Unveiling the Effect of Particle Incorporation in PEO Coatings on the Corrosion and Wear Performance of Magnesium Implants
Abstract
:1. Introduction
2. Corrosion and Wear Behavior of Magnesium-Based Implants
3. PEO Process
4. The Effect of Incorporated Particles on PEO Process
5. Incorporation of Particles into the Electrolytes and Mechanisms of Particle Absorption
6. The Effect of Particle Incorporation on the Composition, Microstructure, and Morphology of PEO Coatings
7. Corrosion Performance of PEO Coatings with Particle Incorporation
8. Wear Performance of PEO Coatings with Particle Incorporation
9. Conclusions and Future Directions
- Magnesium alloys are highly promising biomaterials in biomedical engineering due to their osteoconductive and antibacterial properties.
- However, their accelerated corrosion in body fluids compromises their mechanical integrity and can impede healing.
- Surface coating and alloying techniques have effectively mitigated magnesium’s corrosion rate, with the plasma electrolytic oxidation (PEO) process proving successful.
- PEO coatings have limitations, including microcracks and pores, that restrict their corrosion resistance.
- Incorporating particles into PEO coatings on magnesium implants effectively enhances the surface morphology, microstructure, and electrochemical properties.
- Modifying electrolyte conditions based on particle presence can reduce porosities and improve coating properties, although achieving uniform particle dispersion can be challenging.
- Zeta potential analysis indicates that most nanoparticles in PEO procedures have a negative charge in common alkaline electrolytes, encouraging their incorporation into the coating.
- Incorporating particles and sealing existing pores modify the coating’s surface structure, resulting in increased corrosion resistance.
- The likelihood of particle incorporation is determined by using high temperature and discharge pressure and by considering particle characteristics.
- PEO coatings on magnesium and its alloys can benefit significantly from adding nano and microparticles to electrolytes, altering the phase composition, microstructure, thickness, and corrosion properties.
- Introducing particles reduces the porosity in PEO coatings, thus improving their microstructure by filling and sealing the micropores.
- Enhanced microstructure prevents destructive ion penetration from the coating into the substrate, contributing to improved corrosion resistance.
- The addition of particles to electrolytes not only influences the thickness and roughness, but also enhances the hydrophobicity of the coating.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Alshimaysawee, S.; Fadhel Obaid, R.; Al-Gazally, M.E.; Alexis Ramírez-Coronel, A.; Bathaei, M.S. Recent Advancements in Metallic Drug-Eluting Implants. Pharmaceutics 2023, 15, 223. [Google Scholar] [CrossRef] [PubMed]
- Bazli, L.; Nargesi Khoramabadi, H.; Modarresi Chahardehi, A.; Arsad, H.; Malekpouri, B.; Asgari Jazi, M.; Azizabadi, N. Factors influencing the failure of dental implants: A systematic review. J. Compos. Compd. 2020, 2, 18–25. [Google Scholar] [CrossRef]
- Ghazanfari, H.; Hasanizadeh, S.; Eskandarinezhad, S.; Hassani, S.; Sheibani, M.; Torkamani, A.D.; Fakić, B. Recent progress in materials used towards corrosion protection of Mg and its alloys. J. Compos. Compd. 2020, 2, 205–214. [Google Scholar] [CrossRef]
- Zhu, W.Y.; Guo, J.; Yang, W.F.; Tao, Z.Y.; Lan, X.; Wang, L.; Xu, J.; Qin, L.; Su, Y.X. Biodegradable magnesium implant enhances angiogenesis and alleviates medication-related osteonecrosis of the jaw in rats. J. Orthop. Transl. 2022, 33, 153–161. [Google Scholar] [CrossRef]
- Espiritu, J.; Meier, M.; Seitz, J.M. The current performance of biodegradable magnesium-based implants in magnetic resonance imaging: A review. Bioact. Mater. 2021, 6, 4360–4367. [Google Scholar] [CrossRef] [PubMed]
- Niazvand, F.; Cheshmi, A.; Zand, M.; NasrAzadani, R.; Kumari, B.; Raza, A.; Nasibi, S. An overview of the development of composites containing Mg and Zn for drug delivery. J. Compos. Compd. 2020, 2, 193–204. [Google Scholar] [CrossRef]
- Fard, M.G.; Sharifianjazi, F.; Kazemi, S.S.; Rostamani, H.; Bathaei, M.S. Laser-Based Additive Manufacturing of Magnesium Alloys for Bone Tissue Engineering Applications: From Chemistry to Clinic. J. Manuf. Mater. Process. 2022, 6, 158. [Google Scholar] [CrossRef]
- Koopaie, M.; Bordbar-Khiabani, A.; Kolahdooz, S.; Darbandsari, A.K.; Mozafari, M. Advanced surface treatment techniques counteract biofilm-associated infections on dental implants. Mater. Res. Express 2020, 7, 015417. [Google Scholar] [CrossRef]
- Ma, H. Research on promotion of lower limb movement function recovery after stroke by using lower limb rehabilitation robot in combination with constant velocity muscle strength training. In Proceedings of the IEEE 2021 7th International Symposium on Mechatronics and Industrial Informatics (ISMII), Zhuhai, China, 22–24 January 2021; pp. 70–73. [Google Scholar]
