How Are Red and Blue Quasars Different? The Radio Properties
Abstract
:1. Introduction
2. Materials and Methods
2.1. Radio Data
2.1.1. VLA FIRST
2.1.2. VLA Stripe 82 (S82)
2.1.3. VLA-COSMOS 3 GHz (C3GHz)
2.1.4. LoTSS DR1
2.2. Optical Data: The SDSS DR14 Quasar Catalogue
2.3. Color-Selected and Radio-Detected Samples
3. Results
3.1. Radio Enhancement in rQSOs
3.2. Radio Morphology
4. Discussion
4.1. Origin of the Radio Emission: Star-Formation
4.2. Origin of the Radio Emission: AGN
5. Conclusions
- Red QSOs have enhanced compact 0.144–3 GHz radio emission that peaks around the radio-quiet threshold (see Figure 4, Figure 5, Figure 6 and Figure 7): We find an enhancement in the radio-detection fraction of red QSOs across a 1.4 GHz radio flux range of 0.1–1000 mJy. Exploring the radio-loudness parameter, we show that the radio enhancement in all four samples, covering radio frequencies of 0.144–3 GHz, peaks around the radio-quiet threshold and decreases towards both the extreme radio-loud and radio-quiet ends. We confirm the results from our previous work exploring the FIRST properties of SDSS DR7 red QSOs, but now at a higher significance using a 10 times larger sample. We also push to lower radio-quiet values than previously explored, confirming the decrease in radio-detection enhancement found with the deeper radio data. We confirm that the majority of radio-compact red QSOs have radio emission on <2 kpc scales [11] and show that our future uGMRT study could provide sub-kpc constraints on the scale of the radio emission.
- The enhanced radio emission in red QSOs is likely due to dusty winds or frustrated jets (see Section 4 and Figure 6 and Figure 8): Comparing a red QSO SDSS composite to a moderately dust-reddened blue composite, we show that dust is the likely cause of the red colors. This result is also confirmed in our upcoming X-shooter study where we also do not find any significant differences in the accretion properties between red and blue QSOs (Fawcett et al. (submitted)). In a previous study, we used the FIR data in the COSMOS field to show that the enhanced radio emission in red QSOs is likely driven by AGN processes (see Figure 5), consistent with Reference [12]. A self-consistent scenario that explains these results, in addition to the radio enhancement, is that red QSOs reside in a more dust and gas rich environment, in which the radio emission is due to wind-driven shocks or frustrated jets interacting with the ISM/circumnuclear environment.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AGN | Active Galactic Nuclei |
BALQSO | Broad Absorption Line Quasar |
COSMOS | The Cosmic Evolution Survey |
cQSO | Control Quasar |
CSS | Compact Steep Spectrum |
C3GHz | COSMOS 3 GHz |
e-MERLIN | Extended Multi-Element Radio-Linked Interferometer Network |
FIR | Far-Infrared |
FIRST | Faint Images of the Radio Sky at Twenty-cm |
GPS | Gigahertz-Peaked Spectrum |
LoBAL | Low-ionization Broad Absorption Line quasar |
LOFAR | LOw Frequency ARray |
LoTSS | The LOFAR Two-meter Sky Survey |
MIR | Mid-Infrared |
QSO | Quasi-stellar object |
rQSO | Red Quasar |
RMS | Root Mean Square |
SDSS | Sloan Digital Sky Survey |
SED | Spectral Energy Distribution |
SF | Star-formation |
S82 | Stripe 82 |
TGSS | TIFR GMRT Sky Survey |
uGMRT | Upgraded Giant Meterwave Radio Telescope |
VLA | Very Large Array |
