The Origin of Radio Emission in Black Hole X-ray Binaries
Abstract
:1. Introduction
2. The Radio Emission of BHXB
3. The Origin of Radio Emission
3.1. Accretion Disks/States and Jets
3.1.1. Geometric Thin/Cold Disk
3.1.2. Geometric Thick/Hot Acrretion Flow (HAF)
3.1.3. Unstable Inner Disk/Discrete Accretion
3.2. BH Spin Contribution
4. Discussion
5. Summary and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Corral-Santana, J.M.; Casares, J.; Muñoz-Darias, T.; Bauer, F.E.; Martinez-Pais, I.G.; Russell, D.M. BlackCAT: A catalogue of stellar-mass black holes in X-ray transients. Astron. Astrophys. 2016, 587, 61. [Google Scholar] [CrossRef] [Green Version]
- Fender, R.; Gallo, E. An Overview of Jets and Outflows in Stellar Mass Black Holes. Space Sci. Rev. 2014, 183, 23–337. [Google Scholar] [CrossRef] [Green Version]
- Carotenuto, F.; Corbel, S.; Tremou, E.; Russell, T.D.; Tzioumis, A.; Fender, R.P.; Woudt, P.A.; Motta, S.E.; Miller-Jones, J.C.A.; Chauhan, J.; et al. The black hole transient MAXI J1348-630: Evolution of the compact and transient jets during its 2019/2020 outburst. Mon. Not. R. Astron. Soc. 2021, 504, 444–468. [Google Scholar] [CrossRef]
- Fender, R.P.; Belloni, T.M.; Gallo, E. Towards a unified model for black hole X-ray binary jets. Mon. Not. R. Astron. Soc. 2004, 355, 1105–1118. [Google Scholar] [CrossRef] [Green Version]
- Gallo, E.; Miller, B.; Fender, R. Assessing luminosity correlations via cluster analysis: Evidence for dual tracks in the radio/X-ray domain of black hole X-ray binaries. Mon. Not. R. Astron. Soc. 2012, 423, 590–599. [Google Scholar] [CrossRef] [Green Version]
- Corbel, S.; Coriat, M.; Brocksopp, C.; Tzioumis, A.K.; Fender, R.P.; Tomsick, J.A.; Buxton, M.M.; Bailyn, C.D. The ‘universal’ radio/X-ray flux correlation: The case study of the black hole GX 339-4. Mon. Not. R. Astron. Soc. 2013, 428, 2500–2515. [Google Scholar] [CrossRef] [Green Version]
- Tetarenko, A.J.; Casella, P.; Miller-Jones, J.C.A.; Sivakoff, G.R.; Paice, J.A.; Vincentelli, F.M.; Maccarone, T.J.; Gandhi, P.; Dhillon, V.S.; Marsh, T.R.; et al. Measuring fundamental jet properties with multiwavelength fast timing of the black hole X-ray binary MAXI J1820+070. Mon. Not. R. Astron. Soc. 2021, 504, 3862–3883. [Google Scholar] [CrossRef]
- Connors, R.M.T.; van Eijnatten, D.; Markoff, S.; Ceccobello, C.; Grinberg, V.; Heil, L.; Kantzas, D.; Lucchini, M.; Crumley, P. Combining timing characteristics with physical broad-band spectral modelling of black hole X-ray binary GX 339-4. Mon. Not. R. Astron. Soc. 2019, 485, 3696–3714. [Google Scholar] [CrossRef]
- Motta, S.E.; Kajava, J.J.E.; Giustini, M.; Williams, D.R.A.; Del Santo, M.; Fender, R.; Green, D.A.; Heywood, I.; Rhodes, L.; Segreto, A.; et al. Observations of a radio-bright, X-ray obscured GRS 1915+105. Mon. Not. R. Astron. Soc. 2021, 503, 152–161. [Google Scholar] [CrossRef]
- Paragi, Z.; Vermeulen, R.; Spencer, R.E. SS433, Microquasars, and Other Transients. In Proceedings of the Meeting “Resolving The Sky—Radio Interferometry: Past, Present and Future”, Manchester, UK, 17–20 April 2012; p. 28. Available online: http://pos.sissa.it/cgi-bin/reader/conf.cgi?confid=163 (accessed on 6 September 2021).
