Cosmological Effects of Quantum Vacuum Condensates
Abstract
:1. Introduction
2. Bogoliubov Transformation and Vacuum Condensate
3. Energy Density, Pressure and State Equation of Vacuum Condensate
4. Thermal States and Vacuum Contributions
5. Vacuum Contribution of Fields in Curved Background
6. Vacuum Contributions of Particle Mixing
6.1. Boson Mixing
- -
- In the case of axion-photon mixing, for magnetic field strength , axion mass , and a Planck scale cut-off, , one has , which is of the same order of the estimated upper bound on dark energy.
- -
- In the case of superpartners of the neutrinos, for , , and , one obtains . Smaller values of the mixing angle lead to values of also in the case in which the cut-off is [40].
6.2. Fermion Mixing
7. Conclusions
Acknowledgments
Conflicts of Interest
References
- De Bernardis, P.; Ade, P.A.R.; Bock, J.J.; Bond, J.R.; Borrill, J.; Boscaleri, A.; Coble, K.; Crill, B.P.; De Gasperis, G.; Farese, P.C.; et al. A flat Universe from high-resolution maps of the cosmic microwave background radiation. Nature 2000, 404, 955–959. [Google Scholar] [CrossRef] [PubMed]
- Spergel, D.N.; Verde, L.; Peiris, H.V.; Komatsu, E.; Nolta, M.R.; Bennett, C.L.; Halpern, M.; Hinshaw, G.; Jarosik, N.; Kogut, A.; et al. First Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Determination of Cosmological Parameters. Astrophys. J. Suppl. 2003, 148, 175–194. [Google Scholar] [CrossRef]
- Dodelson, S.; Narayanan, V.K.; Tegmark, M.; Scranton, R.; Budavári, T.; Connolly, A.; Csabai, I.; Eisenstein, D.; Frieman, J.A.; Gunn, J.E.; et al. The Three-dimensional Power Spectrum from Angular Clustering of Galaxies in Early Sloan Digital Sky Survey Data. Astrophys. J. 2002, 572, 140–156. [Google Scholar] [CrossRef] [Green Version]
- Szalay, A.S.; Jain, B.; Matsubara, T.; Scranton, R.; Vogeley, M.S.; Connolly, A.; Dodelson, S.; Eisenstein, D.; Frieman, J.A.; Gunn, J.E.; et al. Karhunen-Loève Estimation of the Power Spectrum Parameters from the Angular Distribution of Galaxies in Early Sloan Digital Sky Survey Data. Astrophys. J. 2003, 591, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Riess, A.G.; Strolger, L.G.; Tonry, J.; Casertano, S.; Ferguson, H.C.; Mobasher, B.; Challis, P.; Filippenko, A.V.; Jha, S.; Li, W.; et al. Type Ia Supernovae discoveries at z > 1 from the Hubble Space Telescope: Evidence for past deceleration and constrains on dark energy evolution. Astrophys. J. 2004, 607, 665–687. [Google Scholar] [CrossRef]
- Amendola, L.; Tsujikawa, S. Dark Energy: Theory and Observations; Cambridge University Press: Cambridge, UK, 2010. [Google Scholar]
- Nojiri, S.; Odintsov, S.D.; Oikonomou, V.K. Modified Gravity Theories on a Nutshell: Inflation, Bounce and Late-time Evolution. Phys. Rep. 2017, 692, 1–104. [Google Scholar] [CrossRef]
- Rubin, V. The rotation of spiral galaxies. Science 1983, 220, 1339–1344. [Google Scholar] [CrossRef] [PubMed]
- Nojiri, S.; Odintsov, S.D. Unified cosmic history in modified gravity: From F(R) theory to Lorentz non-invariant models. Phys. Rep. 2011, 505, 59–144. [Google Scholar] [CrossRef]
- Silvestri, A.; Trodden, M. Approaches to understanding cosmic acceleration. Rep. Prog. Phys. 2009, 72, 096901. [Google Scholar] [CrossRef]