VLASS | VLA Sky Survey |
VLT | Very Large Telescope |
WISE | Wide-Field Infrared Survey Explorer |
1 | Our previous studies had small differences in the selection of the QSO samples: e.g., different SDSS data releases and different sized control samples. |
2 | Due to a lack of sources, we are unable to match in luminosity for the S82 or C3GHz samples. |
3 | Defined as the radio-detection fraction of the rQSOs, divided by the radio-detection fraction of the cQSOs. |
References
- Richards, G.T.; Hall, P.B.; Vand en Berk, D.E.; Strauss, M.A.; Schneider, D.P.; Weinstein, M.A.; Reichard, T.A.; York, D.G.; Knapp, G.R.; Fan, X.; et al. Red and Reddened Quasars in the Sloan Digital Sky Survey. Astron. J. 2003, 126, 1131–1147. [Google Scholar] [CrossRef] [Green Version]
- Glikman, E.; Helfand, D.J.; White, R.L.; Becker, R.H.; Gregg, M.D.; Lacy, M. The FIRST-2MASS Red Quasar Survey. Astron. J. 2007, 667, 673–703. [Google Scholar] [CrossRef] [Green Version]
- Georgakakis, A.; Clements, D.L.; Bendo, G.; Rowan-Robinson, M.; Nandra, K.; Brotherton, M.S. Are red 2MASS QSOs young? Mon. Not. R. Astron. Soc. 2009, 394, 533–546. [Google Scholar] [CrossRef] [Green Version]
- Urrutia, T.; Becker, R.H.; White, R.L.; Glikman, E.; Lacy, M.; Hodge, J.; Gregg, M.D. The First-2mass Red Quasar Survey. II. An Anomalously High Fraction Of Lobals In Searches For Dust-Reddened Quasars. Astron. J. 2009, 698, 1095–1109. [Google Scholar] [CrossRef]
- Banerji, M.; McMahon, R.G.; Hewett, P.C.; Alaghband-Zadeh, S.; Gonzalez-Solares, E.; Venemans, B.P.; Hawthorn, M.J. Heavily reddened quasars at z∼2 in the UKIDSS Large Area Survey: A transitional phase in AGN evolution. Mon. Not. R. Astron. Soc. 2012, 427, 2275–2291. [Google Scholar] [CrossRef] [Green Version]
- Glikman, E.; Urrutia, T.; Lacy, M.; Djorgovski, S.G.; Mahabal, A.; Myers, A.D.; Ross, N.P.; Petitjean, P.; Ge, J.; Schneider, D.P.; et al. FIRST-2MASS Red Quasars: Transitional Objects Emerging from the Dust. Astron. J. 2012, 757, 51. [Google Scholar] [CrossRef] [Green Version]
- Kim, D.; Im, M. What makes red quasars red? Observational evidence for dust extinction from line ratio analysis. Astron. Astrophys. 2018, 610, A31. [Google Scholar] [CrossRef] [Green Version]
- Klindt, L.; Alexander, D.M.; Rosario, D.J.; Lusso, E.; Fotopoulou, S. Fundamental differences in the radio properties of red and blue quasars: Evolution strongly favoured over orientation. Mon. Not. R. Astron. Soc. 2019, 488, 3109–3128. [Google Scholar] [CrossRef]
- Fawcett, V.A.; Alexander, D.M.; Rosario, D.J.; Klindt, L.; Fotopoulou, S.; Lusso, E.; Morabito, L.K.; Calistro Rivera, G. Fundamental differences in the radio properties of red and blue quasars: Enhanced compact AGN emission in red quasars. Mon. Not. R. Astron. Soc. 2020, 494, 4802–4818. [Google Scholar] [CrossRef] [Green Version]
- Rosario, D.J.; Fawcett, V.A.; Klindt, L.; Alexander, D.M.; Morabito, L.K.; Fotopoulou, S.; Lusso, E.; Calistro Rivera, G. Fundamental differences in the radio properties of red and blue quasars: Insight from the LOFAR Two-metre Sky Survey (LoTSS). Mon. Not. R. Astron. Soc. 2020, 494, 3061–3079. [Google Scholar] [CrossRef] [Green Version]
- Rosario, D.J.; Alexander, D.M.; Moldon, J.; Klindt, L.; Thomson, A.P.; Morabito, L.; Fawcett, V.A.; Harrison, C.M. Fundamental differences in the radio properties of red and blue quasars: Kiloparsec-scale structures revealed by e-MERLIN. Mon. Not. R. Astron. Soc. 2021, 505, 5283–5300. [Google Scholar] [CrossRef]