- Li, D.; Zhang, D.; Yuan, Q.; Liu, L.; Li, H.; Xiong, L.; Guo, X.; Yan, Y.; Yu, K.; Dai, Y.; et al. In vitro and in vivo assessment of the effect of biodegradable magnesium alloys on osteogenesis. Acta Biomater. 2022, 141, 454–465. [Google Scholar] [CrossRef]
- Haowei, M.A.; Hussein, U.A.; Al-Qaim, Z.H.; Altalbawy, F.M.; Fadhil, A.A.; Al-Taee, M.M.; Hadrawi, S.K.; Khalaf, R.M.; Jirjees, I.H.; Zarringhalam, M.; et al. Employing Sisko non-Newtonian model to investigate the thermal behavior of blood flow in a stenosis artery: Effects of heat flux, different severities of stenosis, and different radii of the artery. Alex. Eng. J. 2023, 68, 291–300. [Google Scholar] [CrossRef]
- Al-Alwany, A. Latrogenic atrial septal defect post radiofrequency ablation in patients with left atrial SVT: Predictors and outcomes. Rev. Latinoam. Hipertens. 2021, 16, 185–191. [Google Scholar]
- Al Alwany, A.A. Effect and benefit of percutaneous coronary intervention in chronic total occlusion on ventricular repolarization: QT correction and dispersion. J. Med. Life 2022, 15, 1025. [Google Scholar] [CrossRef] [PubMed]
- Singh, N.; Batra, U.; Kumar, K.; Ahuja, N.; Mahapatro, A. Progress in bioactive surface coatings on biodegradable Mg alloys: A critical review towards clinical translation. Bioact. Mater. 2023, 19, 717–757. [Google Scholar] [CrossRef] [PubMed]
- Zamani, Y.; Ghazanfari, H.; Erabi, G.; Moghanian, A.; Fakić, B.; Hosseini, S.M.; Mahammod, B.P. A review of additive manufacturing of Mg-based alloys and composite implants. J. Compos. Compd. 2021, 3, 71–83. [Google Scholar] [CrossRef]
- Altaher, Y.; Kandeel, M. Structure-Activity Relationship of Anionic and Cationic Polyamidoamine (PAMAM) Dendrimers against Staphylococcus aureus. J. Nanomater. 2022, 2022, 4013016. [Google Scholar] [CrossRef]
- Hjazi, A. The effects of Capsicum annuum supplementation on lipid profiles in adults with metabolic syndrome and related disorders: A systematic review and meta-analysis of randomized controlled trials. Phytother. Res. 2023, 37, 3859–3866. [Google Scholar] [CrossRef] [PubMed]
- Zerankeshi, M.M.; Alizadeh, R.; Gerashi, E.; Asadollahi, M.; Langdon, T.G. Effects of heat treatment on the corrosion behavior and mechanical properties of biodegradable Mg alloys. J. Magnes. Alloy. 2022, 10, 1737–1785. [Google Scholar] [CrossRef]
- Sahu, M.R.; Kumar, T.S.; Chakkingal, U. A review on recent advancements in biodegradable Mg-Ca alloys. J. Magnes. Alloy. 2022, 10, 2094–2117. [Google Scholar] [CrossRef]
- Tsakiris, V.; Tardei, C.; Clicinschi, F.M. Biodegradable Mg alloys for orthopedic implants—A review. J. Magnes. Alloy. 2021, 9, 1884–1905. [Google Scholar] [CrossRef]
- Kasaeian-Naeini, M.; Sedighi, M.; Hashemi, R. Severe plastic deformation (SPD) of biodegradable magnesium alloys and composites: A review of developments and prospects. J. Magnes. Alloy. 2022, 10, 938–955. [Google Scholar] [CrossRef]
- Al Alwany, A.A. Echocardiographic assessment of the aortic stenosis valve area: Parameters and outcome. J. Med. Chem. Sci. 2022, 3, 2D. [Google Scholar] [CrossRef]
- Sampatirao, H.; Radhakrishnapillai, S.; Dondapati, S.; Parfenov, E.; Nagumothu, R. Developments in plasma electrolytic oxidation (PEO) coatings for biodegradable magnesium alloys. Mater. Today Proc. 2021, 46, 1407–1415. [Google Scholar] [CrossRef]
- Zamani, Y.; Zareein, A.; Bazli, L.; NasrAzadani, R.; Mahammod, B.P.; Nasibi, S.; Chahardehi, A.M. Nanodiamond-containing composites for tissue scaffolds and surgical implants: A review. J. Compos. Compd. 2020, 2, 215–227. [Google Scholar] [CrossRef]
- Xie, K.; Wang, N.; Guo, Y.; Zhao, S.; Tan, J.; Wang, L.; Li, G.; Wu, J.; Yang, Y.; Xu, W.; et al. Additively manufactured biodegradable porous magnesium implants for elimination of implant-related infections: An in vitro and in vivo study. Bioact. Mater. 2022, 8, 140–152. [Google Scholar] [CrossRef] [PubMed]
- Xie, K.; Wang, L.; Guo, Y.; Zhao, S.; Yang, Y.; Dong, D.; Ding, W.; Dai, K.; Gong, W.; Yuan, G.; et al. Effectiveness and safety of biodegradable Mg-Nd-Zn-Zr alloy screws for the treatment of medial malleolar fractures. J. Orthop. Transl. 2021, 27, 96–100. [Google Scholar] [CrossRef] [PubMed]
- Sekar, P.; Narendranath, S.; Desai, V. Recent progress in in vivo studies and clinical applications of magnesium based biodegradable implants—A review. J. Magnes. Alloy. 2021, 9, 1147–1163. [Google Scholar] [CrossRef]
- Istrate, B.; Munteanu, C.; Antoniac, I.V.; Lupescu, Ș.C. Current research studies of Mg–Ca–Zn biodegradable alloys used as orthopedic implants. Crystals 2022, 12, 1468. [Google Scholar] [CrossRef]
- Chow, D.H.; Wang, J.; Wan, P.; Zheng, L.; Ong, M.T.; Huang, L.; Tong, W.; Tan, L.; Yang, K.; Qin, L. Biodegradable magnesium pins enhanced the healing of transverse patellar fracture in rabbits. Bioact. Mater. 2021, 6, 4176–4185. [Google Scholar] [CrossRef]
- Zehra, T.; Fattah-alhosseini, A.; Kaseem, M. Surface properties of plasma electrolytic oxidation coating modified by polymeric materials: A review. Prog. Org. Coat. 2022, 171, 107053. [Google Scholar] [CrossRef]
