Are Disks of Satellites Comprised of Tidal Dwarf Galaxies?
Abstract
:1. Introduction
2. Proposals to Explain the Existence of Disks of Satellites
3. The Simulation of B18
Predicted Proper Motions of the Members of the Disks of Satellites of Andromeda
4. Open Questions, Future Prospects
- Shortly after the simulation of B18 was published, it was found that there is a population of chemically and kinematically distinct stars in the Milky Way. They were interpreted as a remnant of an accreted dwarf galaxy that received the name Gaia-Enceladus [114] or Gaia-Sausage [115] and had a mass greater than the Large Magellanic Cloud. Later, evidence for another merger with a galaxy called Sequoia appeared [116]. Could these peculiar stellar populations have been actually formed by the Milky Way–Andromeda encounter? In our simulation, the encounter formed only a hint of a disk of satellites around the Milky Way. Could the disk of satellites have been formed after the merger with the Gaia-Enceladus/Sausage?
- The simulation of B18 contained several modeling simplifications that can be remedied in the future. It neglected the external field effect and cosmic expansion. As demonstrated by [42], these have an impact on the time since the encounter and the pericentric distance and velocity. The simulations could be improved by adding gas and star formation, which would help to address the formation and survival of tidal dwarf galaxies during the creation of the disks of satellites. The encounter might have caused a burst of star formation whose signature could be looked for observationally. The new simulations should be performed, taking into account the newest constraint on the proper motion of Andromeda. Another important goal would be to explore a larger space of free parameters. The parameters can include not only the proper motion of Andromeda but also the initial sizes and gas fractions of the galaxies. Exploration of the parameter space could, for example, clarify whether the flyby can produce a disk of satellites of the simulated Milky Way that has the correct mass and orientation. It would also clarify whether the planes of non-satellite dwarfs in the Local Group could be produced during the flyby.
- Is the origin of the planes of non-satellite dwarfs in the Local Group different from the disks of satellites?
- If all satellites of the Milky Way are tidal dwarf galaxies, which is suggested by the positions and velocities of the satellites, is it even possible that the Milky Way would have no primordial satellites? Pairs of close galaxies in an expanding universe first recede, following the Hubble flow, until their mutual gravity prevails and the galaxies become bound. They will be called a host and a satellite according to their mass. The satellites that have closer apocenters with respect to their hosts became bound at earlier cosmic epochs. Is it possible that the process of acquisition of satellites, that seems to be universal for any gravity model, had not worked for the Milky Way?
- As pointed out in B18, if the satellites in the disks are tidal dwarf galaxies, then their globular clusters should not be older than the time since the encounter. For the Local Group that means 7–11 Gyr. While, for example, some of the GCs of the Fornax dwarf appear older [117,118,119], it is generally difficult to exactly determine the ages of stellar populations of this age. It would be desirable to investigate this issue in detail in the future.
- Disks of satellites have been detected around all nearby massive galaxies. This suggests that disks of satellites are a common phenomenon. This brings up the question of whether galaxy flybys are frequent enough to explain all of these disks of satellites by the tidal dwarf scenario. It might be, because a few tens of percent of galaxies at high redshifts are seen to be just undergoing an interaction (e.g., [120,121,122]). A detailed comparison will be desirable once we have a better idea about how frequent disks of satellites are. It will be necessary also to address if all non-merging galaxy flybys that lead to mass transfer lead to the formation of disks of satellites.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
