What if Newton’s Gravitational Constant Was Negative?
Abstract
:1. Introduction
2. Negative G in GR
2.1. Friedmann Models with a Single Fluid
2.2. Model with a Cosmological Constant
3. Scalar-Tensor Gravity Theories
3.1. Models without a Cosmological Potential
3.2. Models with a Cosmological Potential
- Vacuum or stiff fluid with a cosmological potentialRecalling that , we derive for these two cases:Please note that the case corresponding to stiff matter can be shown to be reducible to the vacuum case of a theory with a different coupling strength (see [27], and the companion paper [28] to the present work).Now, the fixed points within a finite locus will be positioned at and . To show the graphics of the phase diagrams, has been taken equal to with the purpose to show both points sufficiently separated.
- Radiation case with a cosmological potentialIn this case the system is:Therefore, for the cases , at the fixed points we require . When this is not satisfied there are no fixed points, as illustrated in Figure 3d. For the case there are no fixed points within the finite region of the phase plane.
4. Observational Features
5. Summary and Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
MDPI | Multidisciplinary Digital Publishing Institute |
DOAJ | Directory of open access journals |
GR | General Relativity |
ST | Scalar-Tensor |
FLRW | Friedmann-Lemaître-Robertson-Walker |
BD | Brans-Dicke |
deS | de Sitter |
DN | Damour and Nordtvedt |
PPN | Parametrised Post-Newtonian |
CMB | Cosmic microwave background |
BBN | Big-Bang nucleosynthesis |
References
- Laplace, P.S. Traité de Mécanique Céleste; Hillard, Gray, Little, and Wilkins (Little and Brown): Boston, MA, USA, 1799; pp. 1829–1839. [Google Scholar]
- Newton, I. Philosophiæ Naturalis Principia Mathematica, 3rd ed.; Koyré, A., Cohen, I.B., Whitman, A., Eds.; Harvard UP: Cambridge, MA, USA, 1972. [Google Scholar]
- Will, C.M. Experimental Gravitation From Newton’s Principia To Einstein’ General Relativity. In 300 Hundred Years of Gravitation; Hawking, S., Israel, W., Eds.; Cambridge University Press: Cambridge, UK, 1987; pp. 98–99. [Google Scholar]
- The Eöt-Wash Group. Available online: https://www.npl.washington.edu/eotwash/gravitational-constant (accessed on 23 August 2016).
- Barrow, J.D.; Tipler, F.J.L. The Anthropic Cosmological Principle; Oxford University Press: Oxford, UK, 1988; pp. 32–58. [Google Scholar]
- Brans, C.; Dicke, R.H. Mach’s principle and a relativistic theory of gravitation. Phys. Rev. 1961, 124, 925–935. [Google Scholar] [CrossRef]
- Clifton, T.; Ferreira, P.G.; Padilla, A.; Skordis, C. Modified Gravity and Cosmology. Phys. Rept. 2012, 513, 1–189. [Google Scholar] [CrossRef]
- Avelino, P.; Barreiro, T.; Carvalho, C.S.; da Silva, A.; Lobo, F.S.N.; Martin-Moruno, P.; Mimoso, J.P.; Nunes, N.J.; Rubiera-Garcia, D.; Saez-Gomez, D.; et al. Unveiling the Dynamics of the Universe. Symmetry 2016, 8, 79. [Google Scholar] [CrossRef]
- Barrow, J.D. Gravitational memory? Phys. Rev. D 1993, 47, 1730. [Google Scholar] [CrossRef]
- Roxburgh, I. The Sign and Magnitude of the Constant of Gravity in General Relativity; Honorable Mention of the Gravity Prize of the Gravity Research Foundation: Wellesley Hills, MA, USA, 1980; Available online: https://static1.squarespace.com/static/5852e579be659442a01f27b8/t/5c4b36c0aa4a99d762417ca5/1548433090438/roxburgh_sign_magnit_G.pdf (accessed on 23 August 2016).
- Roxburgh, I. The Constant of Gravity in General Relativity; Queen Mary College: London, UK, 1980; Available online: https://static1.squarespace.com/static/5852e579be659442a01f27b8/t/5c4b36dfcd8366a71b9a7520/1548433120589/roxburgh.pdf (accessed on 23 August 2016).