- Zehra, T.; Kaseem, M. Recent advances in surface modification of plasma electrolytic oxidation coatings treated by non-biodegradable polymers. J. Mol. Liq. 2022, 365, 120091. [Google Scholar] [CrossRef]
- Zhi, P.; Liu, L.; Chang, J.; Liu, C.; Zhang, Q.; Zhou, J.; Liu, Z.; Fan, Y. Advances in the study of magnesium alloys and their use in bone implant material. Metals 2022, 12, 1500. [Google Scholar] [CrossRef]
- Jia, P.; Pan, Y.; Yu, L.; Wang, J.; Feng, R.; Wang, Y.; Fang, X.; Chen, C. In vitro degradation and corrosion evaluations of plasma electrolytic oxidized Mg–Zn–Ca–Si alloys for biomedical applications. J. Mater. Res. Technol. 2023, 23, 2410–2425. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, Y.; Lv, Y.; Zhang, X.; Dong, Z.; Yang, L.; Zhang, E. Ag distribution and corrosion behaviour of the plasma electrolytic oxidized antibacterial Mg-Ag alloy. Electrochim. Acta 2022, 411, 140089. [Google Scholar] [CrossRef]
- Ali, W.; Li, M.; Tillmann, L.; Mayer, T.; González, C.; LLorca, J.; Kopp, A. Bioabsorbable WE43 Mg alloy wires modified by continuous plasma-electrolytic oxidation for implant applications. Part I: Processing, microstructure and mechanical properties. Biomater. Adv. 2023, 146, 213314. [Google Scholar] [CrossRef] [PubMed]
- Mashtalyar, D.V.; Nadaraia, K.V.; Plekhova, N.G.; Imshinetskiy, I.M.; Piatkova, M.A.; Pleshkova, A.I.; Kislova, S.E.; Sinebryukhov, S.L.; Gnedenkov, S.V. Antibacterial Ca/P-coatings formed on Mg alloy using plasma electrolytic oxidation and antibiotic impregnation. Mater. Lett. 2022, 317, 132099. [Google Scholar] [CrossRef]
- Kopp, A.; Fischer, H.; Soares, A.P.; Schmidt-Bleek, K.; Leber, C.; Kreiker, H.; Duda, G.; Kröger, N.; van Gaalen, K.; Hanken, H.; et al. Long-term in vivo observations show biocompatibility and performance of ZX00 magnesium screws surface-modified by plasma-electrolytic oxidation in Göttingen miniature pigs. Acta Biomater. 2023, 157, 720–733. [Google Scholar] [CrossRef]
- Chen, S.S.; Song, P.D.; Yin, J.; Qi, K.; Li, H.D.; Hou, L.; Li, W.H. Enhancement of Plasticity and Biocorrosion Resistance in a Plasma Electrolytic Oxidation-Treated Mg-Based Amorphous Alloy Composite. J. Mater. Eng. Perform. 2023, 32, 2298–2306. [Google Scholar] [CrossRef]
- Yu, K.; Li, P.; Han, Q.; Wang, Q.; Karpushenkov, S.A.; Lu, X.; Ignatenko, O.V. Investigation of biodegradability, cytocompatibility and antibacterial property of plasma electrolytic oxidation coating on Mg. Surf. Interfaces 2022, 30, 101840. [Google Scholar] [CrossRef]
- Shishir, R.; Lokeshkumar, E.; Manojkumar, P.; Nasiruddin, U.; Premchand, C.; Ponnilavan, V.; Rameshbabu, N. Development of biocompatible and corrosion-resistant plasma electrolytic oxidation coating over zinc for orthopedic implant applications. Surf. Coat. Technol. 2022, 450, 128990. [Google Scholar]
- Bordbar-Khiabani, A.; Ebrahimi, S.; Yarmand, B. Highly corrosion protection properties of plasma electrolytic oxidized titanium using rGO nanosheets. Appl. Surf. Sci. 2019, 486, 153–165. [Google Scholar] [CrossRef]
- Chen, Z.; Liu, X.; Cheng, Z.; Tan, X.; Xiang, Y.; Li, J.; Zhang, Y.; Lu, Z.; Kang, E.T.; Xu, L.; et al. Degradation behavior, biocompatibility and antibacterial activity of plasma electrolytic oxidation treated zinc substrates. Surf. Coat. Technol. 2023, 455, 129234. [Google Scholar] [CrossRef]
- Wei, L.; Gao, Z. Recent research advances on corrosion mechanism and protection, and novel coating materials of magnesium alloys: A review. RSC Adv. 2023, 13, 8427–8463. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; He, J.; Yu, J.; Arthanari, S.; Lee, H.; Zhang, H.; Lu, L.; Huang, G.; Xing, B.; Wang, H.; et al. Degradable Magnesium Corrosion Control for Implant Applications. Materials 2022, 15, 6197. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Liu, X.; Sun, K.; Fu, R.; Wang, G. Corrosion Behavior in Magnesium-Based Alloys for Biomedical Applications. Materials 2022, 15, 2613. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Katyal, P.; Chaudhary, R.N.; Singh, V. Assessment of factors influencing bio-corrosion of magnesium based alloy implants: A review. Mater. Today Proc. 2022, 56, 2680–2689. [Google Scholar] [CrossRef]
- van Gaalen, K.; Quinn, C.; Benn, F.; McHugh, P.E.; Kopp, A.; Vaughan, T.J. Linking the effect of localised pitting corrosion with mechanical integrity of a rare earth magnesium alloy for implant use. Bioact. Mater. 2023, 21, 32–43. [Google Scholar] [CrossRef]
- Kim, J.; Pan, H. Effects of magnesium alloy corrosion on biological response-Perspectives of metal-cell interaction. Prog. Mater. Sci. 2022, 133, 101039. [Google Scholar] [CrossRef]
- Kumarm, D.; Jain, J.; Gosvami, N.N. Macroscale to nanoscale tribology of magnesium-based alloys: A review. Tribol. Lett. 2022, 70, 27. [Google Scholar] [CrossRef]
- Shen, G.; Fang, F.; Kang, C. Tribological performance of bioimplants: A comprehensive review. J. NPE 2018, 1, 107–122. [Google Scholar]
