empirical linear dependencies, that is, and , between our simulations and () pairs do not hold when these two parameters interact. Thus, the process of choosing an appropriate softening value seems to be more complicated than previously thought.
- ⋄
- The vertical acceleration profile is a better estimator of the disc heating than the velocity dispersions. Our models with small softening values ( kpc) tend to accumulate and accelerate particles at the centre of discs, driving them toward chaotic motion. Such an effect normally results in the destruction of the bar.
- ⋄
- While dispersions do increase at the centre of unbarred models, such an increase is not that extreme and may be explained by natural causes (e.g., disc mass redistribution, bar residue, non-axisymmetric distortions, etc.). Given that the central disc density increases with time in our models, regardless of parameter values, it is also reasonable to assume that the near-circular particle orbits have simply shrunk, dimly increasing the dispersions. However, none of these effects necessarily explain the bar dilution. Because accelerations are not affected by these natural causes, they are better tracers of these unphysical/odd behaviours.
- ⋄
- We are also able to conclude that, for particle resolutions close to , softening values lower than 0.005 kpc are not well-suited to reproduce the bar instability. However, this depends on the disc mass fraction. If , the bar appears to cohabit with numerical noise introduced by small softening values, specifically, kpc. Models with lower values (0.040) are not able to overcome the interference of small softening values, affecting the behaviour of the bar (see Figure 12).
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. The Effect of Unequal Softening Lengths
1 | In this case, resonant orbits, mostly of the family. |
2 | We do not distinguish between Plummer or kernel-based softenings. Some of these simulations may also include hydrodynamical effects. |
3 | [58] use a fiducial value of in their fixed-softening simulations. They also ran simulations with |
4 | This value roughly corresponds to the mass of Milky Way-size galaxies, given that . |
5 | We ran a couple of experiments using that confirm our results. |
6 | Whether or not this model developed a bar is unknown, [93] only showed the first gigayear of the simulation. |
7 | We use this time as a reference point to assess the involvement that bar ignition has on any increase in the velocity dispersions (“heating”). |
8 | We ran SGS36 with and the bar is still suppressed, although it should be more physically consistent, since the errors in force calculations have smaller impact than for models with less particles. |
References
- Lindblad, B. On the Possibility of a Quasi-Stationary Spiral Structure in Galaxies; Stockholms Observatoriums Annaler; Almqvist & Wiksell: Stockholm, Sweden, 1963; p. 20. [Google Scholar]
- Lin, C.; Shu, F. On the Spiral Structure of Disk Galaxies. Astrophys. J. 1964, 140, 646. [Google Scholar] [CrossRef]
- Toomre, A. On the gravitational stability of a disk of stars. Astrophys. J. 1964, 139, 1217. [Google Scholar] [CrossRef]
