In Silico Approaches for Some Sulfa Drugs as Eco-Friendly Corrosion Inhibitors of Iron in Aqueous Medium
Abstract
:1. Introduction
2. Materials and Methods
2.1. In Silico Methodologies for Ecological Noxiousness and Solubility of Sulfonamide Derivative Inhibitors
2.2. DFT Calculations
2.3. Monte Carlo Simulations
3. Results
3.1. Eco-Friendly Noxiousness and Solvency of Sulfonamide Derivative Inhibitors
3.2. Quantum Chemical Calculations (Evaluative Study)
3.2.1. Quantum Chemical Parameters
3.2.2. Optimized Structures and Density Distribution
3.2.3. Fukui Functions
3.2.4. MCS Results
4. Inhibition Mechanism of NAR1
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Haldhar, R.; Prasad, D.; Saxena, A.; Singh, P. Valeriana wallichii root extract as a green & sustainable corrosion inhibitor for mild steel in acidic environments: Experimental and theoretical study. Mater. Chem. Front. 2018, 2, 1225–1237. [Google Scholar] [CrossRef]
- Haldhar, R.; Prasad, D.; Bahadur, I.; Dagdag, O.; Kaya, S.; Verma, D.K.; Kim, S.-C. Investigation of plant waste as a renewable biomass source to develop efficient, economical and eco-friendly corrosion inhibitor. J. Mol. Liq. 2021, 335, 116184. [Google Scholar] [CrossRef]
- Yadav, D.K.; Quraishi, M.A. Electrochemical investigation of Substituted Pyranopyrazoles Adsorption on Mild Steel in Acid Solution. Ind. Eng. Chem. Res. 2012, 51, 8194–8210. [Google Scholar] [CrossRef]
- Bouoidina, A.; Ech-Chihbi, E.; El-Hajjaji, F.; El Ibrahimi, B.; Kaya, S.; Taleb, M. Anisole derivatives as sustainable-green inhibitors for mild steel corrosion in 1 M HCl: DFT and molecular dynamic simulations approach. J. Mol. Liq. 2020, 324, 115088. [Google Scholar] [CrossRef]
- Haldhar, R.; Prasad, D.; Saxena, A.; Kumar, R. Experimental and theoretical studies of Ficus religiosa as green corrosion inhibitor for mild steel in 0.5 M H2SO4 solution. Sustain. Chem. Pharm. 2018, 9, 95–105. [Google Scholar] [CrossRef]
- Haldhar, R.; Prasad, D.; Saxena, A. Armoracia rusticana as sustainable and eco-friendly corrosion inhibitor for mild steel in 0.5M sulphuric acid: Experimental and theoretical investigations. J. Environ. Chem. Eng. 2018, 6, 5230–5238. [Google Scholar] [CrossRef]
- Markhali, B.P.; Naderi, R.; Mahdavian, M.; Sayebani, M.; Arman, S.Y. Electrochemical impedance spectroscopy and electro-chemical noise measurements as tools to evaluate corrosion inhibition of azole compounds on stainless steel in acidic media. Corros. Sci. 2017, 75, 269–279. [Google Scholar] [CrossRef]
- Haldhar, R.; Prasad, D.; Bahadur, I.; Dagdag, O.; Berisha, A. Evaluation of Gloriosa superba seeds extract as corrosion inhibition for low carbon steel in sulfuric acidic medium: A combined experimental and computational studies. J. Mol. Liq. 2020, 323, 114958. [Google Scholar] [CrossRef]
- Haldhar, R.; Prasad, D.; Saxena, A.; Kaur, A. Corrosion resistance of mild steel in 0.5 M H2SO4 solution by plant extract of Alkana tinctoria: Experimental and theoretical studies. Eur. Phys. J. Plus 2018, 133, 356. [Google Scholar] [CrossRef]