- Calistro Rivera, G.; Alexander, D.M.; Rosario, D.J.; Harrison, C.M.; Stalevski, M.; Rakshit, S.; Fawcett, V.A.; Morabito, L.K.; Klindt, L.; Best, P.N.; et al. The multiwavelength properties of red QSOs: Evidence for dusty winds as the origin of QSO reddening. Astron. Astrophys. 2021, 649, A102. [Google Scholar] [CrossRef]
- Becker, R.H.; White, R.L.; Helfand, D.J. The FIRST Survey: Faint Images of the Radio Sky at Twenty Centimeters. Astrophys. J. 1995, 450, 559. [Google Scholar] [CrossRef]
- Hodge, J.A.; Becker, R.H.; White, R.L.; Richards, G.T.; Zeimann, G.R. High-resolution Very Large Array Imaging of Sloan Digital Sky Survey Stripe 82 at 1.4 GHz. Astron. J. 2011, 142, 3. [Google Scholar] [CrossRef]
- Jiang, L.; Fan, X.; Bian, F.; McGreer, I.D.; Strauss, M.A.; Annis, J.; Buck, Z.; Green, R.; Hodge, J.A.; Myers, A.D.; et al. The Sloan Digital Sky Survey Stripe 82 Imaging Data: Depth-optimized Co-adds over 300 deg2 in Five Filters. Astrophys. J. Suppl. Ser. 2014, 213, 12. [Google Scholar] [CrossRef] [Green Version]
- Smolčić, V.; Novak, M.; Bondi, M.; Ciliegi, P.; Mooley, K.P.; Schinnerer, E.; Zamorani, G.; Navarrete, F.; Bourke, S.; Karim, A.; et al. The VLA-COSMOS 3 GHz Large Project: Continuum data and source catalog release. Astron. Astrophys. 2017, 602, A1. [Google Scholar] [CrossRef] [Green Version]
- Schinnerer, E.; Smolčić, V.; Carilli, C.L.; Bondi, M.; Ciliegi, P.; Jahnke, K.; Scoville, N.Z.; Aussel, H.; Bertoldi, F.; Blain, A.W.; et al. The VLA-COSMOS Survey. II. Source Catalog of the Large Project. Astrophys. J. Suppl. Ser. 2007, 172, 46–69. [Google Scholar] [CrossRef] [Green Version]
- Shimwell, T.W.; Röttgering, H.J.A.; Best, P.N.; Williams, W.L.; Dijkema, T.J.; de Gasperin, F.; Hardcastle, M.J.; Heald, G.H.; Hoang, D.N.; Horneffer, A.; et al. The LOFAR Two-metre Sky Survey—I. Survey description and preliminary data release. Astron. Astrophys. 2017, 598, A104. [Google Scholar] [CrossRef]
- Shimwell, T.W.; Tasse, C.; Hardcastle, M.J.; Mechev, A.P.; Williams, W.L.; Best, P.N.; Röttgering, H.J.A.; Callingham, J.R.; Dijkema, T.J.; de Gasperin, F.; et al. The LOFAR Two-metre Sky Survey. II. First data release. Astron. Astrophys. 2019, 622, A1. [Google Scholar] [CrossRef]
- Pâris, I.; Petitjean, P.; Aubourg, É.; Myers, A.D.; Streblyanska, A.; Lyke, B.W.; Anderson, S.F.; Armengaud, É.; Bautista, J.; Blanton, M.R.; et al. The Sloan Digital Sky Survey Quasar Catalog: Fourteenth data release. Astron. Astrophys. 2018, 613, A51. [Google Scholar] [CrossRef] [Green Version]
- York, D.G.; Adelman, J.; Anderson, J.E., Jr.; Anderson, S.F.; Annis, J.; Bahcall, N.A.; Bakken, J.A.; Barkhouser, R.; Bastian, S.; Berman, E. The Sloan Digital Sky Survey: Technical Summary. Astron. J. 2000, 120, 1579–1587. [Google Scholar] [CrossRef]
- Dawson, K.S.; Schlegel, D.J.; Ahn, C.P.; Anderson, S.F.; Aubourg, É.; Bailey, S.; Barkhouser, R.H.; Bautista, J.E.; Beifiori, A.; Berlind, A.A.; et al. The Baryon Oscillation Spectroscopic Survey of SDSS-III. Astron. J. 2013, 145, 10. [Google Scholar] [CrossRef] [Green Version]
- Eisenstein, D.J.; Weinberg, D.H.; Agol, E.; Aihara, H.; Allende Prieto, C.; Anderson, S.F.; Arns, J.A.; Aubourg, É.; Bailey, S.; Balbinot, E.; et al. SDSS-III: Massive Spectroscopic Surveys of the Distant Universe, the Milky Way, and Extra-Solar Planetary Systems. Astron. J. 2011, 142, 72. [Google Scholar] [CrossRef]