- Lynden-Bell, D.; Kalnajs, A.J. On the Generating Mechanism of Spiral Structure. Mon. Not. R. Astron. Soc. 1972, 157, 1. [Google Scholar] [CrossRef]
- Toomre, A. What amplifies the spirals. In The Structure and Evolution of Normal Galaxies; Cambridge University Press: Cambridge, UK, 1981; p. 111. [Google Scholar]
- Sellwood, J.A. Bar instability and rotation curves. Astron. Astrophys. 1981, 99, 362. [Google Scholar]
- Dubinski, J.; Kuijken, K. The Settling of Warped Disks in Oblate Dark Halos. Astrophys. J. 1995, 442, 492. [Google Scholar] [CrossRef]
- Athanassoula, E.; Misiriotis, A. Morphology, photometry and kinematics of N-body bars—I. Three models with different halo central concentrations. Mon. Not. R. Astron. Soc. 2002, 330, 35. [Google Scholar] [CrossRef]
- Yurin, D.; Springel, V. The stability of stellar discs in Milky Way-sized dark matter haloes. Mon. Not. R. Astron. Soc. 2015, 452, 2367. [Google Scholar] [CrossRef]
- Kormendy, J. The structure of barred galaxies. In The Structure and Evolution of Normal Galaxies; Cambridge University Press: Cambridge, UK, 1981; p. 85. [Google Scholar]
- Elmegreen, D.B.; Elmegreen, B.G.; Bellin, A. Statistical Evidence That Galaxy Companions Trigger Bars and Change the Spiral Hubble Type. Astrophys. J. 1990, 364, 415. [Google Scholar] [CrossRef]
- Sellwood, J.A.; Wilkinson, A. Dynamics of Barred Galaxies. Rep. Prog. Phy. 1993, 56, 173. [Google Scholar] [CrossRef]
- Kormendy, J.; Kennicutt, R.C. Secular Evolution and the Formation of Pseudobulges in Disk Galaxies. Ann. Rev. Astron. Astrophys. 2004, 42, 603. [Google Scholar] [CrossRef]
- Masters, K.L.; Nichol, R.; Bamford, S.; Mosleh, M.; Lintott, C.J.; Andreescu, D.; Edmondson, E.M.; Keel, W.C.; Murray, P.; Raddick, M.J.; et al. Galaxy Zoo: Dust in spiral galaxies. Mon. Not. R. Astron. Soc. 2010, 404, 792. [Google Scholar] [CrossRef]
- Debattista, V.P.; Sellwood, J.A. Dynamical Friction and the Distribution of Dark Matter in Barred Galaxies. Astrophys. J. 1998, 493, L5. [Google Scholar] [CrossRef]
- Valenzuela, O.; Klypin, A. Secular bar formation in galaxies with a significant amount of dark matter. Mon. Not. R. Astron. Soc. 2003, 345, 406. [Google Scholar] [CrossRef]
- Petersen, M.S.; Weinberg, M.D.; Katz, N. Dark matter trapping by stellar bars: The shadow bar. Mon. Not. R. Astron. Soc. 2016, 463, 1952. [Google Scholar] [CrossRef]
- Valencia-Enríquez, D.; Puerari, I.; Chaves-Velasquez, L. Detecting the growth of structures in Pure Stellar Disk Models. Rev. Mex. Astron. AstrofÍsica 2017, 53, 257. [Google Scholar] [CrossRef]
- Chilingarian, I.V.; Di Matteo, P.; Combes, F.; Melchior, A.L.; Semelin, B. The GalMer database: Galaxy mergers in the virtual observatory. Astron. Astrophys. 2010, 518, A61. [Google Scholar] [CrossRef]
- Hwang, J.S.; Park, C.; Choi, J.H. The Initial Conditions and Evolution of Isolated Galaxy Models: Effects of the Hot Gas Halo. J. Korean Astron. Soc. 2013, 46, 1. [Google Scholar] [CrossRef]