- Tan, B.; Zhang, S.; Cao, X.; Fu, A.; Guo, L.; Marzouki, R.; Li, W. Insight into the anti-corrosion performance of two food flavors as eco-friendly and ultra-high performance inhibitors for copper in sulfuric acid medium. J. Colloid Interface Sci. 2021, 609, 838–851. [Google Scholar] [CrossRef]
- Nahle, A.; Salim, R.; El Hajjaji, F.; Aouad, M.R.; Messali, M.; Ech-chihbi, E.; Hammoutid, B.; Taleb, M. Novel triazole deriva-tives as ecological corrosion inhibitors for mild steel in 1.0 M HCl: Experimental & theoretical approach. RSC Adv. 2021, 11, 4147. [Google Scholar]
- Leeson, P.D.; SpringThorpe, B. Classification of a diverse set of Tetrahymena pyriformis toxicity chemical compounds from molecular descriptors by statistical learning methods. Nat. Rev. Drug Discov. 2007, 6, 881–890. [Google Scholar] [CrossRef] [PubMed]
- Xue, Y.; Li, Z.R.; Yap, C.W.; Sun, L.Z.; Chen, A.X.; Chen, Y.Z. Effect of Molecular Descriptor Feature Selection in Support Vector Machine Classification of Pharmacokinetic and Toxicological Properties of Chemical Agents. J. Chem. Inf. Comput. Sci. 2004, 44, 1630–1638. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, L.; Tan, J.; Kaya, S.; Leng, S.; Li, Q.; Zhang, F. Multidimensional insights into the corrosion inhibition of 3,3-dithiodipropionic acid on Q235 steel in H2SO4 medium: A combined experimental and in silico investigation. J. Colloid Interface Sci. 2020, 570, 116–124. [Google Scholar] [CrossRef] [PubMed]
- Yadav, M.; Behera, D.; Kumar, S. Experimental and theoretical investigation on adsorption and corrosion inhibition properties of imidazopyridine derivatives on mild steel in hydrochloric acid solution. Surf. Interface Anal. 2014, 46, 640–652. [Google Scholar] [CrossRef]
- Karakus, N.; Sayin, K. The investigation of corrosion inhibition efficiency on some benzaldehyde thiosemicarbazones and their thiole tautomers: Computational study. J. Taiwan Inst. Chem. Eng. 2015, 48, 95–102. [Google Scholar] [CrossRef]
- El Hajjaji, F.; Abrigach, F.; Hamed, O.; Hasan, A.R.; Taleb, M.; Jodeh, S.; Rodríguez-Castellón, E.; Yuso, M.D.V.M.D.; Algarra, M. Corrosion Resistance of Mild Steel Coated with Orgainc Material Containing Pyrazol Moiety. Coatings 2018, 8, 330. [Google Scholar] [CrossRef] [Green Version]
- Arrousse, N.; Salim, R.; Al Houari, G.; El Hajjaji, F.; Zarrouk, A.; Rais, Z.; Taleb, M.; Chauhan, D.S.; Quraishi, M.A. Experimental and theoretical insights on the adsorption and inhibition mechanism of (2E)-2-(acetylamino)-3-(4-nitrophenyl) prop-2-enoic acid and 4-nitrobenzaldehyde on mild steel corrosion. J. Chem. Sci. 2020, 132, 112. [Google Scholar] [CrossRef]
- Ellison, C.; Cronin, M.; Madden, J.; Schultz, T. Experimental Reactivity Parameters for Toxicity Modeling: Application to the Acute Aquatic Toxicity of SN2 Electrophiles to Tetrahymena pyriformis. SAR QSAR Environ. Res. 2008, 19, 751–783. [Google Scholar] [CrossRef]
- Chang, L.C.; Spanjersberg, R.F.; Künzel, J.K.V.D.; Mulder-Krieger, T.; van den Hout, G.; Beukers, J.M.W.; Ijzerman, A.P. Browsing JRC QSAR Model Database. Available online: https://qsardb.org/repository/handle/10967/109 (accessed on 1 February 2022).
