Testing the Anomalous Growth of the Black Hole Radius from AGN
Abstract
:1. Introduction
2. Anomalous Kerr Metric
3. Best Fit of the Spin Evolution in Time
4. Mass Fit
Exclusion Plots
5. Conclusions and Remarks
Author Contributions
Funding
Conflicts of Interest
References
- Nojiri, S.; Odintsov, S.D. Introduction to modified gravity and gravitational alternative for dark energy. Int. J. Geom. Meth. Mod. Phys. 2007, 4, 115–145. [Google Scholar] [CrossRef]
- Nojiri, S.; Odintsov, S.D. Unified cosmic history in modified gravity: From F(R) theory to Lorentz non-invariant models. Phys. Rep. 2001, 505, 59–144. [Google Scholar] [CrossRef]
- Clifton, T.; Ferreira, P.G.; Padilla, A.; Skordis, C. Modified Gravity and Cosmology. Phys. Rep. 2012, 513, 1–189. [Google Scholar] [CrossRef]
- Capozziello, S.; de Laurentis, M. Extended Theories of Gravity. Phys. Rep. 2011, 509, 167–321. [Google Scholar] [CrossRef] [Green Version]
- Nojiri, S.; Odintsov, S.D.; Oikonomou, V.K. Modified Gravity Theories on a Nutshell: Inflation, Bounce and Late-time Evolution. Phys. Rep. 2017, 692, 1–104. [Google Scholar] [CrossRef]
- Bousso, R.; Hawking, S.W. (Anti) evaporation of Schwarzschild-de Sitter black holes. Phys. Rev. D 1998, 57, 2436–2442. [Google Scholar] [CrossRef]
- Nojiri, S.; Odintsov, S.D. Quantum evolution of Schwarzschild-de Sitter (Nariai) black holes. Phys. Rev. D 1999, 59, 044026. [Google Scholar] [CrossRef]
- Nojiri, S.; Odintsov, S.D. Effective action for conformal scalars and anti-evaporation of black holes. Int. J. Mod. Phys. A 1999, 14, 1293–1304. [Google Scholar] [CrossRef]
- Elizalde, E.; Nojiri, S.; Odintsov, S.D. Possible quantum instability of primordial black holes. Phys. Rev. D 1999, 59, 061501. [Google Scholar] [CrossRef]
- Nojiri, S.; Odintsov, S.D. Anti-Evaporation of Schwarzschild-de Sitter Black Holes in F(d+1)(R) gravity. Class. Quant. Grav. 2013, 30, 125003. [Google Scholar] [CrossRef]
- Nojiri, S.; Odintsov, S.D. Instabilities and anti-evaporation of Reissner-Nordström black holes in modified F(d+1)(R) gravity. Phys. Lett. B 2014, 735, 376–382. [Google Scholar] [CrossRef]
- Sebastiani, L.; Momeni, D.; Myrzakulov, R.; Odintsov, S.D. Instabilities and (anti)-evaporation of Schwarzschild-de Sitter black holes in modified gravity. Phys. Rev. D 2013, 88, 104022. [Google Scholar] [CrossRef]
- Addazi, A. Evaporation/Antievaporation and energy conditions in alternative gravity. Int. J. Mod. Phys. 2018, 33, 1850030. [Google Scholar] [CrossRef] [Green Version]
- Houndjo, M.J.S.; Momeni, D.; Myrzakulov, R.; Rodrigues, M.E. Evaporation phenomena in f(T) gravity. Can. J. Phys. 2015, 93, 377–383. [Google Scholar] [CrossRef]
- Oikonomou, V.K. A note on Schwarzschild-de Sitter black holes in mimetic F(d+1)(R) gravity. Int. J. Mod. Phys. D 2016, 25, 1650078. [Google Scholar] [CrossRef]
- Oikonomou, V.K. Reissner-Nordström Anti-de Sitter Black Holes in Mimetic F(R) Gravity. Universe 2016, 2, 10. [Google Scholar] [CrossRef]
- Katsuragawa, T.; Nojiri, S. Stability and antievaporation of the Schwarzschild?de Sitter black holes in bigravity. Phys. Rev. D 2015, 91, 084001. [Google Scholar] [CrossRef]