1 | There is currently another suitable public code, RayMOND [86], that can work not only in QUMOND but also in the AQUAL formulation of MOND [56]. It is available at (accessed on 25 October 2021) https://www.ifa.uv.cl/sites/graeme/codes.html. |
2 | Since the CDM model is argued to account for many cosmological phenomena, the cosmology in the final MOND theory, that is yet to be discovered, may resemble that in the CDM model. |
References
- Pawlowski, M.S. The planes of satellite galaxies problem, suggested solutions, and open questions. Mod. Phys. Lett. A 2018, 33, 1830004. [Google Scholar] [CrossRef] [Green Version]
- Schneider, M.D.; Frenk, C.S.; Cole, S. The shapes and alignments of dark matter halos. J. Cosmol. Astropart. Phys. 2012, 2012, 030. [Google Scholar] [CrossRef] [Green Version]
- Pawlowski, M.S.; Famaey, B.; Merritt, D.; Kroupa, P. On the Persistence of Two Small-scale Problems in ΛCDM. Astrophys. J. 2015, 815, 19. [Google Scholar] [CrossRef]
- Lynden-Bell, D. Dwarf galaxies and globular clusters in high velocity hydrogen streams. Mon. Not. R. Astron. Soc. 1976, 174, 695–710. [Google Scholar] [CrossRef] [Green Version]
- Kroupa, P.; Theis, C.; Boily, C.M. The great disk of Milky-Way satellites and cosmological sub-structures. Astron. Astrophys. 2005, 431, 517–521. [Google Scholar] [CrossRef] [Green Version]
- Metz, M.; Kroupa, P.; Libeskind, N.I. The Orbital Poles of Milky Way Satellite Galaxies: A Rotationally Supported Disk of Satellites. Astrophys. J. 2008, 680, 287–294. [Google Scholar] [CrossRef] [Green Version]
- Pawlowski, M.S.; Kroupa, P. The rotationally stabilized VPOS and predicted proper motions of the Milky Way satellite galaxies. Mon. Not. R. Astron. Soc. 2013, 435, 2116–2131. [Google Scholar] [CrossRef] [Green Version]
- Pawlowski, M.S.; Kroupa, P. The Milky Way’s disc of classical satellite galaxies in light of Gaia DR2. Mon. Not. R. Astron. Soc. 2020, 491, 3042–3059. [Google Scholar] [CrossRef] [Green Version]
- Casetti-Dinescu, D.I.; Hansen, C.K.; Girard, T.M.; Kozhurina-Platais, V.; Platais, I.; Horch, E.P. A New Proper Motion Determination of Leo I. arXiv 2021, arXiv:2110.12022. [Google Scholar]
- Pawlowski, M.S.; Kroupa, P. The Vast Polar Structure of the Milky Way Attains New Members. Astrophys. J. 2014, 790, 74. [Google Scholar] [CrossRef] [Green Version]
- Pawlowski, M.S.; Pflamm-Altenburg, J.; Kroupa, P. The VPOS: A vast polar structure of satellite galaxies, globular clusters and streams around the Milky Way. Mon. Not. R. Astron. Soc. 2012, 423, 1109–1126. [Google Scholar] [CrossRef] [Green Version]
- Zhao, H. The Survival of the Sagittarius Dwarf Galaxy and the Flatness of the Rotation Curve of the Galaxy. Astrophys. J. Lett. 1998, 500, L149–L152. [Google Scholar] [CrossRef]
- Kroupa, P. The Dark Matter Crisis: Falsification of the Current Standard Model of Cosmology. Publ. Astron. Soc. Aust. 2012, 29, 395–433. [Google Scholar] [CrossRef] [Green Version]
- Metz, M.; Kroupa, P.; Jerjen, H. The spatial distribution of the Milky Way and Andromeda satellite galaxies. Mon. Not. R. Astron. Soc. 2007, 374, 1125–1145. [Google Scholar] [CrossRef]
- Metz, M.; Kroupa, P.; Jerjen, H. Discs of satellites: The new dwarf spheroidals. Mon. Not. R. Astron. Soc. 2009, 394, 2223–2228. [Google Scholar] [CrossRef] [Green Version]
- Ibata, R.A.; Lewis, G.F.; Conn, A.R.; Irwin, M.J.; McConnachie, A.W.; Chapman, S.C.; Collins, M.L.; Fardal, M.; Ferguson, A.M.N.; Ibata, N.G.; et al. A vast, thin plane of corotating dwarf galaxies orbiting the Andromeda galaxy. Nature 2013, 493, 62–65. [Google Scholar] [CrossRef] [Green Version]
