Large-Scale Features of the Radio Sky and a Model for Loop I
Abstract
:1. Introduction
1.1. Emission Mechanisms at Radio Wavelengths
1.2. Radio Surveys
2. Brief Review of Large-Scale Features in the Radio Sky
2.1. Overview
2.2. WMAP/Planck Microwave Haze and Fermi Bubbles
2.3. Anti-Correlation of WIM and Polarized Intensity
3. Loop I/North Polar Spur
3.1. A Simple Explanation for Loop I
3.2. Distance to the NPS/Loop I
- The centre of Loop I is far (>) from the Galactic centre.
- The NPS itself traverses the Galactic plane at a longitude .
- If at a large distance, the energy (∼ erg) and huge physical size (∼8 kpc) are well above what is expected from supernova remnants.
- The bright edge of the NPS/Loop I is roughly where dense gas exists and low density in other directions (up to ∼kpc).
- The magnetic field outside of the NPS is consistent with local origin (this could be a coincidence or potentially another pre-existing structure?).
- The southern part of FB extends outside Loop I and no trace of interaction with FB in radio maps.
- Loop I extends through the Galactic plane without any sign of deviation.
- We see lots of other loops/spurs with similar geometry, spectral index (loops I–IV at least) but at very different positions and sizes on the sky.
4. Discussion and Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
Abbreviations
AME | Anomalous Microwave Emission |
BB | Black-Body |
C-BASS | C-Band All-Sky Survey |
CMB | Cosmic Microwave Background |
CR(E) | Cosmic Ray (Electron) |
FB | Fermi Bubbles |
FR | Faraday Rotation |
GC | Galactic Centre |
IR | Infrared |
MDE | Magnetic Dipole Emission |
NPS | North Polar Spur |
PWN | Pulsar Wind Nebula |
QUIJOTE | Q-U-I JOint TEnerife |
RM | Rotation Measure |
S/N | Signal-to-noise |
SNR | Supernova Remnant |
S-PASS | S-band Parkes All-Sky Survey |
UV | Ultraviolet |
WIM | Warm Ionized Medium |
WMAP | Wilkinson Microwave Anisotropy Probe |
References
- Vidal, M.; Dickinson, C.; Davies, R.D.; Leahy, J.P. Polarized radio filaments outside the Galactic plane. Mon. Not. R. Astron. Soc. 2015, 452, 656–675. [Google Scholar] [CrossRef]
- Ade, P.A.R.; Aghanim, N.; Alves, M.I.R.; Arnaud, M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Banday, A.J.; Barreiro, R.B.; Bartlett, J.G.; et al. Planck 2015 results. XXV. Diffuse low-frequency Galactic foregrounds. Astron. Astrophys. 2016, 594, A25. [Google Scholar]
- Rybicki, G.B.; Lightman, A.P. Radiative Processes in Astrophysics; John Wiley & Sons: Hoboken, NJ, USA, 1986; p. 400. [Google Scholar]
- Ackermann, M.; Ajello, M.; Atwood, W.B.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Baughman, B.M.; Bechtol, K.; Bellardi, F.; et al. Fermi LAT observations of cosmic-ray electrons from 7 GeV to 1 TeV. Phys. Rev. D 2010, 82, 092004. [Google Scholar] [CrossRef]
- Draine, B.T. Physics of the Interstellar and Intergalactic Medium; Princeton University Press: Princeton, NJ, USA, 2011. [Google Scholar]
- Oppermann, N.; Junklewitz, H.; Robbers, G.; Bell, M.R.; Enßlin, T.A.; Bonafede, A.; Braun, R.; Brown, J.C.; Clarke, T.E.; Feain, I.J.; et al. An improved map of the Galactic Faraday sky. Astron. Astrophys. 2012, 542, A93. [Google Scholar] [CrossRef]
- Adam, R.; Ade, P.A.R.; Aghanim, N.; Alves, M.I.R.; Arnaud, M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Banday, A.J.; Barreiro, R.B.; et al. Planck 2015 results. X. Diffuse component separation: Foreground maps. Astron. Astrophys. 2016, 594, A10. [Google Scholar]
- Dickinson, C.; Ali-Haïmoud, Y.; Barr, A.; Battistelli, E.S.; Bell, A.; Bernstein, L.; Casassus, S.; Cleary, K.; Draine, B.T.; Génova-Santos, R.; et al. The State-of-Play of Anomalous Microwave Emission (AME) research. New A Rev. 2018, 80, 1–28. [Google Scholar] [CrossRef]