- Khuri, N.N. Sign of the induced gravitational constant. Phys. Rev. D 1982, 26, 2664. [Google Scholar] [CrossRef]
- Barker, B.M. General scalar-tensor theory of gravity with constant G. Astr. J. 1978, 219, 5–11. [Google Scholar] [CrossRef]
- Mimoso, J.P.; Nunes, A. General relativity as a cosmological attractor of scalar tensor gravity theories. Phys. Lett. A 1998, 248, 325–331. [Google Scholar] [CrossRef]
- Mimoso, J.P.; Nunes, A. General relativity as an attractor to scalar tensor gravity theories. Astrophys. Space Sci. 1999, 261, 327–330. [Google Scholar] [CrossRef]
- Mimoso, J.P.; Nunes, A. A Qualitative Analysis of the Attractor Mechanism of General relativity. Astrophys. Space Sci. 2003, 283, 661–666. [Google Scholar] [CrossRef]
- Mimoso, J.P. The Dynamics of Scalar Fields in Cosmology. In Dynamics, Games and Science II; Peixoto, M.M., Pinto, A.A., Rands, D.A., Eds.; Springer: Berlin, Germany, 2011; pp. 543–547. [Google Scholar]
- Jarv, L.; Kuusk, P.; Saal, M. Potential dominated scalar-tensor cosmologies in the general relativity limit: Phase space view. Phys. Rev. D 2010, 81, 15. [Google Scholar] [CrossRef]
- Jarv, L.; Kuusk, P.; Saal, M. Scalar-tensor cosmologies with a potential in the general relativity limit: Time evolution. Phys. Lett. B 2010, 694, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Albrecht, A.; Magueijo, J. A Time varying speed of light as a solution to cosmological puzzles. Phys. Rev. D 1999, 59, 043516. [Google Scholar] [CrossRef]
- Dunsby, P.K.S.; Luongo, O. On the theory and applications of modern cosmography. Int. J. Geom. Methods Mod. Phys. 2016, 13, 1630002. [Google Scholar] [CrossRef] [Green Version]
- Aviles, A.; Gruber, C.; Luongo, O.; Quevedo, H. Cosmography and constraints on the equation of state of the Universe in various parametrizations. Phys. Rev. D 2012, 86, 123516. [Google Scholar] [CrossRef]
- Aghanim, N. Planck 2018 results. VI. Cosmological parameters. arXiv, 2018; arXiv:1807.06209. [Google Scholar]
- Bahamonde, S.; Böhmer, C.G.; Carloni, S.; Copeland, E.J.; Fang, W.; Tamanini, N. Dynamical systems applied to cosmology: Dark energy and modified gravity. Phys. Rep. 2018, 775–777. [Google Scholar] [CrossRef]
- Cembranos, J.A.R.; Coma Díaz, M.; Martín-Moruno, P. Modified gravity as a diagravitational medium. Phys. Lett. B 2019, 788, 336. [Google Scholar] [CrossRef]
- Barrow, J.D. Scalar-tensor cosmologies. Phys. Rev. D 1993, 47, 5329. [Google Scholar] [CrossRef]
- Mimoso, J.P.; Wands, D. Massless fields in scalar-tensor cosmologies. Phys. Rev. D 1995, 51, 477. [Google Scholar] [CrossRef]
- Raposo, D.; Ayuso, I.; Lobo, F.S.; Mimoso, J.P.; Nunes, N.J. Scalar-tensor cosmologies with a quadratic potential. 2018; In preparation; Unpublished. [Google Scholar]
- Faraoni, V. Phase space geometry in scalar-tensor cosmology. Ann. Phys. 2005, 317, 366. [Google Scholar] [CrossRef]
- Santos, C.; Gregory, R. Cosmology in Brans-Dicke theory with a scalar potential. Ann. Phys. 1997, 258, 111. [Google Scholar] [CrossRef]
- Carloni, S.; Capozziello, S.; Leach, J.A.; Dunsby, P.K.S. Cosmological dynamics of scalar-tensor gravity. Class. Quant. Grav. 2008, 25, 035008. [Google Scholar] [CrossRef]
- Charters, T.C.; Nunes, A.; Mimoso, J.P. Stability analysis of cosmological models through Liapunov’s method. Class. Quant. Grav. 2001, 18, 1703. [Google Scholar] [CrossRef]
- Hrycyna, O.; Szydłowski, M. Dynamical complexity of the Brans-Dicke cosmology. J. Cosmol. Astropart. Phys. 2013, 1312, 016. [Google Scholar] [CrossRef]
- García-Salcedo, R.; González, T.; Quiros, I. Brans-Dicke cosmology does not have the ΛCDM phase as a universal attractor. Phys. Rev. D 2015, 92, 124056. [Google Scholar] [CrossRef]
- O’Hanlon, J.; Tupper, B.O.J. Vacuum-field solutions in the Brans-Dicke theory. Il Nuovo Cimento 1972, 7, 305. [Google Scholar] [CrossRef]
- Nariai, H. On the Green’s function in an expanding universe and its role in the problem of Mach’s principle. Prog. Theor. Phys. 1968, 40, 49. [Google Scholar] [CrossRef]
- Barrow, J.D.; Mimoso, J.P. Perfect fluid scalar-tensor cosmologies. Phys. Rev. D 1994, 50, 3746. [Google Scholar] [CrossRef]