- Tully, R.B.; Libeskind, N.I.; Karachentsev, I.D.; Karachentseva, V.E.; Rizzi, L.; Shaya, E.J. Two Planes of Satellites in the Centaurus A Group. Astrophys. J. Lett. 2015, 802, L25. [Google Scholar] [CrossRef] [Green Version]
- Müller, O.; Jerjen, H.; Pawlowski, M.S.; Binggeli, B. Testing the two planes of satellites in the Centaurus group. Astron. Astrophys. 2016, 595, A119. [Google Scholar] [CrossRef]
- Müller, O.; Pawlowski, M.S.; Jerjen, H.; Lelli, F. A whirling plane of satellite galaxies around Centaurus A challenges cold dark matter cosmology. Science 2018, 359, 534–537. [Google Scholar] [CrossRef] [Green Version]
- Müller, O.; Pawlowski, M.S.; Lelli, F.; Fahrion, K.; Rejkuba, M.; Hilker, M.; Kanehisa, J.; Libeskind, N.; Jerjen, H. The coherent motion of Cen A dwarf satellite galaxies remains a challenge for ΛCDM cosmology. Astron. Astrophys. 2021, 645, L5. [Google Scholar] [CrossRef]
- Heesters, N.; Habas, R.; Marleau, F.R.; Müller, O.; Duc, P.A.; Poulain, M.; Durrell, P.; Sánchez-Janssen, R.; Paudel, S. Flattened structures of dwarf satellites around massive host galaxies in the MATLAS low-to-moderate density fields. arXiv 2021, arXiv:2108.10189. [Google Scholar]
- Duc, P.A.; Cuillandre, J.C.; Karabal, E.; Cappellari, M.; Alatalo, K.; Blitz, L.; Bournaud, F.; Bureau, M.; Crocker, A.F.; Davies, R.L.; et al. The ATLAS3D project—XXIX. The new look of early-type galaxies and surrounding fields disclosed by extremely deep optical images. Mon. Not. R. Astron. Soc. 2015, 446, 120–143. [Google Scholar] [CrossRef]
- Bílek, M.; Duc, P.A.; Cuillandre, J.C.; Gwyn, S.; Cappellari, M.; Bekaert, D.V.; Bonfini, P.; Bitsakis, T.; Paudel, S.; Krajnović, D.; et al. Census and classification of low-surface-brightness structures in nearby early-type galaxies from the MATLAS survey. Mon. Not. R. Astron. Soc. 2020, 498, 2138–2166. [Google Scholar] [CrossRef]
- Habas, R.; Marleau, F.R.; Duc, P.A.; Durrell, P.R.; Paudel, S.; Poulain, M.; Sánchez-Janssen, R.; Sreejith, S.; Ramasawmy, J.; Stemock, B.; et al. Newly discovered dwarf galaxies in the MATLAS low-density fields. Mon. Not. R. Astron. Soc. 2020, 491, 1901–1919. [Google Scholar] [CrossRef] [Green Version]
- Paudel, S.; Yoon, S.J.; Smith, R. A Corotating Group of Dwarf Galaxies around NGC 2750 as a Centaurus A Analog. Astrophys. J. Lett. 2021, 917, L18. [Google Scholar] [CrossRef]
- Ibata, N.G.; Ibata, R.A.; Famaey, B.; Lewis, G.F. Velocity anti-correlation of diametrically opposed galaxy satellites in the low-redshift Universe. Nature 2014, 511, 563–566. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pawlowski, M.S.; Kroupa, P.; Jerjen, H. Dwarf galaxy planes: The discovery of symmetric structures in the Local Group. Mon. Not. R. Astron. Soc. 2013, 435, 1928–1957. [Google Scholar] [CrossRef] [Green Version]
- Müller, O.; Scalera, R.; Binggeli, B.; Jerjen, H. The M 101 group complex: New dwarf galaxy candidates and spatial structure. Astron. Astrophys. 2017, 602, A119. [Google Scholar] [CrossRef] [Green Version]
- Chiboucas, K.; Jacobs, B.A.; Tully, R.B.; Karachentsev, I.D. Confirmation of Faint Dwarf Galaxies in the M81 Group. Astron. J. 2013, 146, 126. [Google Scholar] [CrossRef] [Green Version]
- Pawlowski, M.S. The alignment of SDSS satellites with the VPOS: Effects of the survey footprint shape. Mon. Not. R. Astron. Soc. 2016, 456, 448–458. [Google Scholar] [CrossRef] [Green Version]
- Smith, R.; Duc, P.A.; Bournaud, F.; Yi, S.K. A Formation Scenario for the Disk of Satellites: Accretion of Satellites during Mergers. Astrophys. J. 2016, 818, 11. [Google Scholar] [CrossRef] [Green Version]
- Ren, J.; Zheng, X.Z.; Valls-Gabaud, D.; Duc, P.A.; Bell, E.F.; Pan, Z.; Qin, J.; Shi, D.D.; Qiao, M.; He, Y.; et al. Long tidal tails in merging galaxies and their implications. Mon. Not. R. Astron. Soc. 2020, 499, 3399–3409. [Google Scholar] [CrossRef]
- Pawlowski, M.S.; Kroupa, P.; de Boer, K.S. Making counter-orbiting tidal debris. The origin of the Milky Way disc of satellites? Astron. Astrophys. 2011, 532, A118. [Google Scholar] [CrossRef] [Green Version]