- Deepak, J.R.; Joy, N.; Arunkumar, T.; Srivatsan, R.; Gnanasekar, R. Tribological investigation of magnesium rare earth alloy for orthopedic application. Mater. Today Proc. 2021, 47, 4767–4771. [Google Scholar] [CrossRef]
- Ghanbari, A.; Khiabani, A.B.; Zamanian, A.; Yarmand, B.; Mozafari, M. The competitive mechanism of plasma electrolyte oxidation for the formation of magnesium oxide bioceramic coatings. Mater. Today Proc. 2018, 5, 15677–15685. [Google Scholar] [CrossRef]
- Bordbar-Khiabani, A.; Yarmand, B.; Mozafari, M. Emerging magnesium-based biomaterials for orthopedic implantation. Emerg. Mater. Res. 2020, 8, 305–319. [Google Scholar] [CrossRef]
- Darband, G.B.; Aliofkhazraei, M.; Hamghalam, P.; Valizade, N. Plasma electrolytic oxidation of magnesium and its alloys: Mechanism, properties and applications. J. Magnes. Alloy. 2017, 5, 74–132. [Google Scholar] [CrossRef]
- Khiabani, A.B.; Ghanbari, A.; Yarmand, B.; Zamanian, A.; Mozafari, M. Improving corrosion behavior and in vitro bioactivity of plasma electrolytic oxidized AZ91 magnesium alloy using calcium fluoride containing electrolyte. Mater. Lett. 2018, 212, 98–102. [Google Scholar] [CrossRef]
- Asgari, M.; Daneshmand, H.; Darband, G.B.; Rouhaghdam, A.S. Single-stage production of glass sealed PEO composite coating on AZ31B. Surf. Interfaces 2020, 21, 100712. [Google Scholar] [CrossRef]
- Yao, W.; Wu, L.; Wang, J.; Jiang, B.; Zhang, D.; Serdechnova, M.; Shulha, T.; Blawert, C.; Zheludkevich, M.L.; Pan, F. Micro-arc oxidation of magnesium alloys: A review. J. Mater. Sci. Technol. 2022, 118, 158–180. [Google Scholar] [CrossRef]
- Jin, S.; Ma, X.; Wu, R.; Wang, G.; Zhang, J.; Krit, B.; Betsofen, S.; Liu, B. Advances in micro-arc oxidation coatings on Mg-Li alloys. Appl. Surf. Sci. Adv. 2022, 8, 100219. [Google Scholar] [CrossRef]
- Chen, Y.; Wu, L.; Yao, W.; Wu, J.; Yuan, Y.; Xie, Z.; Jiang, B.; Pan, F. Synergistic effect of graphene oxide/ternary Mg-Al-La layered double hydroxide for dual self-healing corrosion protection of micro-arc oxide coating of magnesium alloy. Colloids Surf. A Physicochem. Eng. Asp. 2022, 655, 130339. [Google Scholar] [CrossRef]
- Askarnia, R.; Fardi, S.R.; Sobhani, M.; Staji, H.; Aghamohammadi, H. Effect of graphene oxide on properties of AZ91 magnesium alloys coating developed by micro-arc oxidation process. J. Alloys Compd. 2022, 892, 162106. [Google Scholar] [CrossRef]
- Chen, Y.; Wu, L.; Yao, W.; Wu, J.; Yuan, Y.; Jiang, B.; Pan, F. Growth behavior and corrosion resistance of graphene oxide/MgAl Layered double hydroxide coating grown on micro-arc oxidation film of magnesium alloys. J. Ind. Eng. Chem. 2023, 117, 319–332. [Google Scholar] [CrossRef]
- Yang, S.; Wang, C.; Li, F.; Liu, N.; Shi, P.; Wang, B.; Sun, R. One-step in situ growth of a simple and efficient pore-sealing coating on micro-arc oxidized AZ31B magnesium alloy. J. Alloys Compd. 2022, 909, 164710. [Google Scholar] [CrossRef]
- Pesode, P.; Barve, S.; Mane, Y.; Dayane, S.; Kolekar, S.; Mohammed, K.A. Recent advances on biocompatible coating on magnesium alloys by micro arc oxidation technique. Key Eng. Mater. 2023, 944, 117–134. [Google Scholar] [CrossRef]
- Chen, Y.; Wu, L.; Yao, W.; Chen, Y.; Zhong, Z.; Ci, W.; Wu, J.; Xie, Z.; Yuan, Y.; Pan, F. A self-healing corrosion protection coating with graphene oxide carrying 8-hydroxyquinoline doped in layered double hydroxide on a micro-arc oxidation coating. Corros. Sci. 2022, 194, 109941. [Google Scholar] [CrossRef]
- Li, T.; Zhao, Y.; Chen, M. Study on Enhancing the Corrosion Resistance and Photo-Thermal Antibacterial Properties of the Micro-Arc Oxidation Coating Fabricated on Medical Magnesium Alloy. Int. J. Mol. Sci. 2022, 23, 10708. [Google Scholar] [CrossRef] [PubMed]
- Zhang, A.M.; Liu, C.; Sui, P.S.; Sun, C.; Cui, L.Y.; Kannan, M.B.; Zeng, R.C. Corrosion resistance and mechanisms of smart micro-arc oxidation/epoxy resin coatings on AZ31 Mg alloy: Strategic positioning of nanocontainers. J. Magnes. Alloy. 2023. [Google Scholar] [CrossRef]
- Ma, C.; Liu, J.; Zhang, Z.; Wu, F.; Wen, Y.; Shang, W. Preparation and Properties of Micro-Arc Oxidation/Self-Assembly Coatings with Different Hydrophobicities on Magnesium Alloy. Adv. Eng. Mater. 2022, 24, 2200741. [Google Scholar] [CrossRef]
- Fattah-alhosseini, A.; Babaei, K.; Molaei, M. Plasma electrolytic oxidation (PEO) treatment of zinc and its alloys: A review. Surf. Interfaces 2020, 18, 100441. [Google Scholar] [CrossRef]
- Xue, Y.; Pang, X.; Karparvarfard, S.M.; Jahed, H.; Luo, S.; Shen, Y. Corrosion Protection of ZK60 Wrought Magnesium Alloys by Micro-Arc Oxidation. Metals 2022, 12, 449. [Google Scholar] [CrossRef]
- Chen, L.; Zhao, R.; Qi, H.; Chen, D.; Zhou, S.; Wang, X.; Li, W. Influence of voltage modes on microstructure and corrosion resistance of micro-arc oxidation coating on magnesium alloy. J. Adhes. Sci. Technol. 2023, 37, 2232–2246. [Google Scholar] [CrossRef]