- Dobbs, C.L.; Pettitt, A.R.; Corbelli, E.; Pringle, J.E. Simulations of the flocculent spiral M33: What drives the spiral structure? Mon. Not. R. Astron. Soc. 2018, 478, 3793. [Google Scholar] [CrossRef]
- Sellwood, J.A.; Shen, J.; Li, Z. The global stability of M33: Still a puzzle. Mon. Not. R. Astron. Soc. 2019, 486, 4710. [Google Scholar] [CrossRef]
- Scannapieco, C.; Athanassoula, E. Bars in hydrodynamical cosmological simulations. Mon. Not. R. Astron. Soc. 2012, 425, L10. [Google Scholar] [CrossRef]
- Schaye, J.; Crain, R.A.; Bower, R.G.; Furlong, M.; Schaller, M.; Theuns, T.; Vecchia, C.D.; Frenk, C.S.; McCarthy, I.G.; Helly, J.C.; et al. The EAGLE project: Simulating the evolution and assembly of galaxies and their environments. Mon. Not. R. Astron. Soc. 2015, 446, 521. [Google Scholar] [CrossRef]
- Crain, R.A.; Schaye, J.; Bower, R.G.; Furlong, M.; Schaller, M.; Theuns, T.; Vecchia, C.D.; Frenk, C.S.; McCarthy, I.G.; Helly, J.C.; et al. The EAGLE simulations of galaxy formation: Calibration of subgrid physics and model variations. Mon. Not. R. Astron. Soc. 2015, 450, 1937. [Google Scholar] [CrossRef]
- Algorry, D.G.; Navarro, J.F.; Abadi, M.G.; Sales, L.V.; Bower, R.G.; Crain, R.A.; Vecchia, C.D.; Frenk, C.S.; Schaller, M.; Schaye, J.; et al. Barred galaxies in the EAGLE cosmological hydrodynamical simulation. Mon. Not. R. Astron. Soc. 2017, 469, 1054. [Google Scholar] [CrossRef]
- Ostriker, J.P.; Peebles, P.J.E. A Numerical Study of the Stability of Flattened Galaxies: Or, can Cold Galaxies Survive? Astrophys. J. 1973, 186, 467. [Google Scholar] [CrossRef]
- Hohl, F. Suppression of bar instability by a massive halo. Astron. J. 1976, 81, 30. [Google Scholar] [CrossRef]
- Hohl, F. Three-dimensional galaxy simulations. Astron. J. 1978, 83, 768. [Google Scholar] [CrossRef]
- Saha, K.; Naab, T. Spinning dark matter haloes promote bar formation. Mon. Not. R. Astron. Soc. 2013, 434, 1287. [Google Scholar] [CrossRef]
- Little, B.; Carlberg, R.G. The long-term evolution of barred galaxies. Mon. Not. R. Astron. Soc. 1991, 250, 161. [Google Scholar] [CrossRef]
- Harsoula, M.; Kalapotharakos, C. Orbital structure in N-body models of barred-spiral galaxies. Mon. Not. R. Astron. Soc. 2009, 394, 1605. [Google Scholar] [CrossRef]
- Li, X.; Shlosman, I.; Heller, C.; Pfenniger, D. Stellar bars in spinning haloes: Delayed buckling and absence of slowdown. Mon. Not. R. Astron. Soc. 2023, 526, 1972. [Google Scholar] [CrossRef]
- Debattista, V.P.; Sellwood, J.A. Constraints from Dynamical Friction on the Dark Matter Content of Barred Galaxies. Astrophys. J. 2000, 543, 704. [Google Scholar] [CrossRef]
- Weinberg, M.D. Evolution of barred galaxies by dynamical friction. Mon. Not. R. Astron. Soc. 1985, 213, 451. [Google Scholar] [CrossRef]
- Kormendy, J. A morphological survey of bar, lens, and ring components in galaxies: Secular evolution in galaxy structure. Astrophys. J. 1979, 227, 714. [Google Scholar] [CrossRef]
- Athanassoula, E. What determines the strength and the slowdown rate of bars? Mon. Not. R. Astron. Soc. 2003, 341, 1179. [Google Scholar] [CrossRef]