- Kroupa, P. Dwarf spheroidal satellite galaxies without dark matter. New Astron. 1997, 2, 139–164. [Google Scholar] [CrossRef]
- Casas, R.A.; Arias, V.; Peña Ramírez, K.; Kroupa, P. Dwarf spheroidal satellites of the Milky Way from dark matter free tidal dwarf galaxy progenitors: Maps of orbits. Mon. Not. R. Astron. Soc. 2012, 424, 1941–1951. [Google Scholar] [CrossRef] [Green Version]
- McGaugh, S.S.; Wolf, J. Local Group Dwarf Spheroidals: Correlated Deviations from the Baryonic Tully-Fisher Relation. Astrophys. J. 2010, 722, 248–261. [Google Scholar] [CrossRef]
- Klypin, A.; Kravtsov, A.V.; Valenzuela, O.; Prada, F. Where Are the Missing Galactic Satellites? Astrophys. J. 1999, 522, 82–92. [Google Scholar] [CrossRef] [Green Version]
- Simon, J.D.; Geha, M. The Kinematics of the Ultra-faint Milky Way Satellites: Solving the Missing Satellite Problem. Astrophys. J. 2007, 670, 313–331. [Google Scholar] [CrossRef] [Green Version]
- Sawala, T.; Frenk, C.S.; Fattahi, A.; Navarro, J.F.; Bower, R.G.; Crain, R.A.; Dalla Vecchia, C.; Furlong, M.; Helly, J.C.; Jenkins, A.; et al. Local Group galaxies emerge from the dark. arXiv 2014, arXiv:1412.2748. [Google Scholar]
- Simpson, C.M.; Grand, R.J.J.; Gómez, F.A.; Marinacci, F.; Pakmor, R.; Springel, V.; Campbell, D.J.R.; Frenk, C.S. Quenching and ram pressure stripping of simulated Milky Way satellite galaxies. Mon. Not. R. Astron. Soc. 2018, 478, 548–567. [Google Scholar] [CrossRef] [Green Version]
- Milgrom, M. A modification of the Newtonian dynamics as a possible alternative to the hidden mass hypothesis. Astrophys. J. 1983, 270, 365–370. [Google Scholar] [CrossRef]
- Zhao, H.; Famaey, B.; Lüghausen, F.; Kroupa, P. Local Group timing in Milgromian dynamics. A past Milky Way-Andromeda encounter at z > 0.8. Astron. Astrophys. 2013, 557, L3. [Google Scholar] [CrossRef] [Green Version]
- Mo, H.; van den Bosch, F.C.; White, S. Galaxy Formation and Evolution; Cambridge University Press: Cambridge, UK, 2010. [Google Scholar]
- Tiret, O.; Combes, F. Interacting Galaxies with Modified Newtonian Dynamics. In Formation and Evolution of Galaxy Disks; Funes, J.G., Corsini, E.M., Eds.; Astronomical Society of the Pacific Conference Series; Astronomical Society: Rome, Italy, 2008; Volume 396, p. 259. [Google Scholar]
- Nipoti, C.; Ciotti, L.; Binney, J.; Londrillo, P. Dynamical friction in modified Newtonian dynamics. Mon. Not. R. Astron. Soc. 2008, 386, 2194–2198. [Google Scholar] [CrossRef] [Green Version]
- Combes, F.; Tiret, O. MOND and the Galaxies. In AIP Conference Proceedings; Alimi, J.M., Fuözfa, A., Eds.; American Institute of Physics: Paris, France, 2010; Volume 1241, pp. 154–161. Available online: https://aip.scitation.org/doi/abs/10.1063/1.3462629 (accessed on 25 October 2021). [CrossRef] [Green Version]
- Renaud, F.; Famaey, B.; Kroupa, P. Star formation triggered by galaxy interactions in modified gravity. Mon. Not. R. Astron. Soc. 2016, 463, 3637–3652. [Google Scholar] [CrossRef] [Green Version]
- Ciotti, L.; Londrillo, P.; Nipoti, C. Axisymmetric and Triaxial MOND Density-Potential Pairs. Astrophys. J. 2006, 640, 741–750. [Google Scholar] [CrossRef] [Green Version]
- Bílek, M.; Zhao, H.; Famaey, B.; Müller, O.; Kroupa, P.; Ibata, R. Evolution of globular-cluster systems of ultra-diffuse galaxies due to dynamical friction in MOND gravity. arXiv 2021, arXiv:2107.05667. [Google Scholar]
- Banik, I.; Zhao, H. Origin of the Local Group satellite planes in Modified Newtonian Dynamics. arXiv 2018, arXiv:1802.00440. [Google Scholar]
- Banik, I.; Zhao, H. A plane of high-velocity galaxies across the Local Group. Mon. Not. R. Astron. Soc. 2018, 473, 4033–4054. [Google Scholar] [CrossRef]
- Banik, I.; Zhao, H. Dynamical history of the Local Group in ΛCDM. Mon. Not. R. Astron. Soc. 2016, 459, 2237–2261. [Google Scholar] [CrossRef]