- Addazi, A. (Anti) evaporation of Dyonic Black Holes in string-inspired dilaton f(R)-gravity. Int. J. Mod. Phys. A 2017, 32, 1750102. [Google Scholar] [CrossRef]
- Chakraborty, S.; SenGupta, S. Spherically symmetric brane spacetime with bulk f() gravity. Eur. Phys. J. C 2015, 75, 11. [Google Scholar] [CrossRef]
- Chakraborty, S.; SenGupta, S. Effective gravitational field equations on m-brane embedded in n-dimensional bulk of Einstein and f() gravity. Eur. Phys. J. C 2015, 75, 538. [Google Scholar] [CrossRef]
- Chakraborty, S.; SenGupta, S. Solving higher curvature gravity theories. Eur. Phys. J. C 2016, 76, 552. [Google Scholar] [CrossRef]
- Addazi, A.; Nojiri, S.; Odintsov, S. Evaporation and antievaporation instability of a Schwarzschild-de Sitter braneworld: The case of five-dimensional F(R) gravity. Phys. Rev. D 2017, 95, 124020. [Google Scholar] [CrossRef]
- Singh, D.V.; Singh, N.K. Anti-Evaporation of Bardeen de-Sitter Black Holes. Ann. Phys. 2017, 383, 600–609. [Google Scholar] [CrossRef]
- Bekenstein, J.D. Black holes and entropy. Phys. Rev. D 1973, 7, 2333. [Google Scholar] [CrossRef]
- Hawking, S.W. Particle Creation by Black Holes. Commun. Math. Phys. 1975, 43, 199–220. [Google Scholar] [CrossRef]
- Hawking, S.W. Black holes and Thermodynamics. Phys. Rev. D 1976, 13, 191. [Google Scholar] [CrossRef]
- Hawking, S.W. Breakdown of Predictability in Gravitational Collapse. Phys. Rev. D 1976, 14, 2460. [Google Scholar] [CrossRef]
- Addazi, A.; Capozziello, S. The fate of Schwarzschild-de Sitter Black Holes in F(R) gravity. Mod. Phys. Lett. A 2016, 31, 1650054. [Google Scholar] [CrossRef]
- Ellis, G.F.R. Astrophysical black holes may radiate, but they do not evaporate. arXiv, 2013; arXiv:1310.4771. [Google Scholar]
- Firouzjaee, J.T.; Ellis, G.F.R. Cosmic Matter Flux May Turn Hawking Radiation off. Gen. Rel. Grav. 2015, 47, 6. [Google Scholar] [CrossRef]
- Firouzjaee, J.T.; Ellis, G.F.R. Particle creation from the quantum stress tensor. Phys. Rev. D 2015, 91, 103002. [Google Scholar] [CrossRef]
- Sun, S.; Guainazzi, M.; Ni, Q.; Wang, J.; Qian, C.; Shi, F.; Wang, Y.; Bambi, C. Multi-epoch analysis of the X-ray spectrum of the active galactic nucleus in NGC 5506. Mon. Not. R. Astron. Soc. 2018, 478, 1900–1910. [Google Scholar] [CrossRef] [Green Version]
- Choudhury, K.; Garcia, J.A.; Steiner, J.F.; Bambi, C. Testing the performance and accuracy of the RELXILL model for the relativistic X-ray reflection from accretion disks. Astrophys. J. 2017, 851, 57. [Google Scholar] [CrossRef]
- Bambi, C. Astrophysical Black Holes: A Compact Pedagogical Review. Ann. Phys. 2018, 530, 1700430. [Google Scholar] [CrossRef]
- Nampalliwar, S.; Bambi, C.; Kokkotas, K.; Konoplya, R. Iron line spectroscopy with Einstein-dilaton- Gauss-Bonnet black holes. Phys. Lett. B 2018, 781, 626–632. [Google Scholar] [CrossRef]
- Tripathi, A.; Nampalliwar, S.; Abdikamalov, A.B.; Ayzenberg, D.; Jiang, J.; Bambi, C. Testing the Kerr nature of the supermassive black hole in Ark 564. Phys. Rev. D 2018, 98, 023018. [Google Scholar] [CrossRef]
- Wang-Ji, J.; Abdikamalov, A.B.; Ayzenberg, D.; Bambi, C.; Dauser, T.; Garcia, J.A.; Nampalliwar, S.; Steiner, J.F. Testing the Kerr metric using X-ray reflection spectroscopy: spectral analysis of GX 339-4. arXiv, 2018; arXiv:1806.00126. [Google Scholar]