- Draine, B.T.; Hensley, B. Magnetic Nanoparticles in the Interstellar Medium: Emission Spectrum and Polarization. Astrophys. J. 2013, 765, 159. [Google Scholar] [CrossRef]
- De Oliveira-Costa, A.; Tegmark, M.; Gaensler, B.M.; Jonas, J.; Landecker, T.L.; Reich, P. A model of diffuse Galactic radio emission from 10 MHz to 100 GHz. Mon. Not. R. Astron. Soc. 2008, 388, 247–260. [Google Scholar] [CrossRef]
- Haslam, C.G.T.; Salter, C.J.; Stoffel, H.; Wilson, W.E. A 408 MHz all-sky continuum survey. II—The atlas of contour maps. Astron. Astrophys. Suppl. Ser. 1982, 47, 1. [Google Scholar]
- Remazeilles, M.; Dickinson, C.; Banday, A.J.; Bigot-Sazy, M.A.; Ghosh, T. An improved source-subtracted and destriped 408-MHz all-sky map. Mon. Not. R. Astron. Soc. 2015, 451, 4311–4327. [Google Scholar] [CrossRef]
- Davies, R.D.; Watson, R.A.; Gutierrez, C.M. Galactic synchrotron emission at high frequencies. Mon. Not. R. Astron. Soc. 1996, 278, 925–939. [Google Scholar] [CrossRef]
- Reich, P.; Reich, W. A radio continuum survey of the northern sky at 1420 MHz. II. Astron. Astrophys. Suppl. Ser. 1986, 63, 205–288. [Google Scholar]
- Reich, P.; Testori, J.C.; Reich, W. A radio continuum survey of the southern sky at 1420 MHz. The atlas of contour maps. Astron. Astrophys. 2001, 376, 861–877. [Google Scholar] [CrossRef]
- Wolleben, M.; Landecker, T.L.; Hovey, G.J.; Messing, R.; Davison, O.S.; House, N.L.; Somaratne, K.H.M.S.; Tashev, I. Rotation Measure Synthesis of Galactic Polarized Emission with the DRAO 26-m Telescope. Astron. J. 2010, 139, 1681–1690. [Google Scholar] [CrossRef]
- Taylor, A.R.; Salter, C.J. GALFACTS: The G-ALFA Continuum Transit Survey. In The Dynamic Interstellar Medium: A Celebration of the Canadian Galactic Plane Survey; Astronomical Society of the Pacific Conference Series; Kothes, R., Landecker, T.L., Willis, A.G., Eds.; Astronomical Society of the Pacific: California, CA, USA, 2010; Volume 438, p. 402. [Google Scholar]
- Bennett, C.L.; Larson, D.; Weiland, J.L.; Jarosik, N.; Hinshaw, G.; Odegard, N.; Smith, K.M.; Hill, R.S.; Gold, B.; Halpern, M.; et al. Nine-year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Final Maps and Results. Astrophys. J. Suppl. Ser. 2013, 208, 20. [Google Scholar] [CrossRef]
- Adam, R.; Ade, P.A.R.; Aghanim, N.; Akrami, Y.; Alves, M.I.R.; Argüeso, F.; Arnaud, M.; Arroja, F.; Ashdown, M.; Aumont, J.; et al. Planck 2015 results. I. Overview of products and scientific results. Astron. Astrophys. 2016, 594, A1. [Google Scholar]
- Wolleben, M.; Landecker, T.L.; Reich, W.; Wielebinski, R. An absolutely calibrated survey of polarized emission from the northern sky at 1.4 GHz. Observations and data reduction. Astron. Astrophys. 2006, 448, 411–424. [Google Scholar] [CrossRef]
- Todorović, M.; Davies, R.D.; Dickinson, C.; Davis, R.J.; Cleary, K.A.; Génova-Santos, R.; Grainge, K.J.B.; Hafez, Y.A.; Hobson, M.P.; Jones, M.E.; et al. A 33-GHz Very Small Array survey of the Galactic plane from l = 27 deg to 46 deg. Mon. Not. R. Astron. Soc. 2010, 406, 1629–1643. [Google Scholar]
- Ade, P.A.R.; Aghanim, N.; Alves, M.I.R.; Arnaud, M.; Ashdown, M.; Atrio-Barandela, F.; Aumont, J.; Baccigalupi, C.; Banday, A.J.; Barreiro, R.B.; et al. Planck intermediate results. XXIII. Galactic plane emission components derived from Planck with ancillary data. Astron. Astrophys. 2015, 580, A13. [Google Scholar]
- Baldwin, J.E. A survey of the integrated radio emission at a wave-length of 3.7 m. Mon. Not. R. Astron. Soc. 1955, 115, 684–689. [Google Scholar] [CrossRef]