- Banik, I.; Haslbauer, M.; Pawlowski, M.S.; Famaey, B.; Kroupa, P. On the absence of backsplash analogues to NGC 3109 in the ΛCDM framework. Mon. Not. R. Astron. Soc. 2021, 503, 6170–6186. [Google Scholar] [CrossRef]
- Bílek, M.; Thies, I.; Kroupa, P.; Famaey, B. MOND simulation suggests an origin for some peculiarities in the Local Group. Astron. Astrophys. 2018, 614, A59. [Google Scholar] [CrossRef] [Green Version]
- Milgrom, M. The Mond Limit from Spacetime Scale Invariance. Astrophys. J. 2009, 698, 1630–1638. [Google Scholar] [CrossRef] [Green Version]
- Bekenstein, J.; Milgrom, M. Does the missing mass problem signal the breakdown of Newtonian gravity? Astrophys. J. 1984, 286, 7–14. [Google Scholar] [CrossRef]
- Milgrom, M. Quasi-linear formulation of MOND. Mon. Not. R. Astron. Soc. 2010, 403, 886–895. [Google Scholar] [CrossRef] [Green Version]
- Famaey, B.; McGaugh, S.S. Modified Newtonian Dynamics (MOND): Observational Phenomenology and Relativistic Extensions. Living Rev. Relativ. 2012, 15, 10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Begeman, K.G.; Broeils, A.H.; Sanders, R.H. Extended rotation curves of spiral galaxies—Dark haloes and modified dynamics. Mon. Not. R. Astron. Soc. 1991, 249, 523–537. [Google Scholar] [CrossRef] [Green Version]
- Sanders, R.H. The Published Extended Rotation Curves of Spiral Galaxies: Confrontation with Modified Dynamics. Astrophys. J. 1996, 473, 117. [Google Scholar] [CrossRef]
- de Blok, W.J.G.; McGaugh, S.S. Testing Modified Newtonian Dynamics with Low Surface Brightness Galaxies: Rotation Curve FITS. Astrophys. J. 1998, 508, 132–140. [Google Scholar] [CrossRef] [Green Version]
- Milgrom, M.; Sanders, R.H. Modified Newtonian Dynamics and the “Dearth of Dark Matter in Ordinary Elliptical Galaxies”. Astrophys. J. Lett. 2003, 599, L25–L28. [Google Scholar] [CrossRef]
- Milgrom, M.; Sanders, R.H. Modified Newtonian Dynamics Rotation Curves of Very Low Mass Spiral Galaxies. Astrophys. J. Lett. 2007, 658, L17–L20. [Google Scholar] [CrossRef]
- Gentile, G.; Famaey, B.; de Blok, W.J.G. THINGS about MOND. Astron. Astrophys. 2011, 527, A76. [Google Scholar] [CrossRef] [Green Version]
- Milgrom, M. Testing MOND over a Wide Acceleration Range in X-ray Ellipticals. Phys. Rev. Lett. 2012, 109, 131101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dabringhausen, J.; Kroupa, P.; Famaey, B.; Fellhauer, M. Understanding the internal dynamics of elliptical galaxies without non-baryonic dark matter. Mon. Not. R. Astron. Soc. 2016, 463, 1865–1880. [Google Scholar] [CrossRef] [Green Version]
- Lelli, F.; McGaugh, S.S.; Schombert, J.M.; Pawlowski, M.S. One Law to Rule Them All: The Radial Acceleration Relation of Galaxies. Astrophys. J. 2017, 836, 152. [Google Scholar] [CrossRef] [Green Version]
- Samurović, S. Investigation of dark matter and modified Newtonian dynamics in early-type galaxies through globular cluster systems. Astron. Astrophys. 2014, 570, A132. [Google Scholar] [CrossRef]
- Bílek, M.; Samurović, S.; Renaud, F. Study of gravitational fields and globular cluster systems of early-type galaxies. Astron. Astrophys. 2019, 625, A32. [Google Scholar] [CrossRef] [Green Version]
- Milgrom, M. Galaxy Groups and Modified Dynamics. Astrophys. J. Lett. 1998, 496, L89–L91. [Google Scholar] [CrossRef] [Green Version]
- Milgrom, M. MOND in galaxy groups. Phys. Rev. D 2018, 98, 104036. [Google Scholar] [CrossRef] [Green Version]
- Milgrom, M. MOND in galaxy groups: A superior sample. Phys. Rev. D 2019, 99, 044041. [Google Scholar] [CrossRef] [Green Version]
- Skordis, C.; Złośnik, T. Gravitational alternatives to dark matter with tensor mode speed equaling the speed of light. Phys. Rev. D 2019, 100, 104013. [Google Scholar] [CrossRef]
- Skordis, C.; Złośnik, T. A new relativistic theory for Modified Newtonian Dynamics. arXiv 2020, arXiv:2007.00082. [Google Scholar]
- Angus, G.W.; Diaferio, A. The abundance of galaxy clusters in modified Newtonian dynamics: Cosmological simulations with massive neutrinos. Mon. Not. R. Astron. Soc. 2011, 417, 941–949. [Google Scholar] [CrossRef] [Green Version]