- Bambi, C.; Abdikamalov, A.B.; Ayzenberg, D.; Cao, Z.; Liu, H.; Nampalliwar, S.; Tripathi, A.; Wang-Ji, J.; Xu, Y. RELXILL_NK: A relativistic reflection model for testing Einstein’s gravity. Universe 2018, 4, 79. [Google Scholar] [CrossRef]
- Tremaine, S.; Gebhardt, K.; Bender, R.; Bower, G.; Dressler, A.; Faber, S.M.; Filippenko, A.V.; Green, R.; Grillmair, C.; Ho, L.C.; et al. The slope of the black hole mass versus velocity dispersion correlation. Astrophys. J. 2002, 574, 740. [Google Scholar] [CrossRef]
- Nikołajuk, M.; Czerny, B.; Gurynowicz, P. NLS1 galaxies and estimation of their central black hole masses from the X-ray excess variance method. Mon. Not. R. Astron. Soc. 2009, 394, 2141–2152. [Google Scholar] [CrossRef] [Green Version]
1. | The only radiation emission is in the form of Hawking’s radiation, which is highly suppressed and undetectable for macroscopic black holes. |
obsID | Observatory | Exposure Time [s] | Start Time [MJD] | Epoch Index |
---|---|---|---|---|
0013140101 | XMM-Newton | 20,007 | 51,942 | E01 |
0201830201 | XMM-Newton | 21,617 | 53,197 | E02 |
0201830301 | XMM-Newton | 20,409 | 53,200 | E03 |
0201830401 | XMM-Newton | 21,956 | 53,208 | E04 |
0201830501 | XMM-Newton | 20,411 | 53,234 | E05 |
701030010 | Suzaku | 47,753 | 53,955 | E06 |
701030020 | Suzaku | 53,296 | 53,958 | E07 |
701030030 | Suzaku | 57,406 | 54,131 | E08 |
0554170101 | XMM-Newton | 88,919 | 54,833 | E09 |
1598 | Chandra | 90,040 | 51,909 | E10 |
obsID | Time | Spin | Error |
---|---|---|---|
0013140101 | 51,942 | 0.989993 | ±5.97296 |
0201830201 | 53,197 | 0.985785 | ± 2.72601 × 10 |
0201830301 | 53,200 | 0.989983 | ±3.26932 × 10 |
0201830401 | 53,208 | 0.979123 | ±3.51087 |
0554170101 | 54,833 | 0.990000 | ±8.70283 × 10 |
1598 | 51,909 | 0.986380 | ±0.187406 |
obsID | Standard Error | Error | Mass |
---|---|---|---|
0201830401 | 0.6053 | ±0.1143 | 68.28 |
0201830501 | 0.6683 | ±0.1201 | 101.66 |
701030010 | 0.6527 | ±7.7903 × 10 | 92.46 |
701030020 | 0.2157 | ±0.1049 | 60.48 |
701030030 | 0.6544 | ±0.1343 | 93.45 |
0554170101 | 0.2600 | ±6.2502 × 10 | 128.03 |
Parameters | Values | Errors |
---|---|---|
43.5857 | ±4.75554 | |
43.5857 | ±4.75554 | |
m | 0.400512 | ±18194.9 |
n | 0.779544 | ±10049.6 |
0.0735094 | ±4.69429 | |
0.0742621 | ±0.185221 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Addazi, A.; Marciano, A.; Qian, C. Testing the Anomalous Growth of the Black Hole Radius from AGN. Galaxies 2018, 6, 107. https://doi.org/10.3390/galaxies6040107
Addazi A, Marciano A, Qian C. Testing the Anomalous Growth of the Black Hole Radius from AGN. Galaxies. 2018; 6(4):107. https://doi.org/10.3390/galaxies6040107
Chicago/Turabian StyleAddazi, Andrea, Antonino Marciano, and Chenyang Qian. 2018. "Testing the Anomalous Growth of the Black Hole Radius from AGN" Galaxies 6, no. 4: 107. https://doi.org/10.3390/galaxies6040107
APA StyleAddazi, A., Marciano, A., & Qian, C. (2018). Testing the Anomalous Growth of the Black Hole Radius from AGN. Galaxies, 6(4), 107. https://doi.org/10.3390/galaxies6040107