- Gallo, E.; Teague, R.; Plotkin, R.M.; Miller-Jones, J.C.A.; Russell, D.M.; Dincer, T.; Bailyn, C.; Maccarone, T.J.; Markoff, S.; Fender, R.P. ALMA observations of A0620-00: Fresh clues on the nature of quiescent black hole X-ray binary jets. Mon. Not. R. Astron. Soc. 2019, 488, 191–197. [Google Scholar] [CrossRef]
- Tremou, E.; Corbel, S.; Fender, R.P.; Woudt, P.A.; Miller-Jones, J.C.A.; Motta, S.E.; Heywood, I.; Armstrong, R.P.; Groot, P.; Horesh, A.; et al. Radio & X-ray detections of GX 339-4 in quiescence using MeerKAT and Swift. Mon. Not. R. Astron. Soc. 2020, 493, L132–L137. [Google Scholar]
- Plotkin, R.M.; Bright, J.; Miller-Jones, J.C.A.; Shaw, A.W.; Tomsick, J.A.; Russell, T.D.; Zhang, G.-B.; Russell, D.M.; Fender, R.P.; Homan, J.; et al. Up and Down the Black Hole Radio/X-ray Correlation: The 2017 Mini-outbursts from Swift J1753.5-0127. Astrophys. J. 2017, 848, 92. [Google Scholar] [CrossRef] [Green Version]
- Jonker, P.G.; Miller-Jones, J.; Homan, J.; Gallo, E.; Rupen, M.; Tomsick, J.; Fender, R.P.; Kaaret, P.; Steeghs, D.T.H.; Torres, M.A.P.; et al. Following the 2008 outburst decay of the black hole candidate H 1743-322 in X-ray and radio. Mon. Not. R. Astron. Soc. 2010, 401, 1255–1263. [Google Scholar] [CrossRef] [Green Version]
- Coriat, M.; Corbel, S.; Prat, L.; Miller-Jones, J.C.A.; Cseh, D.; Tzioumis, A.K.; Brocksopp, C.; Rodriguez, J.; Fender, R.P.; Sivakoff, G.R. Radiatively efficient accreting black holes in the hard state: The case study of H1743-322. Mon. Not. R. Astron. Soc. 2011, 414, 677–690. [Google Scholar] [CrossRef] [Green Version]
- Tomsick, J.A.; Rahoui, F.; Kolehmainen, M.; Miller-Jones, J.; Fürst, F.; Yamaoka, K.; Akitaya, H.; Corbel, S.; Coriat, M.; Done, C.; et al. The Accreting Black Hole Swift J1753.5-0127 from Radio to Hard X-ray. Astrophys. J. 2015, 808, 85. [Google Scholar] [CrossRef] [Green Version]
- Remillard, R.A.; McClintock, J.E. X-ray Properties of Black-Hole Binaries. Annu. Rev. Astron. Astrophys. 2006, 44, 49–92. [Google Scholar] [CrossRef] [Green Version]
- Plotkin, R.M.; Gallo, E.; Jonker, P.G. The X-ray Spectral Evolution of Galactic Black Hole X-ray Binaries toward Quiescence. Astrophys. J. 2013, 773, id59. [Google Scholar] [CrossRef] [Green Version]
- Gallo, E.; Miller-Jones, J.C.A.; Russell, D.M.; Jonker, P.G.; Homan, J.; Plotkin, R.M.; Markoff, S.; Miller, B.P.; Corbel, S.; Fender, R.P. The radio/X-ray domain of black hole X-ray binaries at the lowest radio luminosities. Mon. Not. R. Astron. Soc. 2014, 445, 290–300. [Google Scholar] [CrossRef] [Green Version]
- Blandford, R.D.; Königl, A. Relativistic jets as compact radio sources. Astrophys. J. 1979, 232, 34–48. [Google Scholar] [CrossRef]
- Fender, R.P. Powerful jets from black hole X-ray binaries in low/hard X-ray states. Mon. Not. R. Astron. Soc. 2001, 322, 31–42. [Google Scholar] [CrossRef] [Green Version]
- Heinz, S.; Sunyaev, R.A. The non-linear dependence of flux on black hole mass and accretion rate in core-dominated jets. Mon. Not. R. Astron. Soc. 2003, 343, L59–L63. [Google Scholar] [CrossRef] [Green Version]
- Willott, C.J.; Rawlings, S.; Blundell, K.M.; Lacy, M. The emission line-radio correlation for radio sources using the 7C Redshift Survey. Mon. Not. R. Astron. Soc. 1999, 309, 1017–1033. [Google Scholar] [CrossRef] [Green Version]
- Godfrey, L.E.H.; Shabala, S.S. AGN Jet Kinetic Power and the Energy Budget of Radio Galaxy Lobes. Astrophys. J. 2013, 767, id12. [Google Scholar] [CrossRef] [Green Version]
- Yuan, F.; Narayan, R. Hot Accretion Flows Around Black Holes. Annu. Rev. Astron. Astrophys. 2014, 52, 529. [Google Scholar] [CrossRef] [Green Version]