- Weinberg, M.D.; Katz, N. The bar-halo interaction—II. Secular evolution and the religion of N-body simulations. Mon. Not. R. Astron. Soc. 2007, 375, 460. [Google Scholar] [CrossRef]
- Dubinski, J.; Berentzen, I.; Shlosman, I. Anatomy of the Bar Instability in Cuspy Dark Matter Halos. Astrophys. J. 2009, 697, 293. [Google Scholar] [CrossRef]
- Saha, K.; Martínez-Valpuesta, I.; Gerhard, O. Spin-up of low-mass classical bulges in barred galaxies. Mon. Not. R. Astron. Soc. 2012, 421, 333. [Google Scholar] [CrossRef]
- Athanassoula, E. Bars and secular evolution in disk galaxies: Theoretical input. In Secular Evolution of Galaxies; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar] [CrossRef]
- Hasan, H.; Norman, C. Chaotic Orbits in Barred Galaxies with Central Mass Concentrations. Astrophys. J. 1990, 361, 69. [Google Scholar] [CrossRef]
- Pfenniger, D.; Norman, C. Slow dissipation in bars and the fuelling of nuclei. In Dynamics and Interactions of Galaxies; Wielen, R., Ed.; Springer: Berlin, Germany, 1990; p. 485. [Google Scholar]
- Hozumi, S.; Hernquist, L. Secular Evolution of Barred Galaxies with Massive Central Black Holes. Publ. Astron. Soc. Jpn. 2005, 57, 719. [Google Scholar] [CrossRef]
- Kormendy, J. Secular Evolution of Galaxies; Falcón-Barroso, J., Knapen, J.H., Eds.; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar] [CrossRef]
- Athanassoula, E.; Lambert, J.C.; Dehnen, W. Can bars be destroyed by a central mass concentration?—I. Simulations. Mon. Not. R. Astron. Soc. 2005, 363, 496. [Google Scholar] [CrossRef]
- Saha, K.; Elmegreen, B.G. Why Are Some Galaxies Not Barred? Astrophys. J. 2018, 858, 24. [Google Scholar] [CrossRef]
- Berentzen, I.; Heller, C.H.; Shlosman, I.; Fricke, K.J. Gas-driven evolution of stellar orbits in barred galaxies. Mon. Not. R. Astron. Soc. 1998, 300, 49. [Google Scholar] [CrossRef]
- Foyle, K.; Courteau, S.; Thacker, R.J. An N-body/SPH study of isolated galaxy mass density profiles. Mon. Not. R. Astron. Soc. 2008, 386, 1821. [Google Scholar] [CrossRef]
- Collier, A. Violent buckling benefits galactic bars. Mon. Not. R. Astron. Soc. 2020, 492, 2241. [Google Scholar] [CrossRef]
- De Rijcke, S.; Fouvry, J.; Dehnen, W. How gravitational softening affects galaxy stability—I. Linear mode analysis of disc galaxies. Mon. Not. R. Astron. Soc. 2019, 485, 150. [Google Scholar] [CrossRef]
- Merritt, D. Optimal Smoothing for N-Body Codes. Astrophys. J. 1996, 111, 2462. [Google Scholar] [CrossRef]
- Athanassoula, E.; Fady, E.; Lambert, J.C.; Bosma, A. Optimal softening for force calculations in collisionless N-body simulations. Mon. Not. R. Astron. Soc. 2000, 314, 475. [Google Scholar] [CrossRef]
- Dehnen, W. Towards optimal softening in three-dimensional N-body codes—I. Minimizing the force error. Mon. Not. R. Astron. Soc. 2001, 324, 273. [Google Scholar] [CrossRef]
- Rodionov, S.A.; Sotnikova, N.Y. Optimal Choice of the Softening Length and Time Step in N-body Simulations. Astron. Rep. 2005, 49, 470. [Google Scholar] [CrossRef]
- Romeo, A.B. How faithful are N-body simulations of disc galaxies? Astron. Astrophys. 1994, 286, 799. [Google Scholar]