- Katz, H.; McGaugh, S.; Teuben, P.; Angus, G.W. Galaxy Cluster Bulk Flows and Collision Velocities in QUMOND. Astrophys. J. 2013, 772, 10. [Google Scholar] [CrossRef] [Green Version]
- Candlish, G.N. The velocity field in MOND cosmology. Mon. Not. R. Astron. Soc. 2016, 460, 2571–2585. [Google Scholar] [CrossRef] [Green Version]
- Asencio, E.; Banik, I.; Kroupa, P. A massive blow for ΛCDM—The high redshift, mass, and collision velocity of the interacting galaxy cluster El Gordo contradicts concordance cosmology. Mon. Not. R. Astron. Soc. 2021, 500, 5249–5267. [Google Scholar] [CrossRef]
- Haslbauer, M.; Banik, I.; Kroupa, P. The KBC void and Hubble tension contradict ΛCDM on a Gpc scale—Milgromian dynamics as a possible solution. Mon. Not. R. Astron. Soc. 2020, 499, 2845–2883. [Google Scholar] [CrossRef]
- McGaugh, S.; Milgrom, M. Andromeda Dwarfs in Light of Modified Newtonian Dynamics. Astrophys. J. 2013, 766, 22. [Google Scholar] [CrossRef]
- McGaugh, S.; Milgrom, M. Andromeda Dwarfs in Light of MOND. II. Testing Prior Predictions. Astrophys. J. 2013, 775, 139. [Google Scholar] [CrossRef]
- Haghi, H.; Bazkiaei, A.E.; Zonoozi, A.H.; Kroupa, P. Declining rotation curves of galaxies as a test of gravitational theory. Mon. Not. R. Astron. Soc. 2016, 458, 4172–4187. [Google Scholar] [CrossRef] [Green Version]
- McGaugh, S.S. MOND Prediction for the Velocity Dispersion of the “Feeble Giant” Crater II. Astrophys. J. Lett. 2016, 832, L8. [Google Scholar] [CrossRef] [Green Version]
- Caldwell, N.; Walker, M.G.; Mateo, M.; Olszewski, E.W.; Koposov, S.; Belokurov, V.; Torrealba, G.; Geringer-Sameth, A.; Johnson, C.I. Crater 2: An Extremely Cold Dark Matter Halo. Astrophys. J. 2017, 839, 20. [Google Scholar] [CrossRef] [Green Version]
- Chae, K.H.; Lelli, F.; Desmond, H.; McGaugh, S.S.; Li, P.; Schombert, J.M. Testing the Strong Equivalence Principle: Detection of the External Field Effect in Rotationally Supported Galaxies. Astrophys. J. 2020, 904, 51. [Google Scholar] [CrossRef]
- Candlish, G.N.; Smith, R.; Fellhauer, M. RAyMOND: An N-body and hydrodynamics code for MOND. Mon. Not. R. Astron. Soc. 2015, 446, 1060–1070. [Google Scholar] [CrossRef] [Green Version]
- Lüghausen, F.; Famaey, B.; Kroupa, P. Phantom of RAMSES (POR): A new Milgromian dynamicsN-body code. Can. J. Phys. 2015, 93, 232–241. [Google Scholar] [CrossRef] [Green Version]
- Nagesh, S.T.; Banik, I.; Thies, I.; Kroupa, P.; Famaey, B.; Wittenburg, N.; Parziale, R.; Haslbauer, M. The Phantom of RAMSES user guide for galaxy simulations using Milgromian and Newtonian gravity. Can. J. Phys. 2021, 99, 607–613. [Google Scholar] [CrossRef]
- Teyssier, R. Cosmological hydrodynamics with adaptive mesh refinement. A new high resolution code called RAMSES. Astron. Astrophys. 2002, 385, 337–364. [Google Scholar] [CrossRef] [Green Version]
- van der Marel, R.P.; Fardal, M.; Besla, G.; Beaton, R.L.; Sohn, S.T.; Anderson, J.; Brown, T.; Guhathakurta, P. The M31 Velocity Vector. II. Radial Orbit toward the Milky Way and Implied Local Group Mass. Astrophys. J. 2012, 753, 8. [Google Scholar] [CrossRef] [Green Version]
- Salomon, J.B.; Ibata, R.; Reylé, C.; Famaey, B.; Libeskind, N.I.; McConnachie, A.W.; Hoffman, Y. The proper motion of Andromeda from Gaia EDR3: Confirming a nearly radial orbit. Mon. Not. R. Astron. Soc. 2021, 507, 2592–2601. [Google Scholar] [CrossRef]
- Wetzstein, M.; Naab, T.; Burkert, A. Do dwarf galaxies form in tidal tails? Mon. Not. R. Astron. Soc. 2007, 375, 805–820. [Google Scholar] [CrossRef]
- Thies, I.; Kroupa, P.; Famaey, B. Simulating disk galaxies and interactions in Milgromian dynamics. arXiv 2016, arXiv:1606.04942. [Google Scholar]
- Dessauges-Zavadsky, M.; Schaerer, D.; Cava, A.; Mayer, L.; Tamburello, V. On the Stellar Masses of Giant Clumps in Distant Star-forming Galaxies. Astrophys. J. Lett. 2017, 836, L22. [Google Scholar] [CrossRef] [Green Version]