- Shakura, N.I.; Sunyaev, R.A. Black holes in binary systems. Observational appearance. Astron. Astrophys. 1973, 500, 33–51. [Google Scholar]
- Mirabel, I.F.; Rodríguez, L.F. A superluminal source in the Galaxy. Nature 1994, 371, 46–48. [Google Scholar] [CrossRef]
- Novikov, I.D.; Thorne, K.S. Astrophysics in black holes. In Black Holes (Les Astres OccLus); DeWitt, C., DeWitt, B., Eds.; Gordon and Breach: New York, NY, USA, 1973; pp. 343–350. [Google Scholar]
- Narayan, R.; Chael, A.; Chatterjee, K.; Ricarte, A.; Curd, B. Jets in Magnetically Arrested Hot Accretion Flows: Geometry, Power and Black Hole Spindown. arXiv 2021, arXiv:2108.12380. [Google Scholar]
- Espinasse, M.; Fender, R. Spectral differences between the jets in ‘radio-loud’ and ‘radio-quiet’ hard-state black hole binaries. Mon. Not. R. Astron. Soc. 2018, 473, 4122–4129. [Google Scholar] [CrossRef]
- Yuan, F.; Cui, W.; Narayan, R. An Accretion-Jet Model for Black Hole Binaries: Interpreting the Spectral and Timing Features of XTE J1118+480. Astrophys. J. 2005, 620, 905–914. [Google Scholar] [CrossRef] [Green Version]
- Narayan, R.; Mahadevan, R.; Quataert, E. Advection-Dominated Accretion around Black Holes. In Theory of Black Hole Accretion Disks; Abramowicz, M.A., Bjornsson, G., Pringle, J.E., Eds.; Cambridge University Press: Cambridge, UK, 1998; pp. 148–182. [Google Scholar]
- Narayan, R.; Yi, I. Advection-dominated Accretion: A Self-similar Solution. Astrophys. J. 1994, 428, L13. [Google Scholar] [CrossRef]
- Xie, F.-G.; Yuan, F. Radiative efficiency of hot accretion flows. Mon. Not. R. Astron. Soc. 2012, 427, 1580–1586. [Google Scholar] [CrossRef] [Green Version]
- Xie, F.-G.; Yuan, F. Interpreting the radio/X-ray correlation of black hole X-ray binaries based on the accretion-jet model. Mon. Not. R. Astron. Soc. 2016, 456, 4377–4383. [Google Scholar] [CrossRef] [Green Version]
- Meyer-Hofmeister, E.; Meyer, F. The relation between radio and X-ray luminosity of black hole binaries: Affected by inner cool disks? Astron. Astrophys. 2014, 562, A142. [Google Scholar] [CrossRef] [Green Version]
- Laor, A.; Behar, E. On the origin of radio emission in radio-quiet quasars. Mon. Not. R. Astron. Soc. 2008, 390, 847–862. [Google Scholar] [CrossRef]
- Wallace, J.; Pe’er, A. An Observational Signature of Sub-equipartition Magnetic Fields in the Spectra of Black Hole Binaries. Astrophys. J. 2021, 916, 63. [Google Scholar] [CrossRef]
- Dong, A.-J.; Liu, C.; Ge, K.; Liu, X.; Zhi, Q.-J.; You, Z.-Y. A Study on the Hysteresis Effect and Spectral Evolution in the Mini-Outbursts of Black Hole X-ray Binary XTE J1550-564. Front. Astron. Space Sci. 2021, 8, 37. [Google Scholar] [CrossRef]
- Xie, F.-G.; Yan, Z.; Wu, Z. Radio/X-ray Correlation in the Mini-outbursts of Black Hole X-ray Transient GRS 1739-278. Astrophys. J. 2020, 891, id31. [Google Scholar] [CrossRef]
- Carotenuto, F.; Corbel, S.; Tremou, E.; Russell, T.D.; Tzioumis, A.; Fender, R.P.; Woudt, P.A.; Motta, S.E.; Miller-Jones, J.C.A.; Tetarenko, A.J.; et al. The hybrid radio/X-ray correlation of the black hole transient MAXI J1348-630. Mon. Not. R. Astron. Soc. 2021, 505, L58–L63. [Google Scholar] [CrossRef]
- Steiner, J.F.; McClintock, J.E.; Narayan, R. Jet Power and Black Hole Spin: Testing an Empirical Relationship and Using it to Predict the Spins of Six Black Holes. Astrophys. J. 2013, 762, 104. [Google Scholar] [CrossRef] [Green Version]
- Blandford, R.D.; Znajek, R.L. Electromagnetic extraction of energy from Kerr black holes. Mon. Not. R. Astron. Soc. 1977, 179, 433. [Google Scholar] [CrossRef]
- Blandford, R.D.; Payne, D.G. Hydromagnetic flows from accretion disks and the production of radio jets. Mon. Not. R. Astron. Soc. 1982, 199, 883. [Google Scholar] [CrossRef] [Green Version]