- Springel, V. The cosmological simulation code GADGET-2. Mon. Not. R. Astron. Soc. 2005, 364, 1105. [Google Scholar] [CrossRef]
- Iannuzzi, F.; Athanassoula, E. The effect of softening on dynamical simulations of galaxies. Mon. Not. R. Astron. Soc. 2013, 436, 1161. [Google Scholar] [CrossRef]
- Zhan, H. Optimal Softening for N-Body Halo Simulations. Astrophys. J. 2006, 639, 617. [Google Scholar] [CrossRef]
- Romeo, A.B. Modelling gravity in N-body simulations of disc galaxies. Optimal types of softening for given dynamical requirements. Astron. Astrophys. 1998, 335, 922. [Google Scholar] [CrossRef]
- Gabbasov, R.; Rodríguez-Meza, M.A.; Klapp, J.; Cervantes-Cota, J.L. The influence of numerical parameters on tidally triggered bar formation. Astron. Astrophys. 2006, 449, 1043. [Google Scholar] [CrossRef]
- Sellwood, J.A. The global stability of our Galaxy. Mon. Not. R. Astron. Soc. 1985, 217, 127. [Google Scholar] [CrossRef]
- Sellwood, J.A.; Athanassoula, E. Unstable modes from galaxy simulations. Mon. Not. R. Astron. Soc. 1986, 221, 195. [Google Scholar] [CrossRef]
- Sparke, L.S.; Sellwood, J.A. Dissection of an N-body bar. Mon. Not. R. Astron. Soc. 1987, 225, 653. [Google Scholar] [CrossRef]
- Sellwood, J.A. Meta-stability in galactic discs. Mon. Not. R. Astron. Soc. 1989, 238, 115. [Google Scholar] [CrossRef]
- Combes, F.; Debbasch, F.; Friedli, D.; Pfenniger, D. Box and peanut shapes generated by stellar bars. Astron. Astrophys. 1990, 233, 82. [Google Scholar]
- Hernquist, L. N-Body Realizations of Compound Galaxies. Astrophysical Journal Supplement 1993, 86, 389. [Google Scholar] [CrossRef]
- Fux, R. 3D self-consistent N-body barred models of the Milky Way. I. Stellar dynamics. Astron. Astrophys. 1997, 327, 983. [Google Scholar] [CrossRef]
- Curir, A.; Mazzei, P. Bar instabilities in disk galaxies: The role of the triaxial halo. Astron. Astrophys. 1999, 352, 103. [Google Scholar]
- Bournaud, F.; Combes, F. Gas accretion on spiral galaxies: Bar formation and renewal. Astron. Astrophys. 2002, 392, 83. [Google Scholar] [CrossRef]
- Bournaud, F.; Combes, F.; Semelin, B. The lifetime of galactic bars: Central mass concentrations and gravity torques. Mon. Not. R. Astron. Soc. 2005, 364, L18. [Google Scholar] [CrossRef]
- Martinez-Valpuesta, I.; Shlosman, I.; Heller, C. Evolution of Stellar Bars in Live Axisymmetric Halos: Recurrent Buckling and Secular Growth. Astrophys. J. 2006, 637, 214. [Google Scholar] [CrossRef]
- Fanali, R.; Dotti, M.; Fiacconi, D.; Haardt, F. Bar formation as driver of gas inflows in isolated disc galaxies. Mon. Not. R. Astron. Soc. 2015, 454, 3641. [Google Scholar] [CrossRef]
- Randriamampandry, T.H.; Deg, N.; Carignan, C.; Combes, F.; Spekkens, K. Exploring the GalMer database: Bar properties and non-circular motions. Astron. Astrophys. 2016, 594, A86. [Google Scholar] [CrossRef]
- Carles, C.; Martelm, H.; Ellison, S.L.; Kawata, D. The mass dependence of star formation histories in barred spiral galaxies. Mon. Not. R. Astron. Soc. 2015, 463, 1074. [Google Scholar] [CrossRef]
- Baba, J.; Kawata, D.; Schönrich, R. Age distribution of stars in boxy/peanut/X-shaped bulges formed without bar buckling. Mon. Not. R. Astron. Soc. 2022, 513, 2850. [Google Scholar] [CrossRef]