- Tantawy, A.H.; Soliman, K.A.; El-Lateef, H.M.A. Experimental and computational approaches of sustainable quaternary bisammonium fluorosurfactants for corrosion inhibition as protective films at mild steel/H2SO4 interface. Colloids Surf. A Physicochem. Eng. Asp. 2021, 614, 126141. [Google Scholar] [CrossRef]
- Verma, C.; Quraishi, M.A.; Singh, A. 5-substituted 1H-tetrazoles as effective corrosion inhibitors for mild steel in 1M hydro-chloric acid. J. Taibah Univ. Sci. 2016, 10, 718–733. [Google Scholar] [CrossRef] [Green Version]
- Haldhar, R.; Prasad, D.; Mandal, N.; Benhiba, F.; Bahadur, I.; Dagdag, O. Anticorrosive properties of a green and sustainable inhibitor from leaves extract of Cannabis sativa plant: Experimental and theoretical approach. Colloids Surf. A Physicochem. Eng. Asp. 2021, 614, 126211. [Google Scholar] [CrossRef]
- Arrousse, N.; Salim, R.; Kaddouri, Y.; Zarrouk, A.; Zahri, D.; El Hajjaji, F.; Touzani, R.; Taleb, M.; Jodeh, S. The inhibi-tion behavior of Two pyrimidine-pyrazole derivatives against corrosion in hydrochloric solution: Experimental, surface analysis and in silico approach studies. Arab. J. Chem. 2020, 13, 5949–5965. [Google Scholar] [CrossRef]
- Haldhar, R.; Prasad, D.; Kamboj, D.; Kaya, S.; Dagdag, O.; Guo, L. Corrosion inhibition, surface adsorption and computational studies of Momordica charantia extract: A sustainable and green approach. SN Appl. Sci. 2021, 3, 25. [Google Scholar] [CrossRef]
- El-Hajjaji, F.; Messali, M.; de Yuso, M.V.M.; Rodríguez-Castellón, E.; Almutairi, S.; Bandosz, T.J.; Algarra, M. Effect of 1-(3-phenoxypropyl) pyridazin-1-ium bromide on steel corrosion inhibition in acidic medium. J. Colloid Interface Sci. 2019, 541, 418–424. [Google Scholar] [CrossRef]
- Mrani, S.A.; El Arrouji, S.; Karrouchi, K.; El Hajjaji, F.; Alaoui, K.I.; Rais, Z.; Taleb, M. Inhibitory performance of some Pyrazole derivatives against corrosion of mild steel in 1.0 M HCl: Electrochemical, MEB and theoretical studies. Int. J. Corros. Scale Inhib. 2018, 7, 542–569. [Google Scholar]
- Arrousse, N.; Mabrouk, E.; Hammouti, B.; El hajjaji, F.; Rais, Z.; Taleb, M. Synthesis, characterization, anti-corrosion behavior and theoretical study of the new organic dye: 3- oxo-3Hspiro[isobenzofuran-1,9’-xanthene]-3´,6´-diyl bis(3-methylbenzenesulfonate). Int. J. Corros. Scale Inhib. 2020, 9, 661–687. [Google Scholar]
- El-Hajjaji, F.; Ech-Chihbi, E.; Rezki, N.; Benhiba, F.; Taleb, M.; Chauhan, D.S.; Quraishi, M. Electrochemical and theoretical insights on the adsorption and corrosion inhibition of novel pyridinium-derived ionic liquids for mild steel in 1 M HCl. J. Mol. Liq. 2020, 314, 113737. [Google Scholar] [CrossRef]
