Binary Interactions, High-Speed Outflows and Dusty Disks during the AGB-To-PN Transition
Abstract
:1. Introduction
2. Binarity in AGB Stars
3. The Effects of Binarity
3.1. Large Episodic Mass-Ejections that End the AGB/RGB Phase
3.2. Central Disks and Torii
3.3. Collimated Jet-Like Outflows and Binary Accretion Modes
4. Concluding Remarks and Future Prospects
Funding
Acknowledgments
Conflicts of Interest
References
- Soker, N. On the formation of ansae in planetary nebulae. Astron. J. 1990, 99, 1869–1882. [Google Scholar] [CrossRef]
- Sahai, R.; Trauger, J.T. Multipolar Bubbles and Jets in Low-Excitation Planetary Nebulae: Toward a New Understanding of the Formation and Shaping of Planetary Nebulae. Astron. J. 1998, 116, 1357–1366. [Google Scholar] [CrossRef] [Green Version]
- Sahai, R.; Morris, M.R.; Villar, G.G. Young Planetary Nebulae: Hubble Space Telescope Imaging and a New Morphological Classification System. Astron. J. 2011, 141, 134. [Google Scholar] [CrossRef]
- Sahai, R.; Findeisen, K.; Gil de Paz, A.; Sánchez Contreras, C. Binarity in Cool Asymptotic Giant Branch Stars: A GALEX Search for Ultraviolet Excesses. Astron. J. 2008, 689, 1274–1278. [Google Scholar] [CrossRef] [Green Version]
- Morrissey, P.; Conrow, T.; Barlow, T.A.; Small, T.; Seibert, M.; Wyder, T.K.; Budavári, T.; Arnouts, S.; Friedman, P.G.; Forster, K.; et al. The Calibration and Data Products of GALEX. Astrophys. J. Suppl. Ser. 2007, 173, 682–697. [Google Scholar] [CrossRef]
- Favata, F. Accretion, fluorescent X-ray emission and flaring magnetic structures in YSOs. Mon. Not. R. Astron. Soc. 2005, 76, 337. [Google Scholar]
- Ramstedt, S.; Montez, R.; Kastner, J.; Vlemmings, W.H.T. Searching for X-ray emission from AGB stars. Astron. Astrophys. 2012, 543, A147. [Google Scholar] [CrossRef]
- Sahai, R.; Sanz-Forcada, J.; Sánchez Contreras, C.; Stute, M. A Pilot Deep Survey for X-Ray Emission from fuvAGB Stars. Astrophys. J. 2015, 810, 77. [Google Scholar] [CrossRef]
- Sahai, R.; Sanz-Forcada, J.; Sánchez Contreras, C. Variable X-Ray and UV emission from AGB stars: Accretion activity associated with binarity. J. Phys. Conf. Ser. 2016, 728, 042003. [Google Scholar] [CrossRef] [Green Version]
- Sahai, R.; Scibelli, S.; Morris, M.R. High-speed Bullet Ejections during the AGB-to-Planetary Nebula Transition: HST Observations of the Carbon Star, V Hydrae. Astrophys. J. 2016, 827, 92. [Google Scholar] [CrossRef]
- Sahai, R.; Neill, J.D.; Gil de Paz, A.; Sánchez Contreras, C. Strong Variable Ultraviolet Emission from Y Gem: Accretion Activity in an Asymptotic Giant Branch Star with a Binary Companion? Astrophys. J. 2011, 740, L39. [Google Scholar] [CrossRef]
- Sahai, R.; Sánchez Contreras, C.; Mangan, A.S.; Sanz-Forcada, J.; Muthumariappan, C.; Claussen, M.J. Binarity and Accretion in AGB Stars: HST/STIS Observations of UV Flickering in Y Gem. Astrophys. J. 2018, 860, 105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ortiz, R.; Guerrero, M.A. Ultraviolet emission from main-sequence companions of AGB stars. Mon. Not. R. Astron. Soc. 2016, 461, 3036–3046. [Google Scholar] [CrossRef] [Green Version]