- Frieman, J.A.; Turner, M.S.; Huterer, D. Dark energy and accelerating Universe. Annu. Rev. Astron. Astrophys. 2008, 46, 385–432. [Google Scholar] [CrossRef]
- Durrer, R.; Maartens, R. Dark energy and dark gravity: Theory overview. Gen. Relativ. Gravit. 2008, 40, 301–328. [Google Scholar] [CrossRef] [Green Version]
- Sami, M. Models of Dark Energy. Lect. Notes Phys. 2007, 720, 219–256. [Google Scholar]
- Copeland, E.J.; Sami, M.; Tsujikawa, S. Dynamics of dark energy. Int. J. Mod. Phys. D 2006, 15, 1753–1936. [Google Scholar] [CrossRef]
- Capozziello, S. Curvature quintessence. Int. J. Mod. Phys. D 2002, 11, 483–492. [Google Scholar] [CrossRef]
- Capozziello, S.; Lambiase, G. Higher–Order Corrections to the Effective Gravitational Action from Noether Symmetry Approach. Gen. Relativ. Gravit. 2000, 32, 295–311. [Google Scholar] [CrossRef] [Green Version]
- Lambiase, G.; Mohanty, S.; Prasanna, A.R. Neutrino coupling to cosmological background: A review on gravitational Baryo/Leptogenesis. Int. J. Mod. Phys. D 2013, 22, 1330030. [Google Scholar] [CrossRef]
- Sotiriou, T.P.; Faraoni, V. f(R) theories of gravity. Rev. Mod. Phys. 2010, 82, 451–497. [Google Scholar] [CrossRef]
- De Felice, A.; Tsujikawa, S. f(R) theories. Living Rev. Relativ. 2010, 13, 3. [Google Scholar] [CrossRef] [PubMed]
- Schützhold, R. Small Cosmological Constant from the QCD Trace Anomaly? Phys. Rev. Lett. 2002, 89, 081302. [Google Scholar] [CrossRef] [PubMed]
- Thomas, E.C.; Urban, F.R.; Zhitnitsky, A.R. The cosmological constant as a manifestation of the conformal anomaly? J. High Energy Phys. 2009, 2009, 43. [Google Scholar] [CrossRef]
- Klinkhamer, F.R.; Volovik, G.E. Vacuum energy density kicked by the electroweak crossover. Phys. Rev. D 2009, 79, 063527. [Google Scholar] [CrossRef]
- Urban, F.R.; Zhitnitsky, A.R. The cosmological constant from the ghost. A toy model. Phys. Rev. D 2009, 80, 063001. [Google Scholar] [CrossRef]
- Klinkhamer, F.R.; Volovik, G.E. Gluon condensate, modified gravity, and the accelerating Universe. Phys. Rev. D 2009, 80, 083001. [Google Scholar] [CrossRef]
- Alexander, S.; Biswas, T.; Calcagni, G. Cosmological Bardeen–Cooper–Schrieffer condensate as dark energy. Phys. Rev. D 2010, 81, 043511. [Google Scholar] [CrossRef]
- Popławski, N.J. Cosmological constant from quarks and torsion. Ann. Phys. 2011, 523, 291. [Google Scholar] [CrossRef]
- Bertone, G.; Hooper, D.; Silk, J. Particle dark matter: Evidence, candidates and constraints. Phys. Rep. 2005, 405, 279–390. [Google Scholar] [CrossRef]
- De Martino, I. f(R)-gravity model of the Sunyaev-Zeldovich profile of the Coma cluster compatible with Planck data. Phys. Rev. D 2016, 93, 124043. [Google Scholar] [CrossRef]
- De Laurentis, M.; De Martino, I.; Capozziello, S. Constraining f(R) gravity by the Large Scale Structure. Universe 2015, 1, 123–157. [Google Scholar]
- De Laurentis, M.; De Martino, I.; Atrio-Barandela, F.; Capozziello, S. Constraining f(R) gravity with Planck data on galaxy cluster profiles. Mon. Not. R. Astron. Soc. 2014, 442, 921–928. [Google Scholar]
- De Laurentis, M.; De Martino, I. Probing the physical and mathematical structure of f(R) gravity by PSR J0348 + 0432. Int. J. Geom. Methods Mod. Phys. 2015, 12, 1550040. [Google Scholar] [CrossRef]