- Ouakki, M.; Galai, M.; Rbaa, M.; Abousalem, A.S.; Lakhrissi, B.; Touhami, M.E.; Cherkaoui, M. Electrochemical, thermody-namic and theoretical studies of some imidazole derivatives compounds as acid corrosion inhibitors for mild steel. J. Mol. Liq. 2020, 319, 114063. [Google Scholar] [CrossRef]
- Shariatinia, Z.; Ahmadi-Ashtiani, A. Corrosion inhibition efficiency of some phosphoramide derivatives: DFT computations and MD simulations. J. Mol. Liq. 2019, 292, 111409. [Google Scholar] [CrossRef]
- Ghazoui, A.; Benchat, N.; El-Hajjaji, F.; Taleb, M.; Rais, Z.; Saddik, R.; Elaatiaoui, A.; Hammouti, B. The study of the effect of ethyl (6-methyl-3-oxopyridazin-2-yl) acetate on mild steel corrosion in 1M HCl. J. Alloys Compd. 2017, 693, 510–517. [Google Scholar] [CrossRef]
- Tan, B.; Zhang, S.; Liu, H.; Guo, Y.; Qiang, Y.; Li, W.; Guo, L.; Xu, C.; Chen, S. Corrosion inhibition of X65 steel in sulfuric acid by two food flavorants 2-isobutylthiazole and 1-(1,3-Thiazol-2-yl) ethanone as the green environmental corrosion inhibitors: Combination of experimental and theoretical researches. J. Colloid Interface Sci. 2018, 538, 519–529. [Google Scholar] [CrossRef] [PubMed]
- Haldhar, R.; Prasad, D.; Saxena, A. Myristica fragrans extract as an eco-friendly corrosion inhibitor for mild steel in 0.5M H2SO4 solution. J. Environ. Chem. Eng. 2018, 6, 2290–2301. [Google Scholar] [CrossRef]
- Haldhar, R.; Kim, S.-C.; Prasad, D.; Bedair, M.; Bahadur, I.; Kaya, S.; Dagdag, O.; Guo, L. Papaver somniferum as an efficient corrosion inhibitor for iron alloy in acidic condition: DFT, MC simulation, LCMS and electrochemical studies. J. Mol. Struct. 2021, 1242, 130822. [Google Scholar] [CrossRef]
- Haldhar, R.; Prasad, D.; Nguyen, L.T.; Kaya, S.; Bahadur, I.; Dagdag, O.; Kim, S.-C. Corrosion inhibition, surface adsorption and computational studies of Swertia chirata extract: A sustainable and green approach. Mater. Chem. Phys. 2021, 267, 124613. [Google Scholar] [CrossRef]
- Arrousse, N.; Mabrouk, E.; Salim, R.; Alaoui, K.I.; El Hajjaji, F.; Rais, Z.; Taleb, M.; Hammouti, B. Fluorescein as commercial and environmentally friendly inhibitor against corrosion of mild steel in molar hydrochloric acid medium. Mater. Today Proc. 2020, 27, 3184–3192. [Google Scholar] [CrossRef]
- Haldhar, R.; Prasad, D.; Bhardwaj, N. Surface adsorption and corrosion resistance performance of Acacia concinna pod extract: An efficient inhibitor for mild steel in acidic environment. Arab. J. Sci. Eng. 2020, 45, 131–141. [Google Scholar] [CrossRef]
Inhibitors | Log (IGC50) in Log (mmol/L) | Log P in Log (mol/L) |
---|---|---|
P1 | 0.72 | −3.0 |
P2 | 0.36 | −3.1 |
P3 | 0.62 | −3.7 |
P4 | 0.59 | −2.6 |
P5 | 0.61 | −2.4 |
P6 | 0.54 | −2.5 |
P7 | 0.24 | −1.4 |
Parameter | Phase | P1 | P2 | P3 | P4 | P5 | P6 | P7 |
---|---|---|---|---|---|---|---|---|