- Dawson, K.S.; Kneib, J.P.; Percival, W.J.; Alam, S.; Albareti, F.D.; Anderson, S.F.; Armengaud, E.; Aubourg, É.; Bailey, S.; Bautista, J.E.; et al. The SDSS-IV Extended Baryon Oscillation Spectroscopic Survey: Overview and Early Data. Astron. J. 2016, 151, 44. [Google Scholar] [CrossRef]
- Stern, D.; Eisenhardt, P.; Gorjian, V.; Kochanek, C.S.; Caldwell, N.; Eisenstein, D.; Brodwin, M.; Brown, M.J.I.; Cool, R.; Dey, A.; et al. Mid-Infrared Selection of Active Galaxies. Astron. J. 2005, 631, 163–168. [Google Scholar] [CrossRef] [Green Version]
- Lacy, M.; Canalizo, G.; Rawlings, S.; Sajina, A.; Storrie-Lombardi, L.; Armus, L.; Marleau, F.R.; Muzzin, A. Mid-infrared selection of Quasar-2s in Spitzer’s First Look Survey. Mem. Soc. Astron. Italy 2005, 76, 154. [Google Scholar]
- Stern, D.; Assef, R.J.; Benford, D.J.; Blain, A.; Cutri, R.; Dey, A.; Eisenhardt, P.; Griffith, R.L.; Jarrett, T.H.; Lake, S.; et al. Mid-infrared Selection of Active Galactic Nuclei with the Wide-Field Infrared Survey Explorer. I. Characterizing WISE-selected Active Galactic Nuclei in COSMOS. Astron. J. 2012, 753, 30. [Google Scholar] [CrossRef] [Green Version]
- Assef, R.J.; Stern, D.; Kochanek, C.S.; Blain, A.W.; Brodwin, M.; Brown, M.J.I.; Donoso, E.; Eisenhardt, P.R.M.; Jannuzi, B.T.; Jarrett, T.H.; et al. Mid-infrared Selection of Active Galactic Nuclei with the Wide-field Infrared Survey Explorer. II. Properties of WISE-selected Active Galactic Nuclei in the NDWFS Boötes Field. Astron. J. 2013, 772, 26. [Google Scholar] [CrossRef] [Green Version]
- Wright, E.L.; Eisenhardt, P.R.M.; Mainzer, A.K.; Ressler, M.E.; Cutri, R.M.; Jarrett, T.; Kirkpatrick, J.D.; Padgett, D.; McMillan, R.S.; Skrutskie, M.; et al. The Wide-field Infrared Survey Explorer (WISE): Mission Description and Initial On-orbit Performance. Astron. J. 2010, 140, 1868–1881. [Google Scholar] [CrossRef]
- Lake, S.E.; Wright, E.L.; Petty, S.; Assef, R.J.; Jarrett, T.H.; Stanford, S.A.; Stern, D.; Tsai, C.W. Optical Spectroscopic Survey of High-Latitude WISE-Selected Sources. Astron. J. 2011, 143, 7. [Google Scholar] [CrossRef] [Green Version]
- Cameron, E. On the Estimation of Confidence Intervals for Binomial Population Proportions in Astronomy: The Simplicity and Superiority of the Bayesian Approach. Publ. Astron. Soc. Aust. 2011, 28, 128–139. [Google Scholar] [CrossRef] [Green Version]
- Vernet, J.; Dekker, H.; D’Odorico, S.; Kaper, L.; Kjaergaard, P.; Hammer, F.; Randich, S.; Zerbi, F.; Groot, P.J.; Hjorth, J.; et al. X-shooter, the new wide band intermediate resolution spectrograph at the ESO Very Large Telescope. Astron. Astrophys. 2011, 536, A105. [Google Scholar] [CrossRef]
- Condon, J.J.; Kellermann, K.I.; Kimball, A.E.; Ivezić, Ž.; Perley, R.A. Active Galactic Nucleus and Starburst Radio Emission from Optically Selected Quasi-stellar Objects. Astron. J. 2013, 768, 37. [Google Scholar] [CrossRef] [Green Version]
- Herrera Ruiz, N.; Middelberg, E.; Norris, R.P.; Maini, A. Unveiling the origin of the radio emission in radio-quiet quasars. Astron. Astrophys. 2016, 589, L2. [Google Scholar] [CrossRef] [Green Version]