- Dong, H.; Li, Q.; Xie, D.; Jiang, W.; Ding, H.; Wang, S.; An, L. Forming characteristics and mechanisms of micro-arc oxidation coatings on magnesium alloys based on different types of single electrolyte solutions. Ceram. Int. 2023, 49, 32271–32281. [Google Scholar] [CrossRef]
- Sun, H.; Wang, Y.; Sun, C.; Yu, H.; Xi, Z.; Liu, N.; Zhang, N. In vivo comparison of the degradation and osteointegration properties of micro-arc oxidation-coated Mg-Sr and Mg-Ca alloy scaffolds. Bio-Med. Mater. Eng. 2022, 33, 209–219. [Google Scholar] [CrossRef] [PubMed]
- Chaharmahali, R.; Fattah-Alhosseini, A.; Nouri, M.; Babaei, K. Improving surface characteristics of PEO coatings of Mg and its alloys with zirconia nanoparticles: A review. Appl. Surf. Sci. Adv. 2021, 6, 100131. [Google Scholar] [CrossRef]
- O’Hara, M.; Troughton, S.C.; Francis, R.; Clyne, T.W. The incorporation of particles suspended in the electrolyte into plasma electrolytic oxidation coatings on Ti and Al substrates. Surf. Coat. Technol. 2020, 385, 125354. [Google Scholar] [CrossRef]
- Lu, X.; Mohedano, M.; Blawert, C.; Matykina, E.; Arrabal, R.; Kainer, K.U.; Zheludkevich, M.L. Plasma electrolytic oxidation coatings with particle additions—A review. Surf. Coat. Technol. 2016, 307, 1165–1182. [Google Scholar] [CrossRef]
- Schwartz, A.; Kossenko, A.; Zinigrad, M.; Danchuk, V.; Sobolev, A. Cleaning Strategies of Synthesized Bioactive Coatings by PEO on Ti-6Al-4V Alloys of Organic Contaminations. Materials 2023, 16, 4624. [Google Scholar] [CrossRef] [PubMed]
- Sobolev, A.; Kossenko, A.; Zinigrad, M.; Borodianskiy, K. Comparison of plasma electrolytic oxidation coatings on Al alloy created in aqueous solution and molten salt electrolytes. Surf. Coat. Technol. 2018, 344, 590–595. [Google Scholar] [CrossRef]
- Sobolev, A.; Zinigrad, M.; Borodianskiy, K. Ceramic coating on Ti-6Al-4V by plasma electrolytic oxidation in molten salt: Development and characterization. Surf. Coat. Technol. 2021, 408, 126847. [Google Scholar] [CrossRef]
- Jamali, R.; Bordbar-Khiabani, A.; Yarmand, B.; Mozafari, M.; Kolahi, A. Effects of co-incorporated ternary elements on biocorrosion stability, antibacterial efficacy, and cytotoxicity of plasma electrolytic oxidized titanium for implant dentistry. Mater. Chem. Phys. 2022, 276, 125436. [Google Scholar] [CrossRef]
- Jin, X.; Mei, D.; Chen, D.; Li, Y.; Wang, L.; Zhu, S.; Guan, S. β-TCP particles additive synergistically improves corrosion resistance and biocompatibility of micro-arc oxide coated magnesium alloy. Mater. Today Commun. 2023, 36, 106694. [Google Scholar] [CrossRef]
- Pourshadloo, M.; Rezaei, H.A.; Saeidnia, M.; Alkokab, H.; Bathaei, M.S. Effect of G-family incorporation on corrosion behavior of PEO-treated titanium alloys: A review. Surf. Innov. 2022, 11, 5–14. [Google Scholar] [CrossRef]
- Amiri, M.; Padervand, S.; Targhi, V.T.; Khoei, S.M.M. Investigation of aluminum oxide coatings created by electrolytic plasma method in different potential regimes. J. Compos. Compd. 2020, 2, 115–122. [Google Scholar] [CrossRef]
- Ma, X.; Jin, S.; Wu, R.; Zhang, S.; Hou, L.; Krit, B.; Betsofen, S.; Liu, B. Influence of combined B4C/C particles on the properties of microarc oxidation coatings on Mg-Li alloy. Surf. Coat. Technol. 2022, 438, 128399. [Google Scholar] [CrossRef]
- Selvi, E.; Kaba, M.; Muhaffel, F.; Serdar Vanlı, A.; Baydoğan, M. Elevated Temperature Wear Behavior of AZ91 Magnesium Alloy after Micro-Arc Oxidation in Single and Dual Phase Electrolytes. J. Tribol. 2023, 145, 071701. [Google Scholar] [CrossRef]
- Zhang, Z.; He, F.; Huang, C.; Song, Z.; Yang, J.; Wang, X. Effect of Fe3+ and F− on black micro-arc oxidation ceramic coating of magnesium alloy. Int. J. Appl. Ceram. Technol. 2022, 19, 2203–2212. [Google Scholar] [CrossRef]
- Liu, C.; Zhang, W.; Xu, T.; Li, H.; Jiang, B.; Miao, X. Preparation and corrosion resistance of a self-sealing hydroxyapatite-MgO coating on magnesium alloy by microarc oxidation. Ceram. Int. 2022, 48, 13676–13683. [Google Scholar] [CrossRef]
- Pourshadloo, M.; Jameel, M.F.; Romero-Parra, R.M.; Yeslam, H.E.; Shafik, S.S.; Kareem, A.K.; Zabibah, R.S.; Sharifianjazi, F.; Bathaei, M.S. Synthesis of TiO2/rGO composite coatings on titanium alloys with enhanced anticorrosion performance in palmitic acid-incorporated physiological solutions. Ceram. Int. 2023, 49, 33598–33606. [Google Scholar] [CrossRef]
- Wang, Z.X.; Zhang, J.W.; Lv, W.G.; Chen, L.Y.; Qi, F.; Chen, W.W.; Lu, S. Growth Mechanism of Ceramic Coating on ZK60 Magnesium Alloy Based on Two-Step Current-Decreasing Mode of Micro-Arc Oxidation. Adv. Eng. Mater. 2022, 24, 2101232. [Google Scholar] [CrossRef]
- Leng, Z.; Li, T.; Wang, X.; Zhang, S.; Zhou, J. Effect of graphite content on the conductivity, wear behavior, and corrosion resistance of the organic layer on magnesium alloy MAO coatings. Coatings 2022, 12, 434. [Google Scholar] [CrossRef]
- Cai, L.; Song, X.; Liu, C.B.; Cui, L.Y.; Li, S.Q.; Zhang, F.; Kannan, M.B.; Chen, D.C.; Zeng, R.C. Corrosion resistance and mechanisms of Nd(NO3)3 and polyvinyl alcohol organic-inorganic hybrid material incorporated MAO coatings on AZ31 Mg alloy. J. Colloid Interface Sci. 2023, 630, 833–845. [Google Scholar] [CrossRef]