- Famaey, B.; Pourbaix, D.; Frankowski, A.; van Eck, S.; Mayor, M.; Udry, S.; Jorissen, A. Spectroscopic binaries among Hipparcos M giants,. I. Data, orbits, and intrinsic variations. Astron. Astrophys. 2009, 498, 627–640. [Google Scholar] [CrossRef]
- Montez, R., Jr.; Ramstedt, S.; Kastner, J.H.; Vlemmings, W.; Sanchez, E. A Catalog of GALEX Ultraviolet Emission from Asymptotic Giant Branch Stars. Astrophys. J. 2017, 841, 33. [Google Scholar] [CrossRef] [Green Version]
- Soker, N.; Kastner, J.H. Magnetic Flares on Asymptotic Giant Branch Stars. Astrophys. J. 2003, 592, 498–503. [Google Scholar] [CrossRef] [Green Version]
- Kastner, J.H.; Soker, N. Constraining the X-Ray Luminosities of Asymptotic Giant Branch Stars: TX Camelopardalis and T Cassiopeia. Astrophys. J. 2004, 608, 978–982. [Google Scholar] [CrossRef]
- Barnbaum, C.; Morris, M.; Kahane, C. Evidence for Rapid Rotation of the Carbon Star V Hydrae. Astrophys. J. 1995, 450, 862. [Google Scholar] [CrossRef]
- Likkel, L.; Morris, M.; Maddalena, R.J. Evolved stars with high velocity H2O maser features—Bipolar outflows with velocity symmetry. Astron. Astrophys. 1992, 256, 581–594. [Google Scholar]
- Imai, H. Stellar molecular jets traced by maser emission. In Astrophysical Masers and Their Environments; Chapman, J.M., Baan, W.A., Eds.; IAU Symposium: Paris, France, 2007; Volume 242, pp. 279–286. [Google Scholar]
- Sahai, R.; te Lintel Hekkert, P.; Morris, M.; Zijlstra, A.; Likkel, L. The “Water-Fountain Nebula” IRAS 16342-3814: Hubble Space Telescope/Very Large Array Study of a Bipolar Protoplanetary Nebula. Astrophys. J. Lett. 1999, 514, L115–L119. [Google Scholar] [CrossRef]
- Sahai, R.; Le Mignant, D.; Sánchez Contreras, C.; Campbell, R.D.; Chaffee, F.H. Sculpting a Pre-planetary Nebula with a Precessing Jet: IRAS 16342-3814. Astrophys. J. Lett. 2005, 622, L53–L56. [Google Scholar] [CrossRef]
- Claussen, M.J.; Sahai, R.; Morris, M.R. The Motion of Water Masers in the Pre-Planetary Nebula IRAS 16342-3814. Astrophys. J. 2009, 691, 219–227. [Google Scholar] [CrossRef]
- Sahai, R.; Vlemmings, W.H.T.; Gledhill, T.; Sánchez Contreras, C.; Lagadec, E.; Nyman, L.Å.; Quintana-Lacaci, G. ALMA Observations of the Water Fountain Pre-planetary Nebula IRAS 16342-3814: High-velocity Bipolar Jets and an Expanding Torus. Astrophys. J. Lett. 2017, 835, L13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sahai, R.; Nyman, L.Å. The Boomerang Nebula: The Coldest Region of the Universe? Astrophys. J. Lett. 1997, 487, L155–L159. [Google Scholar] [CrossRef]
- Sahai, R.; Vlemmings, W.H.T.; Huggins, P.J.; Nyman, L.Å.; Gonidakis, I. ALMA Observations of the Coldest Place in the Universe: The Boomerang Nebula. Astrophys. J. 2013, 777, 92. [Google Scholar] [CrossRef]
- Balick, B.; Frank, A. Shapes and Shaping of Planetary Nebulae. Ann. Rev. Astron. Astrophys. 2002, 40, 439–486. [Google Scholar] [CrossRef]
- Iaconi, R.; Reichardt, T.; Staff, J.; De Marco, O.; Passy, J.C.; Price, D.; Wurster, J.; Herwig, F. The effect of a wider initial separation on common envelope binary interaction simulations. Mon. Not. R. Astron. Soc. 2017, 464, 4028–4044. [Google Scholar] [CrossRef]
