Development of a Frequency Tunable Green Laser Source for Advanced Virgo+ Gravitational Waves Detector
Abstract
:1. Introduction
2. Auxiliary Laser System Implemented in AdV+
2.1. Overview of the Optics of the Green Locking System
- -
- The fiber delivery;
- -
- The power amplification and stabilization;
- -
- The frequency shift;
- -
- The second harmonic generator;
- -
- The arm locking.
2.2. Fiber Delivery
2.3. Power Amplification and Stabilization
2.4. Frequency Shift
2.5. Second Harmonic Generation Process
2.6. The Control Error Signal
3. Controls
3.1. Maximum Allowable Noise
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Abbot, B.P.; Abbott, R.; Abbott, T.D.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; Adya, V.B.; et al. GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Phys. Rew. Lett. 2017, 119, 161101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Virgo Collaboration; Advanced Virgo Technical Design Report, VIR-0128A-12. April 2012. Available online: https://tds.virgo-gw.eu/ql/?c=8940 (accessed on 8 December 2020).
- Hild, S.; Grote, H.; Degallaix, J.; Chelkowski, S.; Danzmann, K.; Freise, A.; Hewitson, M.; Hough, J.; Lück, H.; Prijatelj, M. DC-readout of a signal-recycled gravitational wave detector. Class. Quantum Gravity 2009, 26, 5. [Google Scholar] [CrossRef]
- Acernese, F.; Amico, P.; Al-Shourbagy, M.; Aoudia, S.; Avino, S.; Babusci, D.; Ballardin, G.; Barille, R.; Barone, F.; Barsotti, L.; et al. The variable finesse locking technique. Proceedings of the Amaldi 6 Conference, Okinawa (Japan). Class. Quantum Grav. 2006, 23, S85–S89. [Google Scholar] [CrossRef]
- Mullavey, A.J.; Slagmolen, B.J.J.; Miller, J.; Evans, M.; Fritschel, P.; Sigg, D.; Waldman, S.J.; Shaddock, D.A.; McClelland, D.E. Arm-length stabilisation for interferometric gravitational-wave detectors using frequency-doubled auxiliary lasers. Opt. Express 2012, 20, 81. [Google Scholar] [CrossRef] [PubMed]
- Izumi, K.; Arai, K.; Barr, B.; Betzwieser, J.; Brooks, A.; Dahl, K.; Doravari, S.; Driggers, J.C.; Korth, W.Z.; Miao, H.; et al. Multicolor cavity metrology. J. Opt. Soc. Am. A 2012, 29, 2092. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Staley, A.; Martynov, D.; Abbott, R.; Adhikari, R.X.; Arai, K.; Ballmer, S.; Barsotti, L.; Brooks, A.F.; DeRosa, R.T.; Dwyer, S.; et al. Achieving resonance in the Advanced LIGO gravitational-wave interferometer. Class. Quantum Grav. 2014, 31, 245010. [Google Scholar] [CrossRef]
- Akutsu, T.; Ando, M.; Arai, K.; Arai, K.; Arai, Y.; Araki, S.; Araya, A.; Aritomi, N.; Aso, Y.; Bae, S.; et al. An arm length stabilization system for KAGRA and future gravitational-wave detectors. Class. Quantum Grav. 2020, 37, 035004. [Google Scholar] [CrossRef] [Green Version]
- Casanueva, J.; Pillant, G.; Genin, E.; Leroy, N. Auxiliary Laser System: Fiber Phase Noise Measurement and Cavity Lock Requirements, VIR-0540B-16. 2016. Available online: https://tds.virgo-gw.eu/ql/?c=11857 (accessed on 8 December 2020).
- Gangwar, R.; Singh, S.P.; Singh, N. Nonlinear scattering effects in optical fibers. Prog. Electromagn. Res. 2007, 74, 379–405. [Google Scholar]
- Available online: https://www.superlumdiodes.com/pdf/soa542.pdf (accessed on 8 December 2020).
- Available online: https://www.lasercomponents.com/fileadmin/user_upload/home/Datasheets/keopsys/ytterbium-pre-booster-amplifier-cyfa-pb.pdf (accessed on 8 December 2020).
- Available online: http://www.aaoptoelectronic.com/wp-content/uploads/2018/08/MT80-MT110-MT200-MT250-IR-Fio-VSF-ed1-18.pdf (accessed on 8 December 2020).
- Casanueva, J.; Chiummo, A.; Gosselin, M.; Leroy, N.; Masserot, A.; Montanari, B.; Nocera, F.; de Rossi, C.; Vardaro, M. ALS Test 1: Arm Cavities Actuation Chain. VIR-0381B-20. (2020). Available online: https://tds.virgo-gw.eu/ql/?c=15505 (accessed on 8 December 2020).