- De Laurentis, M.; De Martino, I. Testing f(R)-theories using the first time derivative of the orbital period of the binarypulsars. Mon. Not. R. Astron. Soc. 2013, 431, 741–748. [Google Scholar] [CrossRef]
- Frigerio Martins, C.; Salucci, P. Analysis of rotation curves in the framework of R n gravity. Mon. Not. Roy. Astron. Soc. 2007, 381, 1103–1108. [Google Scholar] [CrossRef]
- D’Amico, G.; Kamionkowski, M.; Sigurdson, K. Dark Matter Astrophysics. arXiv, 2007; arXiv:0907.1912. [Google Scholar]
- Bertone, G. (Ed.) Particle Dark Matter: Observations, Models and Searches; Cambridge University Press: Cambridge, UK, 2010. [Google Scholar]
- Bottino, A.; Fornengo, N. Dark matter and its particle candidates. In Non-Accelerator Particle Physics; Taylor & Francis: Oxford, UK, 1988. [Google Scholar]
- Ferraro, S.; Schmidt, F.; Hu, W. Cluster Abundance in f(R) Gravity Models. Phys. Rev. D 2011, 83, 063503. [Google Scholar] [CrossRef]
- Lombriser, L.; Schmidt, F.; Baldauf, T.; Mandelbaum, R.; Seljak, U.; Smith, R.E. Cluster Density Profiles as a Test of Modified Gravity. Phys. Rev. D 2012, 85, 102001. [Google Scholar] [CrossRef]
- Schmidt, F.; Vikhlinin, A.; Hu, W. Cluster constraints on f(R) gravity. Phys. Rev. D 2009, 80, 083505. [Google Scholar] [CrossRef]
- Capolupo, A. Dark matter and dark energy induced by condensates. Adv. High Energy Phys. 2016, 2016, 8089142. [Google Scholar] [CrossRef]
- Hawking, S.W. Particle Creation by Black Holes. Commun. Math. Phys. 1975, 43, 199–220. [Google Scholar] [CrossRef]
- Unruh, W.G. Notes on black hole evaporation. Phys. Rev. D 1976, 14, 870. [Google Scholar] [CrossRef]
- Schwinger, J.S. On gauge invariance and vacuum polarization. Phys. Rev. 1951, 82, 664. [Google Scholar] [CrossRef]
- Bardeen, J.; Cooper, L.N.; Schrieffer, J.R. Theory of superconductivity. Phys. Rev. 1957, 108, 1175. [Google Scholar] [CrossRef]
- Iorio, A. Weyl-Gauge Symmetry of Graphene. Ann. Phys. 2011, 326, 1334–1353. [Google Scholar] [CrossRef]
- Takahasi, Y.; Umezawa, H. Thermo field dynamics. Collect. Phenom. 1975, 2, 55. [Google Scholar]
- Umezawa, H.; Matsumoto, H.; Tachiki, M. Thermo Field Dynamics and Condensed States; North-Holland Publishing Company: Amsterdam, The Netherlands, 1982. [Google Scholar]
- Umezawa, H. Advanced Field Theory: Micro, Macro, and Thermal Physics; American Institute of Physics: New York, NY, USA, 1993; p. 238. [Google Scholar]
- Casimir, H.B.G.; Polder, D. The Influence of Retardation on the London-van der Waals Forces. Phys. Rev. 1948, 73, 360–372. [Google Scholar] [CrossRef]
- Casimir, H.B.G. On the attraction between two perfectly conducting plates. Proc. Kon. Ned. Akad. Wetensch. 1948, 51, 793–795. [Google Scholar]
- Birrell, N.D.; Davies, P.C.W. Quantum Fields in Curved Space; Cambridge University Press: Cambridge, UK, 1984. [Google Scholar]
- Blasone, M.; Capolupo, A.; Vitiello, G. Quantum field theory of three flavor neutrino mixing and oscillations with CP violation. Phys. Rev. D 2002, 66, 025033. [Google Scholar] [CrossRef]
- Blasone, M.; Capolupo, A.; Romei, O.; Vitiello, G. Quantum field theory of boson mixing. Phys. Rev. D 2001, 63, 125015. [Google Scholar] [CrossRef]
- Capolupo, A.; Ji, C.-R.; Mishchenko, Y.; Vitiello, G. Phenomenology of flavor oscillations with non-perturbative effects from quantum field theory. Phys. Lett. B 2004, 594, 135–140. [Google Scholar] [CrossRef]