- Macfarlane, C.; Best, P.N.; Sabater, J.; Gürkan, G.; Jarvis, M.J.; Röttgering, H.J.A.; Baldi, R.D.; Calistro Rivera, G.; Duncan, K.J.; Morabito, L.K.; et al. The radio loudness of SDSS quasars from the LOFAR Two-metre Sky Survey: Ubiquitous jet activity and constraints on star formation. Mon. Not. R. Astron. Soc. 2021, 506, 5888–5907. [Google Scholar] [CrossRef]
- O’Dea, C.P.; Baum, S.A.; Stanghellini, C. What Are the Gigahertz Peaked-Spectrum Radio Sources? Astron. J. 1991, 380, 66. [Google Scholar] [CrossRef]
- Cotton, W.D.; Wittels, J.J.; Shapiro, I.I.; Marcaide, J.; Owen, F.N.; Spangler, S.R.; Rius, A.; Angulo, C.; Clark, T.A.; Knight, C.A. The very flat radio spectrum of 0735 plus 178—A cosmic conspiracy. Astron. J. 1980, 238, L123–L128. [Google Scholar] [CrossRef]
- Gordon, Y.A.; Boyce, M.M.; O’Dea, C.P.; Rudnick, L.; Andernach, H.; Vantyghem, A.N.; Baum, S.A.; Bui, J.P.; Dionyssiou, M. A Catalog of Very Large Array Sky Survey Epoch 1 Quick Look Components, Sources, and Host Identifications. Res. Notes AAS 2020, 4, 175. [Google Scholar] [CrossRef]
- Intema, H.T.; Jagannathan, P.; Mooley, K.P.; Frail, D.A. The GMRT 150 MHz all-sky radio survey. First alternative data release TGSS ADR1. Astron. Astrophys. 2017, 598, A78. [Google Scholar] [CrossRef] [Green Version]
- Orienti, M.; Dallacasa, D. Physical properties of young radio sources: VLBA observations of high-frequency peaking radio sources. Mon. Not. R. Astron. Soc. 2013, 438, 463–475. [Google Scholar] [CrossRef] [Green Version]
- Trump, J.R.; Hall, P.B.; Reichard, T.A.; Richards, G.T.; Schneider, D.P.; Vanden Berk, D.E.; Knapp, G.R.; Anderson, S.F.; Fan, X.; Brinkman, J.; et al. A Catalog of Broad Absorption Line Quasars from the Sloan Digital Sky Survey Third Data Release. Astrophys. J. Suppl. Ser. 2006, 165, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Morabito, L.K.; Matthews, J.H.; Best, P.N.; Gürkan, G.; Jarvis, M.J.; Prandoni, I.; Duncan, K.J.; Hardcastle, M.J.; Kunert-Bajraszewska, M.; Mechev, A.P.; et al. The origin of radio emission in broad absorption line quasars: Results from the LOFAR Two-metre Sky Survey. Astron. Astrophys. 2019, 622, A15. [Google Scholar] [CrossRef]
Area | Color-Selected | Radio-Detected | Radio | ||||
---|---|---|---|---|---|---|---|
Sample | [GHz] | [deg2] | rQSOs | cQSOs | rQSOs | cQSOs | Enhance. |
FIRST | 1.4 | 10,000 | 20,546 | 20,546 | 2339 (11.4%) | 940 (4.6%) | 2.5 |
S82 | 1.4 | 92 | 372 | 1668 | 61 (16.4%) | 82 (4.9%) | 3.3 |
C3GHz | 3 | 2.6 | 10 | 29 | 8 (80.0%) | 20 (69.0%) | 1.2 |
LoTSS | 0.144 | 424 | 2107 | 2107 | 761 (36.1%) | 490 (23.3%) | 1.6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fawcett, V.A.; Alexander, D.M.; Rosario, D.J.; Klindt, L. How Are Red and Blue Quasars Different? The Radio Properties. Galaxies 2021, 9, 107. https://doi.org/10.3390/galaxies9040107
Fawcett VA, Alexander DM, Rosario DJ, Klindt L. How Are Red and Blue Quasars Different? The Radio Properties. Galaxies. 2021; 9(4):107. https://doi.org/10.3390/galaxies9040107
Chicago/Turabian StyleFawcett, Victoria A., David M. Alexander, David J. Rosario, and Lizelke Klindt. 2021. "How Are Red and Blue Quasars Different? The Radio Properties" Galaxies 9, no. 4: 107. https://doi.org/10.3390/galaxies9040107
APA StyleFawcett, V. A., Alexander, D. M., Rosario, D. J., & Klindt, L. (2021). How Are Red and Blue Quasars Different? The Radio Properties. Galaxies, 9(4), 107. https://doi.org/10.3390/galaxies9040107