- Boyd, R. The Nonlinear Optical Susceptibility. Nonlinear Opt. 2007, 1–67. [Google Scholar] [CrossRef]
- Khan, I.; Genin, E.; Fafone, V.; Pillant, G.; Magazzu, A.; Casanueva, J.; Chiummo, A.; Leroy, N. Auxiliary lasers for Advanced Virgo Gravitational Wave detector using single pass Second Harmonic Generation in Periodically Poled Lithium Niobate crystal. J. Phys. Conf. Ser. 2020, 1548, 012025. Available online: https://hal.archives-ouvertes.fr/hal-02886865 (accessed on 8 December 2020). [CrossRef]
- Available online: https://www.covesion.com/assets/downloads/MSHG1064-1.0.pdf (accessed on 8 December 2020).
- Boyd, G.D.; Kleinmann, D.A. Parametric Interaction of Focused Gaussian Light Beams. J. Appl. Phys. 1968, 39, 3597–3639. [Google Scholar] [CrossRef]
- Jahn, W. Development and Characterization of a Second Harmonic Generator for the Advanced Virgo Project, VIR-0436A-14. 2014. Available online: https://tds.virgo-gw.eu/ql/?c=10486 (accessed on 8 December 2020).
- Available online: https://www.covesion.com/assets/downloads/PV%20oven%20series.pdf (accessed on 8 December 2020).
- Mantovani, M.; Brooks, J.; Casanueva, J. Alignment Requirements for the Advanced Virgo+ Arm Cavity Using the Green Laser, VIR-1165A-19. 2019. Available online: https://tds.virgo-gw.eu/ql/?c=14999 (accessed on 8 December 2020).
- Drever, R.W.P.; Hall, J.L.; Kowalski, F.V.; Hough, J.; Ford, G.M.; Munley, A.J.; Ward, H. Laser phase and frequency stabilization using an optical resonator. Appl. Phys. Lasers Opt. 1983, 31, 97–105. [Google Scholar] [CrossRef]
- Chiummo, A.; Genin, E.; Leroy, N.; Magazzù, A.; Mantovani, M.; Paoletti, F.; Pillant, G. All Fibered 532 nm Laser Source for AdV Auxiliary Lasers, VIR-0542A-16. 2016. Available online: https://tds.virgo-gw.eu/ql/?c=11859 (accessed on 8 December 2020).
- Casanueva, J.; Leroy, N. Auxiliary Laser System: Study of the Lock Acquisition Strategy, VIR-0327A-19. 2019. Available online: https://tds.virgo-gw.eu/ql/?c=14154 (accessed on 8 December 2020).
- Brooks, J.; Casanueva, J.; Mantovani, M. Green Arm Cavity Length Noise Requirement, VIR-0461A-20. 2020. Available online: https://tds.virgo-gw.eu/ql/?c=15586 (accessed on 8 December 2020).
- Brooks, J.; Casanueva, J.; Mantovani, M. Time Domain Simulation of the Green Cavity Lock in Advanced Virgo+, VIR-0527A-20. 2020. Available online: https://tds.virgo-gw.eu/ql/?c=15652 (accessed on 8 December 2020).
- Bhawal, B.; Evans, M.; Maros, E.; Rahman, M.; Yamamoto, H. Getting Started with End-to-End Model, LIGO-T980051-00-E. 1998. Available online: https://dcc.ligo.org/public/0029/T980051/000/T980051-00.pdf (accessed on 8 December 2020).
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
De Rossi, C.; Brooks, J.; Casanueva Diaz, J.; Chiummo, A.; Genin, E.; Gosselin, M.; Leroy, N.; Mantovani, M.; Montanari, B.; Nocera, F.; et al. Development of a Frequency Tunable Green Laser Source for Advanced Virgo+ Gravitational Waves Detector. Galaxies 2020, 8, 87. https://doi.org/10.3390/galaxies8040087
De Rossi C, Brooks J, Casanueva Diaz J, Chiummo A, Genin E, Gosselin M, Leroy N, Mantovani M, Montanari B, Nocera F, et al. Development of a Frequency Tunable Green Laser Source for Advanced Virgo+ Gravitational Waves Detector. Galaxies. 2020; 8(4):87. https://doi.org/10.3390/galaxies8040087
Chicago/Turabian StyleDe Rossi, Camilla, Jonathan Brooks, Julia Casanueva Diaz, Antonino Chiummo, Eric Genin, Matthieu Gosselin, Nicolas Leroy, Maddalena Mantovani, Beatrice Montanari, Flavio Nocera, and et al. 2020. "Development of a Frequency Tunable Green Laser Source for Advanced Virgo+ Gravitational Waves Detector" Galaxies 8, no. 4: 87. https://doi.org/10.3390/galaxies8040087
APA StyleDe Rossi, C., Brooks, J., Casanueva Diaz, J., Chiummo, A., Genin, E., Gosselin, M., Leroy, N., Mantovani, M., Montanari, B., Nocera, F., & Pillant, G. (2020). Development of a Frequency Tunable Green Laser Source for Advanced Virgo+ Gravitational Waves Detector. Galaxies, 8(4), 87. https://doi.org/10.3390/galaxies8040087