- Albareti, F.D.; Cembranos, J.A.R.; Maroto, A.L. Vacuum energy as dark matter. Phys. Rev. D 2014, 90, 123509. [Google Scholar] [CrossRef]
- Capolupo, A.; Lambiase, G.; Vitiello, G. Thermal Condensate Structure and Cosmological Energy Density of the Universe. Adv. High Energy Phys. 2016, 2016, 3127597. [Google Scholar] [CrossRef]
- Parker, L.; Fulling, S.A. Adiabatic regularization of the energy-momentum tensor of a quantized field in homogeneous spaces. Phys. Rev. D 1974, 9, 341. [Google Scholar] [CrossRef]
- Fulling, S.A.; Parker, L. Renormalization in the theory of a quantized scalar field interacting with a Robertson–Walker space–time. Ann. Phys. 1974, 87, 176–204. [Google Scholar] [CrossRef]
- Capolupo, A.; Capozziello, S.; Vitiello, G. Neutrino mixing as a source of dark energy. Phys. Lett. A 2007, 363, 53–56. [Google Scholar] [CrossRef]
- Capolupo, A.; Capozziello, S.; Vitiello, G. Dark energy and particle mixing. Phys. Lett. A 2009, 373, 601–610. [Google Scholar] [CrossRef]
- Capolupo, A.; Capozziello, S.; Vitiello, G. Dark energy, cosmological constant and neutrino mixing. Int. J. Mod. Phys. A 2008, 23, 4979–4990. [Google Scholar] [CrossRef]
- Blasone, M.; Capolupo, A.; Capozziello, S.; Vitiello, G. Neutrino mixing, flavor states and dark energy. Nucl. Instrum. Methods A 2008, 588, 272–275. [Google Scholar] [CrossRef]
- Blasone, M.; Capolupo, A.; Vitiello, G. Particle mixing, flavor condensate and dark energy. Prog. Part. Nucl. Phys. 2010, 64, 451–453. [Google Scholar] [CrossRef]
- Blasone, M.; Capolupo, A.; Capozziello, S.; Carloni, S. Neutrino mixing contribution to the cosmological constant. Phys. Lett. A 2004, 323, 182–189. [Google Scholar] [CrossRef]
- Capolupo, A.; Di Mauro, M.; Iorio, A. Mixing-induced Spontaneous Supersymmetry Breaking. Phys. Lett. A 2011, 375, 3415–3418. [Google Scholar] [CrossRef]
- Capolupo, A.; Di Mauro, M. Spontaneous Supersymmetry Breaking Induced by Vacuum Condensates. Phys. Lett. A 2012, 376, 2830–2833. [Google Scholar] [CrossRef]
- Capolupo, A.; Di Mauro, M. Vacuum condensates, flavor mixing and spontaneous supersymmetry breaking. Acta Phys. Polon. B 2013, 44, 81. [Google Scholar] [CrossRef]
- Capolupo, A.; Vitiello, G. Spontaneous supersymmetry breaking probed by geometric invariants. Adv. High Energy Phys. 2013, 2013, 850395. [Google Scholar] [CrossRef]
- Capolupo, A.; Di Mauro, M. Vacuum condensates as a mechanism of spontaneous supersymmetry breaking. Adv. High Energy Phys. 2015, 2015, 929362. [Google Scholar] [CrossRef]
- Capolupo, A. Quantum vacuum, dark matter, dark energy and spontaneous supersymmetry breaking. arXiv, 2017; arXiv:1708.08769. [Google Scholar]
© 2017 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Capolupo, A. Cosmological Effects of Quantum Vacuum Condensates. Galaxies 2017, 5, 98. https://doi.org/10.3390/galaxies5040098
Capolupo A. Cosmological Effects of Quantum Vacuum Condensates. Galaxies. 2017; 5(4):98. https://doi.org/10.3390/galaxies5040098
Chicago/Turabian StyleCapolupo, Antonio. 2017. "Cosmological Effects of Quantum Vacuum Condensates" Galaxies 5, no. 4: 98. https://doi.org/10.3390/galaxies5040098
APA StyleCapolupo, A. (2017). Cosmological Effects of Quantum Vacuum Condensates. Galaxies, 5(4), 98. https://doi.org/10.3390/galaxies5040098