- Reynolds, C.S. Observational Constraints on Black Hole Spin. Annu. Rev. Astron. Astrophys. 2021, 59, 117–154. [Google Scholar] [CrossRef]
- Gou, L.; McClintock, J.E.; Remillard, R.A.; Steiner, J.F.; Reid, M.J.; Orosz, J.A.; Narayan, R.; Hanke, M.; Garcia, J. Confirmation via the Continuum-fitting Method that the Spin of the Black Hole in Cygnus X-1 Is Extreme. Astrophys. J. 2014, 790, 29. [Google Scholar] [CrossRef] [Green Version]
- Merloni, A.; Heinz, S.; di Matteo, T. A Fundamental Plane of black hole activity. Mon. Not. R. Astron. Soc. 2003, 345, 1057–1076. [Google Scholar] [CrossRef]
- Falcke, H.; Koerding, E.; Markoff, S. A scheme to unify low-power accreting black holes. Jet-dominated accretion flows and the radio/X-ray correlation. Astron. Astrophys. 2004, 414, 895–903. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Han, Z.H.; Zhang, Z. The physical fundamental plane of black hole activity: Revisited. Astrophys. Space Sci. 2016, 361, 9. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Chang, N.; Han, Z.; Wang, X. The Jet-Disk Coupling of Seyfer Galaxies from a Complete Hard X-ray Sample. Universe 2020, 6, 68. [Google Scholar] [CrossRef]
- Baldi, R.D.; Williams, D.R.A.; Beswick, R.J.; McHardy, I.; Dullo, B.T.; Knapen, J.H.; Zanisi, L.; Argo, M.K.; Aalto, S.; Alberdi, A.; et al. LeMMINGs. III. The e-MERLIN Legacy Survey of the Palomar sample. Exploring the origin of nuclear radio emission in active and inactive galaxies through the [O III]—Radio connection. Mon. Not. R. Astron. Soc. 2021, 508, 2019–2038. [Google Scholar] [CrossRef]
- Feng, J.J.; Cao, X.W.; Li, J.W.; Gu, W.M. A Magnetic Disk-outflow Model for Changing Look Active Galactic Nuclei. Astrophys. J. 2021, 916, 61. [Google Scholar] [CrossRef]
- Yuan, F.; Zdziarski, A.A. Luminous hot accretion flows: The origin of X-ray emission from Seyfert galaxies and black hole binaries. Mon. Not. R. Astron. Soc. 2004, 354, 953–960. [Google Scholar] [CrossRef] [Green Version]
- Motta, S.E.; Casella, P.; Fender, R.P. Radio-loudness in black hole transients: Evidence for an inclination effect. Mon. Not. R. Astron. Soc. 2018, 478, 5159–5173. [Google Scholar] [CrossRef] [Green Version]
- Narayan, R.; Igumenshchev, I.V.A.; Abramowicz, M.A.J. Magnetically Arrested Disk: An Energetically Efficient Accretion Flow. Pub. Astron. Soc. Jpn. 2003, 55, L69–L72. [Google Scholar] [CrossRef] [Green Version]
- Tchekhovskoy, A.; Narayan, R.; McKinney, J.C. Efficient generation of jets from magnetically arrested accretion on a rapidly spinning black hole. Mon. Not. R. Astron. Soc. 2011, 418, L79–L83. [Google Scholar] [CrossRef]
- Tchekhovskoy, A.; McKinney, J.C. Prograde and retrograde black holes: Whose jet is more powerful? Mon. Not. R. Astron. Soc. 2012, 423, L55–L59. [Google Scholar] [CrossRef]
- Debnath, D.; Chatterjee, K.; Chatterjee, D.; Jana, A.; Chakrabarti, S.K. Jet properties of XTE J1752-223 during its 2009–2010 outburst. Mon. Not. R. Astron. Soc. 2021, 504, 4242–4251. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, X.; Chang, N.; Wang, X.; Yuan, Q. The Origin of Radio Emission in Black Hole X-ray Binaries. Galaxies 2021, 9, 78. https://doi.org/10.3390/galaxies9040078
Liu X, Chang N, Wang X, Yuan Q. The Origin of Radio Emission in Black Hole X-ray Binaries. Galaxies. 2021; 9(4):78. https://doi.org/10.3390/galaxies9040078
Chicago/Turabian StyleLiu, Xiang, Ning Chang, Xin Wang, and Qi Yuan. 2021. "The Origin of Radio Emission in Black Hole X-ray Binaries" Galaxies 9, no. 4: 78. https://doi.org/10.3390/galaxies9040078
APA StyleLiu, X., Chang, N., Wang, X., & Yuan, Q. (2021). The Origin of Radio Emission in Black Hole X-ray Binaries. Galaxies, 9(4), 78. https://doi.org/10.3390/galaxies9040078