EHOMO (eV) | G | −6.3094 | −6.1404 | −6.3407 | −6.2196 | −6.2133 | −6.1793 | −6.3777 |
A | −6.0871 | −6.0672 | −6.0794 | −6.0710 | −6.0612 | −6.0547 | −6.3758 | |
ELUMO (eV) | G | −1.0006 | −0.7717 | −0.9323 | −0.7481 | −0.8858 | −0.8858 | −2.7481 |
A | −1.0896 | −0.8874 | −0.8651 | −0.8245 | −1.2711 | −1.1794 | −2.7555 | |
∆Egap (eV) | G | 5.3088 | 5.3687 | 5.4084 | 5.4715 | 5.3276 | 5.2936 | 3.6295 |
A | 4.9975 | 5.1798 | 5.2144 | 5.2465 | 4.7901 | 4.8753 | 3.6203 | |
μ (D) | G | 7.1957 | 4.6421 | 7.2462 | 8.3757 | 5.5911 | 4.8601 | 5.5137 |
A | 9.5700 | 6.4420 | 9.8034 | 12.3497 | 8.0687 | 7.1703 | 5.7823 | |
η (eV) | G | 2.6544 | 2.6843 | 2.7042 | 2.7358 | 2.6638 | 2.6468 | 1.8148 |
A | 2.4987 | 2.5899 | 2.6072 | 2.6232 | 2.3951 | 2.4377 | 1.8101 | |
σ (eV−1) | G | 0.3767 | 0.3725 | 0.3698 | 0.3655 | 0.3754 | 0.3778 | 0.5510 |
A | 0.4002 | 0.3861 | 0.3836 | 0.3812 | 0.4175 | 0.4102 | 0.5524 | |
χ (eV) | G | 3.6550 | 3.4561 | 3.6365 | 3.4838 | 3.5495 | 3.5325 | 4.5629 |
A | 3.5883 | 3.4773 | 3.4723 | 3.4478 | 3.6661 | 3.6170 | 4.5656 | |
∆N | G | 0.6301 | 0.6601 | 0.6219 | 0.6426 | 0.6477 | 0.6550 | 0.6715 |
A | 0.6827 | 0.6801 | 0.6765 | 0.6771 | 0.6960 | 0.6939 | 0.6724 | |
ω | G | 2.5164 | 2.2248 | 2.4451 | 2.2182 | 2.3649 | 2.3573 | 5.7363 |
A | 2.5765 | 2.3344 | 2.3122 | 2.2657 | 2.8059 | 2.6835 | 5.7578 | |
ε | G | 0.3974 | 0.4495 | 0.4090 | 0.4508 | 0.4228 | 0.4242 | 0.1743 |
A | 0.3881 | 0.4284 | 0.4325 | 0.4414 | 0.3564 | 0.3726 | 0.1737 |
Molecules | Atoms | P(N) | P(N + 1) | P(N − 1) | |||
---|---|---|---|---|---|---|---|
P1 | C1 | −0.39000 | −0.43077 | −0.25203 | 0.13797 | 0.04077 | 0.17874 |
C4 | −0.27935 | −0.32756 | −0.16711 | 0.11224 | 0.04821 | 0.16045 | |
C5 | −0.27637 | −0.28465 | −0.17584 | 0.10053 | 0.00828 | 0.10881 | |
N7 | −0.86354 | −0.89131 | −0.56385 | 0.29969 | 0.02777 | 0.32746 | |
S13 | 0.62527 | 0.46206 | 0.63484 | 0.00957 | 0.16321 | 0.02777 | |
P2 | C1 | −0.38341 | −0.41526 | −0.24402 | 0.13939 | 0.03185 | 0.17124 |
C4 | −0.27974 | −0.33061 | −0.16397 | 0.11577 | 0.05087 | 0.16664 | |
C5 | −0.27662 | −0.27662 | −0.17605 | 0.10057 | 0.01162 | 0.11219 | |
N7 | −0.86377 | −0.86377 | −0.55903 | 0.30474 | 0.02484 | 0.32958 | |
C12 | 0.42534 | 0.42534 | 0.42347 | −0.00187 | 0.12431 | 0.12244 | |
P3 | C1 | −0.38898 | −0.45406 | −0.24823 | 0.14075 | 0.06508 | 0.20583 |
C3 | −0.19837 | −0.37833 | −0.19383 | 0.00454 | 0.17996 | 0.18450 | |
C4 | −0.27982 | −0.37898 | −0.16368 | 0.11614 | 0.09916 | 0.21530 | |
C5 | −0.27649 | −0.29821 | −0.17523 | 0.10126 | 0.02172 | 0.12298 | |
N7 | −0.86345 | −0.90271 | −0.55757 | 0.30588 | 0.03926 | 0.34514 | |
P4 | C1 | −0.38787 | −0.43648 | −0.24895 | 0.13892 | 0.04861 | 0.18753 |
C4 | −0.28166 | −0.44493 | −0.16724 | 0.11442 | 0.16327 | 0.27769 | |