- Sellwood, J.A. Galactic Structure and Stellar Populations. In Planets, Stars and Stellar Systems; Springer: Berlin, Germany, 2013; Volume 5, p. 923. [Google Scholar] [CrossRef]
- Villa-Vargas, J.; Shlosman, I.; Heller, C. Dark Matter Halos and Evolution of Bars in Disk Galaxies: Varying Gas Fraction and Gas Spatial Resolution. Astrophys. J. 2010, 719, 1470. [Google Scholar] [CrossRef]
- Hobbs, A.; Read, J.I.; Agertz, O.; Iannuzzi, F.; Power, C. NOVel Adaptive Softening for Collisionless N-body Simulations: Eliminating Spurious Haloes. Mon. Not. R. Astron. Soc. 2016, 458, 468. [Google Scholar] [CrossRef]
- Monaghan, J.J.; Lattanzio, J.C. A refined particle method for astrophysical problems. Astron. Astrophys. 1985, 149, 135. [Google Scholar]
- Springel, V.; Yoshida, N.; White, S. GADGET: A Code for Collisionless and Gasdynamical Cosmological Simulations. New Astron. 2001, 6, 79. [Google Scholar] [CrossRef]
- Romeo, A.B. Dynamical effects of softening in N-body simulations of disc galaxies. Method and first applications. Astron. Astrophys. 1997, 324, 523. [Google Scholar] [CrossRef]
- McMillan, P.J.; Dehnen, W. Initial conditions for disc galaxies. Mon. Not. R. Astron. Soc. 2007, 378, 541. [Google Scholar] [CrossRef]
- Mo, H.J.; Mao, S.; White, S. The formation of galactic discs. Mon. Not. R. Astron. Soc. 1998, 295, 319. [Google Scholar] [CrossRef]
- Zhou, Z.B.; Zhu, W.; Wang, Y.; Feng, L.L. Barred Galaxies in the Illustris-1 and TNG100 Simulations: A Comparison Study. Astrophys. J. 2020, 895, 92. [Google Scholar] [CrossRef]
- Vogelsberger, M.; Genel, S.; Springel, V.; Torrey, P.; Sijacki, D.; Xu, D.; Snyder, G.; Nelson, D.; Hernquist, L. Introducing the Illustris Project: Simulating the coevolution of dark and visible matter in the Universe. Mon. Not. R. Astron. Soc. 2014, 444, 1518. [Google Scholar] [CrossRef]
- Nelson, D.; Pillepich, A.; Springel, V.; Weinberger, R.; Hernquist, L.; Pakmor, R.; Genel, S.; Torrey, P.; Vogelsberger, M.; Kauffmann, G.; et al. First results from the IllustrisTNG simulations: The galaxy colour bimodality. Mon. Not. R. Astron. Soc. 2018, 475, 624. [Google Scholar] [CrossRef]
- Tully, R.B.; Fisher, J.R. A new method of determining distances to galaxies. Astron. Astrophys. 1977, 54, 661. [Google Scholar]
- Gnedin, O.Y.; Weinberg, D.H.; Pizagno, J.; Prada, F.; Rix, H.W. Dark Matter Halos of Disk Galaxies: Constraints from the Tully-Fisher Relation. Astrophys. J. 2007, 671, 1115. [Google Scholar] [CrossRef]
- Governato, F.; Willman, B.; Mayer, L.; Brooks, A.; Stinson, G.; Valenzuela, O.; Wadsley, J.; Quinn, T. Forming disc galaxies in ΛCDM simulations. Mon. Not. R. Astron. Soc. 2007, 374, 1479. [Google Scholar] [CrossRef]
- Wu, P.F. The scaling relationship between baryonic mass and stellar disc size in morphologically late-type galaxies. Mon. Not. R. Astron. Soc. 2018, 473, 5468. [Google Scholar] [CrossRef]
- Springel, V.; White, S. Tidal tails in cold dark matter cosmologies. Mon. Not. R. Astron. Soc. 1999, 307, 162. [Google Scholar] [CrossRef]