- Soto, E.; de Mello, D.F.; Rafelski, M.; Gardner, J.P.; Teplitz, H.I.; Koekemoer, A.M.; Ravindranath, S.; Grogin, N.A.; Scarlata, C.; Kurczynski, P.; et al. Physical Properties of Sub-galactic Clumps at 0.5 <= Z <= 1.5 in the UVUDF. Astrophys. J. 2017, 837, 6. [Google Scholar] [CrossRef] [Green Version]
- Fisher, D.B.; Glazebrook, K.; Abraham, R.G.; Damjanov, I.; White, H.A.; Obreschkow, D.; Basset, R.; Bekiaris, G.; Wisnioski, E.; Green, A.; et al. Connecting Clump Sizes in Turbulent Disk Galaxies to Instability Theory. Astrophys. J. Lett. 2017, 839, L5. [Google Scholar] [CrossRef]
- Elmegreen, D.M.; Elmegreen, B.G.; Marcus, M.T.; Shahinyan, K.; Yau, A.; Petersen, M. Clumpy Galaxies in Goods and Gems: Massive Analogs of Local Dwarf Irregulars. Astrophys. J. 2009, 701, 306–329. [Google Scholar] [CrossRef] [Green Version]
- Ferguson, A.M.N.; Mackey, A.D. Substructure and Tidal Streams in the Andromeda Galaxy and its Satellites. Tidal Streams Local Group Beyond 2016, 420, 191. [Google Scholar] [CrossRef] [Green Version]
- Merritt, A.; van Dokkum, P.; Abraham, R.; Zhang, J. The Dragonfly nearby Galaxies Survey. I. Substantial Variation in the Diffuse Stellar Halos around Spiral Galaxies. Astrophys. J. 2016, 830, 62. [Google Scholar] [CrossRef] [Green Version]
- Tenjes, P.; Tuvikene, T.; Tamm, A.; Kipper, R.; Tempel, E. Spiral arms and disc stability in the Andromeda galaxy. Astron. Astrophys. 2017, 600, A34. [Google Scholar] [CrossRef] [Green Version]
- Duc, P.A.; Mirabel, I.F. Recycled galaxies in the colliding system ARP 105. Astron. Astrophys. 1994, 289, 83–93. [Google Scholar]
- Duc, P.A.; Mirabel, I.F. Young tidal dwarf galaxies around the gas-rich disturbed lenticular NGC 5291. Astron. Astrophys. 1998, 333, 813–826. [Google Scholar]
- Weilbacher, P.M.; Duc, P.A. Tidal dwarf candidates in a sample of interacting galaxies. II. Properties and kinematics of the ionized gas. Astron. Astrophys. 2003, 397, 545–555. [Google Scholar] [CrossRef] [Green Version]
- Croxall, K.V.; van Zee, L.; Lee, H.; Skillman, E.D.; Lee, J.C.; Côté, S.; Kennicutt, R.C.; Miller, B.W. Chemical Abundances of Seven Irregular and Three Tidal Dwarf Galaxies in the M81 Group. Astrophys. J. 2009, 705, 723–738. [Google Scholar] [CrossRef]
- Collins, M.L.M.; Martin, N.F.; Rich, R.M.; Ibata, R.A.; Chapman, S.C.; McConnachie, A.W.; Ferguson, A.M.; Irwin, M.J.; Lewis, G.F. Comparing the Observable Properties of Dwarf Galaxies on and off the Andromeda Plane. Astrophys. J. Lett. 2015, 799, L13. [Google Scholar] [CrossRef] [Green Version]
- Recchi, S.; Kroupa, P.; Ploeckinger, S. The mass-metallicity relation of tidal dwarf galaxies. Mon. Not. R. Astron. Soc. 2015, 450, 2367–2372. [Google Scholar] [CrossRef] [Green Version]
- Dabringhausen, J.; Kroupa, P. Dwarf elliptical galaxies as ancient tidal dwarf galaxies. Mon. Not. R. Astron. Soc. 2013, 429, 1858–1871. [Google Scholar] [CrossRef]
- Sohn, S.T.; Patel, E.; Fardal, M.A.; Besla, G.; van der Marel, R.P.; Geha, M.; Guhathakurta, P. HST Proper Motions of NGC 147 and NGC 185: Orbital Histories and Tests of a Dynamically Coherent Andromeda Satellite Plane. Astrophys. J. 2020, 901, 43. [Google Scholar] [CrossRef]
- The Theia Collaboration; Boehm, C.; Krone-Martins, A.; Amorim, A.; Anglada-Escude, G.; Brandeker, A.; Courbin, F.; Ensslin, T.; Falcao, A.; Freese, K.; et al. Theia: Faint objects in motion or the new astrometry frontier. arXiv 2017, arXiv:1707.01348. [Google Scholar]
- Li, Y.S.; Helmi, A. Infall of substructures on to a Milky Way-like dark halo. Mon. Not. R. Astron. Soc. 2008, 385, 1365–1373. [Google Scholar] [CrossRef] [Green Version]
- Metz, M.; Kroupa, P.; Theis, C.; Hensler, G.; Jerjen, H. Did the Milky Way Dwarf Satellites Enter The Halo as a Group? Astrophys. J. 2009, 697, 269–274. [Google Scholar] [CrossRef]