- Capozziello, S.; de Ritis, R.; Scudellaro, P. Nonminimal coupling and cosmic no hair theorem. Phys. Lett. A 1994, 188, 130–136. [Google Scholar] [CrossRef]
- Capozziello, S.; de Ritis, R.; Rubano, C.; Scudellaro, P. Nonminimal coupling, no hair theorem and matter cosmologies. Phys. Lett. A 1995, 201, 145–150. [Google Scholar] [CrossRef]
- Luongo, O.; Muccino, M. Speeding up the universe using dust with pressure. Phys. Rev. D 2018, 98, 103520. [Google Scholar] [CrossRef]
- Kuusk, P.; Jarv, L.; Saal, M. Scalar-tensor cosmologies: General relativity as a fixed point of the Jordan frame scalar field. Int. J. Mod. Phys. A 2009, 24, 1631. [Google Scholar] [CrossRef]
- Will, C.M. The Confrontation between General Relativity and Experiment. Living Rev. Rel. 2014, 17, 4–117. [Google Scholar] [CrossRef]
- Koyama, K. Cosmological Tests of Modified Gravity. Rep. Prog. Phys. 2016, 4, 046902. [Google Scholar] [CrossRef]
- Ooba, J.; Ichiki, K.; Chiba, T.; Sugiyama, N. Cosmological constraints on scalar–tensor gravity and the variation of the gravitational constant. Prog. Theor. Exp. Phys. 2017, 4, 043E03. [Google Scholar] [CrossRef]
- Mimoso, J.P. Primordial Cosmology in Jordan-Brans-Dicke Theory: Nucleosynthesis. In Classical and Quantum Gravity; Bento, M.C., Bertolami, O., Mourao, J.M., Picken, R., Eds.; World Scientific: Singapore, 1993. [Google Scholar]
- Damour, T.; Pichon, B. Big bang nucleosynthesis and tensor-scalar gravity. Phys. Rev. D 1999, 59, 123502. [Google Scholar] [CrossRef]
- Larena, J.; Alimi, J.M.; Serna, A.T. Big Bang nucleosynthesis in scalar tensor gravity: The key problem of the primordial Li-7 abundance. Astrophys. J. 2007, 658, 1–10. [Google Scholar] [CrossRef]
- Iocco, F.; Mangano, G.; Miele, G.; Pisanti, O.; Serpico, P.D. Primordial Nucleosynthesis: From precision cosmology to fundamental physics. Phys. Rep. 2009, 472, 1–76. [Google Scholar] [CrossRef]
- Coc, A.; Descouvemont, P.; Olive, K.A.; Uzan, J.P.; Vangioni, E. The variation of fundamental constants and the role of A=5 and A=8 nuclei on primordial nucleosynthesis. Phys. Rev. D 2012, 86, 043529. [Google Scholar] [CrossRef]
- Damour, T.; Nordtvedt, K. Tensor-scalar cosmological models and their relaxation toward general relativity. Phys. Rev. D 1993, 48, 3436. [Google Scholar] [CrossRef]
- Lee, S. Constraints on scalar-tensor theories of gravity from observations. J. Cosmol. Astropart. Phys. 2011, 1103, 021. [Google Scholar] [CrossRef]
1. | Quoting Clifford Will [3], “It is interesting to notice that the term “gravitational constant” never occurs in the Principiae. In fact it seems that the universal constant of proportionality that we now call G does not make an appearance until well in the eighteenth century in Laplace’s “Mécanique Céleste”. |
2. | One must though be wary that in the phase-diagrams of Figure 1 the half-plane corresponding to negative values of a is not physical, as it corresponds to . Yet its representation is useful, because it illustrates the complete behavior of the mathematical dynamical system underlying the physical scenario, regardless of the physical consistency of some of its parts. Moreover, in the present case it also allows comparison with the phase-diagrams of the scalar-tensor models. |
3. | One possible origin for such a potential might be found from a mechanism similar to the dark fluid model of [40]. |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ayuso, I.; Mimoso, J.P.; Nunes, N.J. What if Newton’s Gravitational Constant Was Negative? Galaxies 2019, 7, 38. https://doi.org/10.3390/galaxies7010038
Ayuso I, Mimoso JP, Nunes NJ. What if Newton’s Gravitational Constant Was Negative? Galaxies. 2019; 7(1):38. https://doi.org/10.3390/galaxies7010038
Chicago/Turabian StyleAyuso, Ismael, José P. Mimoso, and Nelson J. Nunes. 2019. "What if Newton’s Gravitational Constant Was Negative?" Galaxies 7, no. 1: 38. https://doi.org/10.3390/galaxies7010038
APA StyleAyuso, I., Mimoso, J. P., & Nunes, N. J. (2019). What if Newton’s Gravitational Constant Was Negative? Galaxies, 7(1), 38. https://doi.org/10.3390/galaxies7010038