- Shiber, S.; Soker, N. Simulating a binary system that experiences the grazing envelope evolution. Mon. Not. R. Astron. Soc. 2018, 477, 2584–2598. [Google Scholar] [CrossRef] [Green Version]
- Sahai, R.; Morris, M.; Knapp, G.R.; Young, K.; Barnbaum, C. A collimated, high-speed outflow from the dying star V Hydrae. Nature 2003, 426, 261–264. [Google Scholar] [CrossRef] [PubMed]
- Verhoelst, T.; Waters, L.B.F.M.; Verhoeff, A.; Dijkstra, C.; van Winckel, H.; Pel, J.W.; Peletier, R.F. A dam around the Water Fountain Nebula? The dust shell of IRAS16342-3814 spatially resolved with VISIR/VLT. Astron. Astrophys. 2009, 503, 837–841. [Google Scholar] [CrossRef]
- Soker, N.; Rappaport, S. The Formation of Very Narrow Waist Bipolar Planetary Nebulae. Astrophys. J. 2000, 538, 241–259. [Google Scholar] [CrossRef] [Green Version]
- Nordhaus, J.; Blackman, E.G. Low-mass binary-induced outflows from asymptotic giant branch stars. Mon. Not. R. Astron. Soc. 2006, 370, 2004–2012. [Google Scholar] [CrossRef] [Green Version]
- Blackman, E.G.; Lucchini, S. Using kinematic properties of pre-planetary nebulae to constrain engine paradigms. Mon. Not. R. Astron. Soc. 2014, 440, L16–L20. [Google Scholar] [CrossRef]
- Knapp, G.R.; Jorissen, A.; Young, K. A 200 km/s molecular wind in the peculiar carbon star V Hya. Astron. Astrophys. 1997, 326, 318–328. [Google Scholar]
- Dijkstra, C.; Waters, L.B.F.M.; Kemper, F.; Min, M.; Matsuura, M.; Zijlstra, A.; de Koter, A.; Dominik, C. The mineralogy, geometry and mass-loss history of IRAS 16342-3814. Astron. Astrophys. 2003, 399, 1037–1046. [Google Scholar] [CrossRef]
- Neckel, T.; Staude, H.J.; Sarcander, M.; Birkle, K. Herbig-Haro emission in two bipolar reflection nebulae. Astron. Astrophys. 1987, 175, 231–237. [Google Scholar]
Name | FUV var1 1 | FUV var2 1 | FUV/NUV | X-Ray? |
---|---|---|---|---|
Y Gem | 1.9 | 5.13 | 1.3 | Y |
EY Hya | 0.39 | 0.93 | 0.83 | Y |
CI Hyi | 0.67 | 1.33 | 0.54 | Y |
RW And | 0.23 | 0.58 | 2.3 | Y |
R UMa | 0.15 | 0.36 | 1.0 | Y |
RR UMi | 0.033 | 0.066 | 0.3 | Y |
UY Leo | 0.30 | 0.73 | 0.24 | Y? |
V Hya 2 | 0.27 | 0.54 | 1.7 | N |
V Eri | 0.19 | 0.37 | 0.96 | N |
del01 Aps | 0.012 | 0.024 | 0.11 | N |
NU Pav | 0.13 | 0.26 | 0.11 | N |
EU Del | 0.10 | 0.19 | 0.10 | N |
© 2018 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sahai, R. Binary Interactions, High-Speed Outflows and Dusty Disks during the AGB-To-PN Transition. Galaxies 2018, 6, 102. https://doi.org/10.3390/galaxies6040102
Sahai R. Binary Interactions, High-Speed Outflows and Dusty Disks during the AGB-To-PN Transition. Galaxies. 2018; 6(4):102. https://doi.org/10.3390/galaxies6040102
Chicago/Turabian StyleSahai, Raghvendra. 2018. "Binary Interactions, High-Speed Outflows and Dusty Disks during the AGB-To-PN Transition" Galaxies 6, no. 4: 102. https://doi.org/10.3390/galaxies6040102
APA StyleSahai, R. (2018). Binary Interactions, High-Speed Outflows and Dusty Disks during the AGB-To-PN Transition. Galaxies, 6(4), 102. https://doi.org/10.3390/galaxies6040102