- Kroupa, P.; Famaey, B.; de Boer, K.S.; Dabringhausen, J.; Pawlowski, M.S.; Boily, C.M.; Jerjen, H.; Forbes, D.; Hensler, G.; Metz, M. Local-Group tests of dark-matter concordance cosmology. Towards a new paradigm for structure formation. Astron. Astrophys. 2010, 523, A32. [Google Scholar] [CrossRef]
- Kroupa, P. Galaxies as simple dynamical systems: Observational data disfavor dark matter and stochastic star formation. Can. J. Phys. 2015, 93, 169–202. [Google Scholar] [CrossRef]
- Helmi, A.; Babusiaux, C.; Koppelman, H.H.; Massari, D.; Veljanoski, J.; Brown, A.G.A. The merger that led to the formation of the Milky Way’s inner stellar halo and thick disk. Nature 2018, 563, 85–88. [Google Scholar] [CrossRef] [Green Version]
- Belokurov, V.; Erkal, D.; Evans, N.W.; Koposov, S.E.; Deason, A.J. Co-formation of the disc and the stellar halo. Mon. Not. R. Astron. Soc. 2018, 478, 611–619. [Google Scholar] [CrossRef] [Green Version]
- Myeong, G.C.; Vasiliev, E.; Iorio, G.; Evans, N.W.; Belokurov, V. Evidence for two early accretion events that built the Milky Way stellar halo. Mon. Not. R. Astron. Soc. 2019, 488, 1235–1247. [Google Scholar] [CrossRef] [Green Version]
- Buonanno, R.; Corsi, C.E.; Zinn, R.; Pecci, F.F.; Hardy, E.; Suntzeff, N.B. The Ages of the Globular Clusters in the Fornax Dwarf Galaxy. Astrophys. J. Lett. 1998, 501, L33–L36. [Google Scholar] [CrossRef]
- Mackey, A.D.; Gilmore, G.F. Surface brightness profiles and structural parameters for globular clusters in the Fornax and Sagittarius dwarf spheroidal galaxies. Mon. Not. R. Astron. Soc. 2003, 340, 175–190. [Google Scholar] [CrossRef] [Green Version]
- de Boer, T.J.L.; Fraser, M. Four and one more: The formation history and total mass of globular clusters in the Fornax dSph. Astron. Astrophys. 2016, 590, A35. [Google Scholar] [CrossRef] [Green Version]
- Bridge, C.R.; Carlberg, R.G.; Sullivan, M. The CFHTLS-Deep Catalog of Interacting Galaxies. I. Merger Rate Evolution to z = 1.2. Astrophys. J. 2010, 709, 1067–1082. [Google Scholar] [CrossRef] [Green Version]
- Ventou, E.; Contini, T.; Bouché, N.; Epinat, B.; Brinchmann, J.; Bacon, R.; Inami, H.; Lam, D.; Drake, A.; Garel, T.; et al. The MUSE Hubble Ultra Deep Field Survey. IX. Evolution of galaxy merger fraction since z ≈ 6. Astron. Astrophys. 2017, 608, A9. [Google Scholar] [CrossRef] [Green Version]
- Ventou, E.; Contini, T.; Bouché, N.; Epinat, B.; Brinchmann, J.; Inami, H.; Richard, J.; Schroetter, I.; Soucail, G.; Steinmetz, M.; et al. New criteria for the selection of galaxy close pairs from cosmological simulations: Evolution of the major and minor merger fraction in MUSE deep fields. Astron. Astrophys. 2019, 631, A87. [Google Scholar] [CrossRef]
- Geha, M.; Wechsler, R.H.; Mao, Y.Y.; Tollerud, E.J.; Weiner, B.; Bernstein, R.; Hoyle, B.; Marchi, S.; Marshall, P.J.; Muñoz, R.; et al. The SAGA Survey. I. Satellite Galaxy Populations around Eight Milky Way Analogs. Astrophys. J. 2017, 847, 4. [Google Scholar] [CrossRef]
- Javanmardi, B.; Martinez-Delgado, D.; Kroupa, P.; Henkel, C.; Crawford, K.; Teuwen, K.; Gabany, R.J.; Hanson, M.; Chonis, T.S.; Neyer, F. DGSAT: Dwarf Galaxy Survey with Amateur Telescopes. I. Discovery of low surface brightness systems around nearby spiral galaxies. Astron. Astrophys. 2016, 588, A89. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bílek, M.; Thies, I.; Kroupa, P.; Famaey, B. Are Disks of Satellites Comprised of Tidal Dwarf Galaxies? Galaxies 2021, 9, 100. https://doi.org/10.3390/galaxies9040100
Bílek M, Thies I, Kroupa P, Famaey B. Are Disks of Satellites Comprised of Tidal Dwarf Galaxies? Galaxies. 2021; 9(4):100. https://doi.org/10.3390/galaxies9040100
Chicago/Turabian StyleBílek, Michal, Ingo Thies, Pavel Kroupa, and Benoit Famaey. 2021. "Are Disks of Satellites Comprised of Tidal Dwarf Galaxies?" Galaxies 9, no. 4: 100. https://doi.org/10.3390/galaxies9040100
APA StyleBílek, M., Thies, I., Kroupa, P., & Famaey, B. (2021). Are Disks of Satellites Comprised of Tidal Dwarf Galaxies? Galaxies, 9(4), 100. https://doi.org/10.3390/galaxies9040100