- Stojadinović, S.; Radić, N.; Vasilić, R. ZnO Particles modified MgAl Coatings with improved photocatalytic activity formed by plasma electrolytic oxidation of AZ31 magnesium alloy in aluminate electrolyte. Catalysts 2022, 12, 1503. [Google Scholar] [CrossRef]
- Han, J.; Yu, Y.; Yang, J.; Xiaopeng, L.; Blawert, C.; Zheludkevich, M.L. Corrosion and wear performance of La2O3 doped plasma electrolytic oxidation coating on pure Mg. Surf. Coat. Technol. 2022, 433, 128112. [Google Scholar] [CrossRef]
- Bordbar-Khiabani, A.; Yarmand, B.; Mozafari, M. Enhanced corrosion resistance and in-vitro biodegradation of plasma electrolytic oxidation coatings prepared on AZ91 Mg alloy using ZnO nanoparticles-incorporated electrolyte. Surf. Coat. Technol. 2019, 360, 153–171. [Google Scholar] [CrossRef]
- Mohammed, N.B.; Daily, Z.A.; Alsharbaty, M.H.; Abullais, S.S.; Arora, S.; Lafta, H.A.; Jalil, A.T.; Almulla, A.F.; Ramírez-Coronel, A.A.; Aravindhan, S.; et al. Effect of PMMA sealing treatment on the corrosion behavior of plasma electrolytic oxidized titanium dental implants in fluoride-containing saliva solution. Mater. Res. Express 2022, 9, 125401. [Google Scholar] [CrossRef]
- Lu, X.; Blawert, C.; Luthringer, B.J.; Zheludkevich, M.L. Controllable Degradable Plasma Electrolytic Oxidation Coated Mg Alloy for Biomedical Application. Front. Chem. Eng. 2022, 4, 748549. [Google Scholar] [CrossRef]
- Ebrahimi, S.; Bordbar-Khiabani, A.; Yarmand, B. Immobilization of rGO/ZnO hybrid composites on the Zn substrate for enhanced photocatalytic activity and corrosion stability. J. Alloys Compd. 2020, 10, 156219. [Google Scholar] [CrossRef]
- Patrascu, I.; Ducu, M.C.; Negrea, A.D.; Moga, S.G.; Plaiasu, A.G. Overview on plasma electrolytic oxidation of magnesium alloys for medical and engineering applications. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2022; Volume 1251, p. 012001. [Google Scholar]
- Lv, Y.; Zhang, C.; Zhang, Y.; Wang, Q.; Zhang, X.; Dong, Z. Microstructure and corrosion resistance of plasma electrolytic oxidized recycled Mg alloy. Acta Metall. Sin. (Engl. Lett.) 2022, 35, 961–974. [Google Scholar] [CrossRef]
- Xu, L.; Zhang, D.; Su, H.; Yu, P.; Wan, Y.; Sun, H. Improving the tribocorrosion performance of plasma electrolytic oxidized coatings on AZ31B magnesium alloy using pullulan as an electrolyte additive. Surf. Coat. Technol. 2022, 446, 128754. [Google Scholar] [CrossRef]
- Krishtal, M.M.; Katsman, A.V.; Polunin, A.V. Effects of silica nanoparticles addition on formation of oxide layers on AlSi alloy by plasma electrolytic oxidation: The origin of stishovite under ambient conditions. Surf. Coat. Technol. 2022, 441, 128556. [Google Scholar] [CrossRef]
- Liu, X.; Liu, L.; Dong, S.; Chen, X.B.; Dong, J. Towards dense corrosion-resistant plasma electrolytic oxidation coating on Mg-Gd-Y-Zr alloy by using ultra-high frequency pulse current. Surf. Coat. Technol. 2022, 447, 128881. [Google Scholar] [CrossRef]
- Rahmati, M.; Raeissi, K.; Toroghinejad, M.R.; Hakimizad, A.; Santamaria, M. Corrosion and wear resistance of coatings produced on AZ31 Mg alloy by plasma electrolytic oxidation in silicate-based K2TiF6 containing solution: Effect of waveform. J. Magnes. Alloy. 2022, 10, 2574–2587. [Google Scholar] [CrossRef]
- Kara, R.; Zengin, H. Tribological and electrochemical corrosion properties of CNT-incorporated plasma electrolytic oxidation (PEO) coatings on AZ80 magnesium alloy. Acta Metall. Sin. (Engl. Lett.) 2022, 35, 1195–1206. [Google Scholar] [CrossRef]
- Fattah-alhosseini, A.; Molaei, M.; Babaei, K. The effects of nano-and micro-particles on properties of plasma electrolytic oxidation (PEO) coatings applied on titanium substrates: A review. Surf. Interfaces 2020, 21, 100659. [Google Scholar] [CrossRef]
- Lv, J.; Cheng, Y. Amorphous coatings on tantalum formed by plasma electrolytic oxidation in aluminate electrolyte and high temperature crystallization treatment. Surf. Coat. Technol. 2022, 434, 128171. [Google Scholar] [CrossRef]
- Pezzato, L.; Lorenzetti, L.; Tonelli, L.; Bragaggia, G.; Dabalà, M.; Martini, C.; Brunelli, K. Effect of SiC and borosilicate glass particles on the corrosion and tribological behavior of AZ91D magnesium alloy after PEO process. Surf. Coat. Technol. 2021, 428, 127901. [Google Scholar] [CrossRef]
- Bordbar-Khiabani, A.; Yarmand, B.; Sharifi-Asl, S.; Mozafari, M. Improved corrosion performance of biodegradable magnesium in simulated inflammatory condition via drug-loaded plasma electrolytic oxidation coatings. Mater. Chem. Phys. 2020, 239, 122003. [Google Scholar] [CrossRef]
- Pezzato, L.; Gennari, C.; Franceschi, M.; Brunelli, K. Influence of silicon morphology on direct current plasma electrolytic oxidation process in AlSi10Mg alloy produced with laser powder bed fusion. Sci. Rep. 2022, 12, 14329. [Google Scholar] [CrossRef] [PubMed]