- Hanbury Brown, R.; Davies, R.D.; Hazard, C. A curious feature of the radio sky. Observatory 1960, 80, 191–198. [Google Scholar]
- Large, M.I.; Quigley, M.J.S.; Haslam, C.G.T. A new feature of the radio sky. Mon. Not. R. Astron. Soc. 1962, 124, 405. [Google Scholar] [CrossRef]
- Quigley, M.J.S.; Haslam, C.G.T. Structure of the Radio Continuum Background at High Galactic Latitudes. Nature 1965, 208, 741–743. [Google Scholar] [CrossRef]
- Large, M.I.; Quigley, M.F.S.; Haslam, C.G.T. A radio study of the north polar spur. II, A survey at low declinations. Mon. Not. R. Astron. Soc. 1966, 131, 335–350. [Google Scholar] [CrossRef]
- Berkhuijsen, E.M.; Haslam, C.G.T.; Salter, C.J. Are the galactic loops supernova remnants? Astron. Astrophys. 1971, 14, 252–262. [Google Scholar]
- Hill, A.S.; Landecker, T.L.; Carretti, E.; Douglas, K.; Sun, X.H.; Gaensler, B.M.; Mao, S.A.; McClure-Griffiths, N.M.; Reich, W.; Wolleben, M.; et al. The Fan Region at 1.5 GHz—I. Polarized synchrotron emission extending beyond the Perseus Arm. Mon. Not. R. Astron. Soc. 2017, 467, 4631–4646. [Google Scholar] [CrossRef]
- Salter, C.J. Loop-I the North Polar Spur—A Major Feature of the Local Interstellar Environment. Bull. Astron. Soc. India 1983, 11, 1. [Google Scholar]
- Spoelstra, T.A.T. Galactic Loops as Supernova Remnants in the Local Galactic Magnetic Field. Astron. Astrophys. 1973, 24, 149. [Google Scholar]
- Mertsch, P.; Sarkar, S. Loops and spurs: The angular power spectrum of the Galactic synchrotron background. J. Cosmol. Astropart. Phys. 2013, 6, 41. [Google Scholar] [CrossRef]
- Dobler, G.; Finkbeiner, D.P. Extended Anomalous Foreground Emission in the WMAP Three-Year Data. Astrophys. J. 2008, 680, 1222–1234. [Google Scholar] [CrossRef]
- Ade, P.A.R.; Aghanim, N.; Arnaud, M.; Ashdown, M.; Atrio-Barandela, F.; Aumont, J.; Baccigalupi, C.; Balbi, A.; Banday, A.J.; Barreiro, R.B.; et al. Planck intermediate results. IX. Detection of the Galactic haze with Planck. Astron. Astrophys. 2013, 554, A139. [Google Scholar]
- Dobler, G.; Finkbeiner, D.P.; Cholis, I.; Slatyer, T.; Weiner, N. The Fermi Haze: A Gamma-ray Counterpart to the Microwave Haze. Astrophys. J. 2010, 717, 825–842. [Google Scholar] [CrossRef]
- Su, M.; Slatyer, T.R.; Finkbeiner, D.P. Giant Gamma-ray Bubbles from Fermi-LAT: Active Galactic Nucleus Activity or Bipolar Galactic Wind? Astrophys. J. 2010, 724, 1044–1082. [Google Scholar] [CrossRef]
- Sarkar, K.C. Connecting the asymmetry of North Polar Spur and Loop I with Fermi Bubbles. arXiv, 2018; arXiv:1804.05634. [Google Scholar]
- Ackermann, M.; Albert, A.; Atwood, W.B.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Bellazzini, R.; Bissaldi, E.; Blandford, R.D.; et al. The Spectrum and Morphology of the Fermi Bubbles. Astrophys. J. 2014, 793, 64. [Google Scholar] [CrossRef]
- Selig, M.; Vacca, V.; Oppermann, N.; Enßlin, T.A. The denoised, deconvolved, and decomposed Fermi γ-ray sky. An application of the D3PO algorithm. Astron. Astrophys. 2015, 581, A126. [Google Scholar] [CrossRef]
- Gaustad, J.E.; McCullough, P.R.; Rosing, W.; Van Buren, D. A Robotic Wide-Angle Hα Survey of the Southern Sky. Publ. Astron. Soc. Pac. 2001, 113, 1326–1348. [Google Scholar] [CrossRef]
- Finkbeiner, D.P. A Full-Sky Hα Template for Microwave Foreground Prediction. Astrophys. J. Suppl. Ser. 2003, 146, 407–415. [Google Scholar] [CrossRef]
- Egger, R.J.; Aschenbach, B. Interaction of the Loop I supershell with the Local Hot Bubble. Astron. Astrophys. 1995, 294, L25–L28. [Google Scholar]