N7 | −0.86593 | −0.90138 | −0.56718 | 0.29875 | 0.03545 | 0.33420 | |
P5 | C1 | −0.38724 | −0.38580 | −0.24883 | 0.13841 | −0.00144 | 0.13697 |
C4 | −0.28047 | −0.28265 | −0.28047 | 0.11461 | 0.00218 | 0.11679 | |
N7 | −0.86496 | −0.86840 | −0.56459 | 0.30037 | 0.00344 | 0.30381 | |
C13 | −0.05441 | −0.16647 | −0.05736 | 0.00295 | 0.22088 | 0.22383 | |
C14 | −0.05758 | −0.15882 | 0.06082 | 0.00324 | 0.21640 | 0.21964 | |
N15 | −0.52983 | −0.67461 | −0.52361 | 0.00622 | 0.14478 | 0.15100 | |
N16 | −0.52678 | −0.67355 | −0.52617 | 0.00061 | 0.14677 | 0.14738 | |
P6 | C1 | −0.38602 | −0.38569 | −0.24778 | 0.13824 | −0.00033 | 0.13791 |
C4 | −0.28116 | −0.28360 | −0.16636 | 0.11480 | 0.00244 | 0.11724 | |
N8 | −0.86527 | −0.86931 | −0.56615 | 0.29912 | 0.00404 | 0.30316 | |
C14 | 0.05800 | −0.16854 | 0.06084 | 0.00284 | 0.22654 | 0.22938 | |
C15 | 0.26740 | 0.08589 | 0.27070 | 0.00330 | 0.18151 | 0.18481 | |
N16 | −0.66657 | −0.54195 | −0.53561 | 0.13096 | −0.12462 | 0.00634 | |
N17 | −0.68583 | −0.53278 | −0.53267 | 0.15316 | −0.15305 | 0.00011 | |
P7 | N11 | −0.17714 | −0.35222 | −0.17714 | 0.19310 | 0.17508 | 0.361818 |
N12 | −0.21169 | −0.35404 | −0.21169 | 0.19792 | 0.14235 | 0.34027 |
Systems | Adsorption Energy Inhibitors | Adsorption Energy Water |
---|---|---|
Fe(110)/P1/100H2O | −1692.52 | −16.92 |
Fe(110)/P2/100H2O | −1694.91 | −12.71 |
Fe(110)/P3/100H2O | −1693.98 | −13.71 |
Fe(110)/P4/100H2O | −1711.78 | −14.11 |
Fe(110)/P5/100H2O | −1719.78 | −10.97 |
Fe(110)/P6/100H2O | −1698.35 | −13.62 |
Fe(110)/P7/100H2O | −1719.79 | −16.43 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mrani, S.A.; Arrousse, N.; Haldhar, R.; Lahcen, A.A.; Amine, A.; Saffaj, T.; Kim, S.-C.; Taleb, M. In Silico Approaches for Some Sulfa Drugs as Eco-Friendly Corrosion Inhibitors of Iron in Aqueous Medium. Lubricants 2022, 10, 43. https://doi.org/10.3390/lubricants10030043
Mrani SA, Arrousse N, Haldhar R, Lahcen AA, Amine A, Saffaj T, Kim S-C, Taleb M. In Silico Approaches for Some Sulfa Drugs as Eco-Friendly Corrosion Inhibitors of Iron in Aqueous Medium. Lubricants. 2022; 10(3):43. https://doi.org/10.3390/lubricants10030043
Chicago/Turabian StyleMrani, Soukaina Alaoui, Nadia Arrousse, Rajesh Haldhar, Abdellatif Ait Lahcen, Aziz Amine, Taoufiq Saffaj, Seong-Cheol Kim, and Mustapha Taleb. 2022. "In Silico Approaches for Some Sulfa Drugs as Eco-Friendly Corrosion Inhibitors of Iron in Aqueous Medium" Lubricants 10, no. 3: 43. https://doi.org/10.3390/lubricants10030043
APA StyleMrani, S. A., Arrousse, N., Haldhar, R., Lahcen, A. A., Amine, A., Saffaj, T., Kim, S. -C., & Taleb, M. (2022). In Silico Approaches for Some Sulfa Drugs as Eco-Friendly Corrosion Inhibitors of Iron in Aqueous Medium. Lubricants, 10(3), 43. https://doi.org/10.3390/lubricants10030043