- Santos, P.B.; de Castro, V.V.; Baldin, E.K.; Aguzzoli, C.; Longhitano, G.A.; Jardini, A.L.; Lopes, É.S.; de Andrade, A.M.; de Fraga Malfatti, C. Wear Resistance of Plasma Electrolytic Oxidation Coatings on Ti-6Al-4V Eli Alloy Processed by Additive Manufacturing. Metals 2022, 12, 1070. [Google Scholar] [CrossRef]
- Pezzato, L.; Colusso, E.; Cerchier, P.; Settimi, A.G.; Brunelli, K. Production and Characterization of Photocatalytic PEO Coatings Containing TiO2 Powders Recovered from Wastes. Coatings 2023, 13, 411. [Google Scholar] [CrossRef]
- Lee, K.M.; Shin, K.R.; Namgung, S.; Yoo, B.; Shin, D.H. Electrochemical response of ZrO2-incorporated oxide layer on AZ91 Mg alloy processed by plasma electrolytic oxidation. Surf. Coat. Technol. 2011, 205, 3779–3784. [Google Scholar] [CrossRef]
- Sedelnikova, M.B.; Ivanov, K.V.; Ugodchikova, A.V.; Kashin, A.D.; Uvarkin, P.V.; Sharkeev, Y.; Tolkacheva, T.V.; Tolmachev, A.I.; Schmidt, J.; Egorkin, V.S.; et al. The effect of pulsed electron irradiation on the structure, phase composition, adhesion and corrosion properties of calcium phosphate coating on Mg0.8Ca alloy. Mater. Chem. Phys. 2023, 294, 126996. [Google Scholar] [CrossRef]
- Wang, S.; Wang, Y.; Chen, J.; Zou, Y.; Ouyang, J.; Jia, D.; Zhou, Y. Simple and scalable synthesis of super-repellent multilayer nanocomposite coating on Mg alloy with mechanochemical robustness, high-temperature endurance and electric protection. J. Magnes. Alloy. 2022, 10, 2446–2459. [Google Scholar] [CrossRef]
- Singh, A.K.; Drunka, R.; Smits, K.; Vanags, M.; Iesalnieks, M.; Joksa, A.A.; Blumbergs, I.; Steins, I. Nanomechanical and Electrochemical Corrosion Testing of Nanocomposite Coating Obtained on AZ31 via Plasma Electrolytic Oxidation Containing TiN and SiC Nanoparticles. Crystals 2023, 13, 508. [Google Scholar] [CrossRef]
- Xue, K.; Tan, P.H.; Zhao, Z.H.; Cui, L.Y.; Kannan, M.B.; Li, S.Q.; Liu, C.B.; Zou, Y.H.; Zhang, F.; Chen, Z.Y.; et al. In vitro degradation and multi-antibacterial mechanisms of β-cyclodextrin@ curcumin embodied Mg (OH)2/MAO coating on AZ31 magnesium alloy. J. Mater. Sci. Technol. 2023, 132, 179–192. [Google Scholar] [CrossRef]
- Mohedano, M.; Blawert, C.; Zheludkevich, M.L. Silicate-based plasma electrolytic oxidation (PEO) coatings with incorporated CeO2 particles on AM50 magnesium alloy. Mater. Des. 2015, 86, 735–744. [Google Scholar] [CrossRef]
- Kadhum, W.R.; See, G.L.; Alhijjaj, M.; Kadhim, M.M.; Arce, F.J.; Al-Janabi, A.S.; Al-Rashidi, R.R.; Khadom, A.A. Evaluation of the Skin Permeation-Enhancing Abilities of Newly Developed Water-Soluble Self-Assembled Liquid Crystal Formulations Based on Hexosomes. Crystals 2022, 12, 1238. [Google Scholar] [CrossRef]
- Seyyedi, M.; Molajou, A. Nanohydroxyapatite loaded-acrylated polyurethane nanofibrous scaffolds for controlled release of paclitaxel anticancer drug. J. Res. Sci. Eng. Technol. 2021, 9, 50–61. [Google Scholar]
- Askaria, S.; Yazdani, E.; Arabuli, L.; Goldadi, H.; Marnani, S.A.S.; Emami, M. In-vitro and in-vivo examination for bioceramics degradation. J. Compos. Compd. 2022, 4, 169–177. [Google Scholar]
- Ghasali, E.; Bordbar-Khiabani, A.; Alizadeh, M.; Mozafari, M.; Niazmand, M.; Kazemzadeh, H.; Ebadzadeh, T. Corrosion behavior and in-vitro bioactivity of porous Mg/Al2O3 and Mg/Si3N4 metal matrix composites fabricated using microwave sintering process. Mater. Chem. Phys. 2019, 225, 331–339. [Google Scholar] [CrossRef]
- Loginova, N.; Gvozdev, M.; Osipovich, N.; Khodosovskaya, A.; Koval’chuk-Rabchinskaya, T.; Ksendzova, G.; Kotsikau, D.; Evtushenkov, A. Silver (I) complexes with phenolic Schiff bases: Synthesis, anti-bacterial evaluation and interaction with biomolecules. ADMET DMPK 2022, 10, 197–212. [Google Scholar] [CrossRef]
- Cerchier, P.; Pezzato, L.; Brunelli, K.; Dolcet, P.; Bartolozzi, A.; Bertani, R.; Dabalà, M. Antibacterial effect of PEO coating with silver on AA7075. Mater. Sci. Eng. C 2017, 75, 554–564. [Google Scholar] [CrossRef]
- Bordbar-Khiabani, A.; Yarmand, B.; Mozafari, M. Functional PEO layers on magnesium alloys: Innovative polymer-free drug-eluting stents. Surf. Innov. 2018, 6, 237–243. [Google Scholar] [CrossRef]
- Kandeel, M.; Al-Taher, A. Bioinformatics of thymidine metabolism in Trypanosoma evansi: Exploring nucleoside deoxyribosyltransferase (NDRT) as a drug target. Res. Sq. 2021. [Google Scholar] [CrossRef]
- Polonchuk, L.; Gentile, C. Current state and future of 3D bioprinted models for cardio-vascular research and drug development. ADMET DMPK 2021, 9, 231–242. [Google Scholar] [CrossRef] [PubMed]
- Ghanbari, A.; Bordbar-Khiabani, A.; Warchomicka, F.; Sommitsch, C.; Yarmand, B.; Zamanian, A. PEO/Polymer hybrid coatings on magnesium alloy to improve biodegradation and biocompatibility properties. Surf. Interfaces 2023, 36, 102495. [Google Scholar] [CrossRef]
- Alquhaidan, M.; Kandeel, M. Gene expression of multidrug-resistant ATP-binding cassette transporter (MDR1/ABCB1) in bovine mastitis. Trop. J. Pharm. Res. 2018, 17, 2335–2340. [Google Scholar] [CrossRef]