- Yurin, D.; Springel, V. An iterative method for the construction of N-body galaxy models in collisionless equilibrium. Mon. Not. R. Astron. Soc. 2014, 444, 62. [Google Scholar] [CrossRef]
- Rodionov, S.A.; Athanassoula, E.; Sotnikova, N.Y. A new method for constructing equilibrium phase models of galaxies. Mon. Not. R. Astron. Soc. 2009, 392, 904. [Google Scholar] [CrossRef]
- Hernquist, L. An analytical model for spherical galaxies and bulges. Astrophys. J. 1990, 356, 359. [Google Scholar] [CrossRef]
- Navarro, J.F.; Frenk, C.S.; White, S.D.M. The Structure of Cold Dark Matter Halos. Astrophys. J. 1996, 462, 563. [Google Scholar] [CrossRef]
- Fujii, M.S.; Baba, J.; Saitoh, T.R.; Makino, J.; Kokubo, E.; Wada, K. The Dynamics of Spiral Arms in Pure Stellar Disks. Astrophys. J. 2011, 730, 109. [Google Scholar] [CrossRef]
- Springel, V. Modelling star formation and feedback in simulations of interacting galaxies. Mon. Not. R. Astron. Soc. 2000, 312, 859. [Google Scholar] [CrossRef]
- Shibata, M.; Karino, S.; Eriguchi, Y. Dynamical bar-mode instability of differentially rotating stars: Effects of equations of state and velocity profiles. Mon. Not. R. Astron. Soc. 2003, 343, 619. [Google Scholar] [CrossRef]
- Binney, J.; Tremaine, S. Galactic Dynamics, 2nd ed.; Princeton: Princeton, NJ, USA, 2008. [Google Scholar]
- Norman, C.; Sellwood, J.A.; Hasan, H. Bar Dissolution and Bulge Formation: An Example of Secular Dynamical Evolution in Galaxies. Astrophys. J. 1996, 462, 114. [Google Scholar] [CrossRef]
- Guedes, J.; Mayer, L.; Carollo, M.; Madau, P. Pseudobulge Formation as a Dynamical Rather than a Secular Process. Astrophys. J. 2013, 772, 36. [Google Scholar] [CrossRef]
- Price, D.J.; Monaghan, J.J. An energy-conserving formalism for adaptive gravitational force softening in smoothed particle hydrodynamics and N-body codes. Mon. Not. R. Astron. Soc. 2007, 374, 1347. [Google Scholar] [CrossRef]
- Das, H.; Deb, S.; Baruah, A. Optimal Softening for Gravitational Force Calculations in N-body Dynamics. Astrophys. J. 2021, 911, 83. [Google Scholar] [CrossRef]
- Athanassoula, E.; Vozikis, C.L.; Lambert, J.C. Relaxation times calculated from angular deflections. Astron. Astrophys. 2001, 376, 1135. [Google Scholar] [CrossRef]
- Fathi, K.; Beckman, J.E.; Piñol Ferrer, N.; Hernández, O.; Martínez-Valpuesta, I.; Carignan, C. Pattern Speeds of Bars and Spiral Arms from Hα Velocity Fields. Astrophys. J. 2009, 704, 1657. [Google Scholar] [CrossRef]
- Berentzen, I.; Athanassoula, E.; Heller, C.H.; Fricke, K.J. The regeneration of stellar bars by tidal interactions: Numerical simulations of fly-by encounters. Mon. Not. R. Astron. Soc. 2004, 347, 220. [Google Scholar] [CrossRef]
- Iannuzzi, F.; Dolag, K. Adaptive gravitational softening in GADGET. Mon. Not. R. Astron. Soc. 2011, 417, 2846. [Google Scholar] [CrossRef]
- Zhang, T.; Liao, S.; Li, M.; Gao, L. The optimal gravitational softening length for cosmological N-body simulations. Mon. Not. R. Astron. Soc. 2019, 487, 1227. [Google Scholar] [CrossRef]
- Toomre, A. A Kelvin-Helmholtz Instability. Geophys. Fluid Dyn. 1966, 66, 111. [Google Scholar]