- Heiles, C. The magnetic field near the local bubble. In IAU Colloq. 166: The Local Bubble and Beyond; Lecture Notes in Physics; Breitschwerdt, D., Freyberg, M.J., Truemper, J., Eds.; Springer: Berlin/Heidelberg, Germany, 1998; Volume 506, p. 227. [Google Scholar]
- Lallement, R.; Vergely, J.L.; Valette, B.; Puspitarini, L.; Eyer, L.; Casagrande, L. 3D maps of the local ISM from inversion of individual color excess measurements. Astron. Astrophys. 2014, 561, A91. [Google Scholar] [CrossRef]
- Iwan, D. X-ray observations of the North Polar Spur. Astrophys. J. 1980, 239, 316–327. [Google Scholar] [CrossRef]
- Sofue, Y. The North Polar Spur and Aquila Rift. Mon. Not. R. Astron. Soc. 2015, 447, 3824–3831. [Google Scholar] [CrossRef]
- Sofue, Y. Propagation of magnetohydrodynamic waves from the galactic center—Origin of the 3-kpc arm and the North Polar Spur. Astron. Astrophys. 1977, 60, 327–336. [Google Scholar]
- Sofue, Y. Giant explosion at the Galactic center and huge shocked shells in the halo. Astrophys. J. Lett. 1994, 431, L91–L93. [Google Scholar] [CrossRef]
- Mathewson, D.S.; Ford, V.L. Polarization Observations of 1800 Stars. Mem. R. Astron. Soc. 1970, 74, 139. [Google Scholar] [CrossRef]
- Santos, F.P.; Corradi, W.; Reis, W. Optical Polarization Mapping Toward the Interface Between the Local Cavity and Loop I. Astrophys. J. 2011, 728, 104. [Google Scholar] [CrossRef]
- Lallement, R.; Capitanio, L.; Ruiz-Dern, L.; Danielski, C.; Babusiaux, C.; Vergely, J.L.; Elyajouri, M.; Arenou, F.; Leclerc, N. 3D maps of interstellar dust in the Local Arm: Using Gaia, 2MASS and APOGEE-DR14. arXiv, 2018; arXiv:1804.06060. [Google Scholar]
- Liu, H.; Mertsch, P.; Sarkar, S. Fingerprints of Galactic Loop I on the Cosmic Microwave Background. Astrophys. J. Lett. 2014, 789, L29. [Google Scholar] [CrossRef]
- Von Hausegger, S.; Liu, H.; Mertsch, P.; Sarkar, S. Footprints of Loop I on Cosmic Microwave Background maps. J. Cosmol. Astropart. Phys. 2016, 3, 23. [Google Scholar] [CrossRef]
- Remazeilles, M.; Dickinson, C.; Eriksen, H.K.K.; Wehus, I.K. Sensitivity and foreground modelling for large-scale cosmic microwave background B-mode polarization satellite missions. Mon. Not. R. Astron. Soc. 2016, 458, 2032–2050. [Google Scholar] [CrossRef]
- Adam, R.; Ade, P.A.R.; Alves, M.I.R.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Banday, A.J.; Barreiro, R.B.; Bartolo, N.; Battaner, E.; et al. Planck intermediate results. XLII. Large-scale Galactic magnetic fields. Astron. Astrophys. 2016, 596, A103. [Google Scholar]
Emission Mechanism | Description | Typical Spectrum | Polarization |
---|---|---|---|
Synchrotron | Electrons accelerated by magnetic field | Power-law | Up to |
Free-free | Electrons accelerated by ions | Power-law | ≈0% |
AME | Electric dipole radiation from spinning dust grains | Peaked ≈ 30 GHz | ≈0% |
CMB | Black-body radiation | BB K | ≈10% |
MDE | Magnetic dipole radiation from dust grains | ≈BB in microwave | Up to ≈30% |
© 2018 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dickinson, C. Large-Scale Features of the Radio Sky and a Model for Loop I. Galaxies 2018, 6, 56. https://doi.org/10.3390/galaxies6020056
Dickinson C. Large-Scale Features of the Radio Sky and a Model for Loop I. Galaxies. 2018; 6(2):56. https://doi.org/10.3390/galaxies6020056
Chicago/Turabian StyleDickinson, Clive. 2018. "Large-Scale Features of the Radio Sky and a Model for Loop I" Galaxies 6, no. 2: 56. https://doi.org/10.3390/galaxies6020056
APA StyleDickinson, C. (2018). Large-Scale Features of the Radio Sky and a Model for Loop I. Galaxies, 6(2), 56. https://doi.org/10.3390/galaxies6020056