- Okas, E.L. Anatomy of a buckling galactic bar. Astron. Astrophys. 2019, 629, 52. [Google Scholar] [CrossRef]
Model | ||||||
---|---|---|---|---|---|---|
(1) | (2) | (3) | (4) | (5) | (6) | (7) |
SGS1p | 1.24 | 0.320 | 0.039 | 0.063 | 0.152 | 0.661 |
SGS2p | 1.24 | 0.313 | 0.044 | 0.055 | 0.122 | 0.623 |
SGS3p | 1.22 | 0.330 | 0.038 | 0.056 | 0.158 | 0.580 |
SGS4p | 1.24 | 0.355 | 0.058 | 0.055 | 0.143 | 0.654 |
SGS5p | 1.24 | 0.334 | 0.041 | 0.056 | 0.095 | 0.473 |
SGS6p | 1.24 | 0.368 | 0.078 | 0.095 | 0.008 | 0.106 |
SGS7p | 1.26 | 0.275 | 0.025 | 0.043 | 0.130 | 0.624 |
SGS8p | 1.24 | 0.288 | 0.035 | 0.039 | 0.141 | 0.685 |
SGS9p | 1.24 | 0.303 | 0.036 | 0.043 | 0.112 | 0.639 |
SGS10p | 1.24 | 0.319 | 0.044 | 0.047 | 0.140 | 0.665 |
SGS11p | 1.25 | 0.314 | 0.040 | 0.072 | 0.149 | 0.615 |
SGS12p | 1.25 | 0.390 | 0.094 | 0.063 | 0.004 | 0.050 |
SGS13p | 1.27 | 0.272 | 0.029 | 0.056 | 0.145 | 0.656 |
SGS14p | 1.26 | 0.303 | 0.037 | 0.037 | 0.115 | 0.642 |
SGS15p | 1.27 | 0.284 | 0.030 | 0.071 | 0.120 | 0.622 |
SGS16p | 1.28 | 0.304 | 0.034 | 0.046 | 0.004 | 0.344 |
SGS17p | 1.27 | 0.296 | 0.027 | 0.051 | 0.136 | 0.610 |
SGS18p | 1.28 | 0.316 | 0.050 | 0.043 | 0.008 | 0.065 |
SGS19p | 1.28 | 0.268 | 0.033 | 0.032 | 0.051 | 0.519 |
SGS20p | 1.30 | 0.284 | 0.031 | 0.033 | 0.112 | 0.606 |
SGS21p | 1.28 | 0.274 | 0.026 | 0.036 | 0.065 | 0.545 |
SGS22p | 1.29 | 0.289 | 0.028 | 0.041 | 0.094 | 0.662 |
SGS23p | 1.29 | 0.288 | 0.026 | 0.036 | 0.115 | 0.631 |
SGS24p | 1.30 | 0.298 | 0.042 | 0.045 | 0.023 | 0.107 |
SGS25p | 1.31 | 0.255 | 0.032 | 0.039 | 0.057 | 0.636 |
SGS26p | 1.28 | 0.264 | 0.032 | 0.035 | 0.068 | 0.535 |
SGS27p | 1.31 | 0.260 | 0.035 | 0.042 | 0.067 | 0.545 |
SGS28p | 1.30 | 0.272 | 0.032 | 0.032 | 0.081 | 0.582 |
SGS29p | 1.30 | 0.271 | 0.035 | 0.042 | 0.122 | 0.609 |
SGS30p | 1.31 | 0.274 | 0.050 | 0.033 | 0.007 | 0.139 |
SGS31p | 1.32 | 0.256 | 0.038 | 0.028 | 0.020 | 0.527 |
SGS32p | 1.31 | 0.261 | 0.033 | 0.027 | 0.022 | 0.492 |
SGS33p | 1.31 | 0.260 | 0.030 | 0.026 | 0.057 | 0.542 |
SGS34p | 1.31 | 0.262 | 0.033 | 0.039 | 0.036 | 0.610 |
SGS35p | 1.30 | 0.256 | 0.033 | 0.038 | 0.056 | 0.543 |
SGS36p | 1.31 | 0.267 | 0.047 | 0.040 | 0.007 | 0.138 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
López Gómez, A.; Gabbasov, R.; Fuentes-Carrera, I.L. Numerical Study of Bar Suppression in Galaxy Models Due to Disc Heating. Galaxies 2025, 13, 45. https://doi.org/10.3390/galaxies13020045
López Gómez A, Gabbasov R, Fuentes-Carrera IL. Numerical Study of Bar Suppression in Galaxy Models Due to Disc Heating. Galaxies. 2025; 13(2):45. https://doi.org/10.3390/galaxies13020045
Chicago/Turabian StyleLópez Gómez, Alejandro, Ruslan Gabbasov, and Isaura Luisa Fuentes-Carrera. 2025. "Numerical Study of Bar Suppression in Galaxy Models Due to Disc Heating" Galaxies 13, no. 2: 45. https://doi.org/10.3390/galaxies13020045
APA StyleLópez Gómez, A., Gabbasov, R., & Fuentes-Carrera, I. L. (2025). Numerical Study of Bar Suppression in Galaxy Models Due to Disc Heating. Galaxies, 13(2), 45. https://doi.org/10.3390/galaxies13020045