- Kadhum, W.R.; Al-Zuhairy, S.A.; Mohamed, M.B.; Abdulrahman, A.Y.; Kadhim, M.M.; Alsadoon, Z.; Teoh, T.C. A Nanotechnological Approach for Enhancing the Topical Drug Delivery by Newly Developed Liquid Crystal Formulations. Int. J. Drug Deliv. Technol. 2021, 11, 716–720. [Google Scholar] [CrossRef]
- Al-Zuhairy, S.A.; Kadhum, W.R.; Alhijjaj, M.; Kadhim, M.M.; Al-Janabi, A.S.; Salman, A.W.; Al-Sharifi, H.K.; Khadom, A.A. Development and Evaluation of Biocompatible Topical Petrolatum-liquid Crystal Formulations with Enhanced Skin Permeation Properties. J. Oleo Sci. 2022, 71, 459–468. [Google Scholar] [CrossRef] [PubMed]
- Gani, I.H.; Al-Obaidi, Z. Molecular docking studies of tyrosine kinase inhibitors: Exemplified protocol to advance pharmaceutical education in medicinal chemistry. Pharm. Educ. 2022, 22, 110–114. [Google Scholar] [CrossRef]
- Liu, R.; Xu, D.; Liu, Y.; Wu, L.; Yong, Q.; Xie, Z.H. Enhanced corrosion protection for MAO coating on magnesium alloy by the synergism of LDH doping with deposition of 8HQ inhibitor film. Ceram. Int. 2023, 49, 30039–30048. [Google Scholar] [CrossRef]
- Khiabani, A.B.; Rahimi, S.; Yarmand, B.; Mozafari, M. Electrophoretic deposition of graphene oxide on plasma electrolytic oxidized-magnesium implants for bone tissue engineering applications. Mater. Today Proc. 2018, 5, 15603–15612. [Google Scholar] [CrossRef]
- Johari, N.A.; Alias, J.; Zanurin, A.; Mohamed, N.S.; Alang, N.A.; Zain, M.Z. Anti-corrosive coatings of magnesium: A review. Mater. Today Proc. 2022, 48, 1842–1848. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, N.; Ling, N.; Zhang, J.; Wang, L. Enhanced long-term corrosion resistance of Mg alloys by superhydrophobic and self-healing composite coating. Chem. Eng. J. 2022, 449, 137778. [Google Scholar] [CrossRef]
- Li, B.; Wang, L.; Su, Y.; Qiu, R.; Zhang, Z.; Ouyang, Y. Refreshable self-polishing superhydrophobic coating on Mg alloy to prohibit corrosion and biofouling in marine environment. Colloids Surf. A Physicochem. Eng. Asp. 2022, 651, 129693. [Google Scholar] [CrossRef]
- Telmenbayar, L.; Ramu, A.G.; Erdenebat, T.O.; Choi, D. Anticorrosive lanthanum embedded PEO/GPTMS coating on magnesium alloy by plasma electrolytic oxidation with silanization. Mater. Today Commun. 2022, 33, 104662. [Google Scholar] [CrossRef]
- Wang, Y.; You, Z.; Ma, K.; Dai, C.; Wang, D.; Wang, J. Corrosion resistance of a superhydrophobic calcium carbonate coating on magnesium alloy by ultrasonic cavitation-assisted chemical conversion. Corros. Sci. 2023, 211, 110841. [Google Scholar] [CrossRef]
- Wang, H.; Song, Y.; Chen, X.; Tong, G.; Zhang, L. Microstructure and corrosion behavior of PEO-LDHs-SDS superhydrophobic composite film on magnesium alloy. Corros. Sci. 2022, 208, 110699. [Google Scholar] [CrossRef]
- Song, J.; Gao, Y.; Liu, C.; Chen, Z. The effect of Sr addition on the microstructure and corrosion behaviour of a Mg-Zn-Ca alloy. Surf. Coat. Technol. 2022, 437, 128328. [Google Scholar] [CrossRef]
- Li, J.; Zhang, Z.; Guo, Z.; Yang, Z.; Qian, W.; Chen, Y.; Li, H.; Zhao, Q.; Xing, Y.; Zhao, Y. Improved corrosion resistance of ZrO2/MgO coating for magnesium alloys by manipulating the pore structure. J. Mater. Res. Technol. 2023, 24, 2403–2415. [Google Scholar] [CrossRef]
- Rehman, Z.U.; Uzair, M.; Lim, H.T.; Koo, B.H. Structural and electrochemical properties of the catalytic CeO2 nanoparticles-based PEO ceramic coatings on AZ91 Mg alloy. J. Alloys Compd. 2017, 726, 284–294. [Google Scholar] [CrossRef]
- Lim, T.S.; Ryu, H.S.; Hong, S.H. Electrochemical corrosion properties of CeO2-containing coatings on AZ31 magnesium alloys prepared by plasma electrolytic oxidation. Corros. Sci. 2012, 62, 104–111. [Google Scholar] [CrossRef]
- Lou, B.S.; Lee, J.W.; Tseng, C.M.; Lin, Y.Y.; Yen, C.A. Mechanical property and corrosion resistance evaluation of AZ31 magnesium alloys by plasma electrolytic oxidation treatment: Effect of MoS2 particle addition. Surf. Coat. Technol. 2018, 350, 813–822. [Google Scholar] [CrossRef]
- Vatan, H.N.; Ebrahimi-Kahrizsangi, R.; Kasiri-Asgarani, M. Structural, tribological and electrochemical behavior of SiC nanocomposite oxide coatings fabricated by plasma electrolytic oxidation (PEO) on AZ31 magnesium alloy. J. Alloys Compd. 2016, 683, 241–255. [Google Scholar] [CrossRef]
- Vatan, H.N.; Ebrahimi-Kahrizsangi, R.; Asgarani, M.K. Effect of WC nano-powder on properties of plasma electrolytic oxidation coating fabricated on AZ31B alloy. Int. J. Electrochem. Sci. 2016, 11, 929–943. [Google Scholar] [CrossRef]
- Zhao, J.; Xie, X.; Zhang, C. Effect of the graphene oxide additive on the corrosion resistance of the plasma electrolytic oxidation coating of the AZ31 magnesium alloy. Corros. Sci. 2017, 114, 146–155. [Google Scholar] [CrossRef]
- Seyfoori, A.; Mirdamadi, S.; Seyedraoufi, Z.S.; Khavandi, A.; Aliofkhazraei, M. Synthesis of biphasic calcium phosphate containing nanostructured films by micro arc oxidation on magnesium alloy. Mater. Chem. Phys. 2013, 142, 87–94. [Google Scholar] [CrossRef]
- Mashtalyar, D.V.; Gnedenkov, S.V.; Sinebryukhov, S.L.; Imshinetskiy, I.M. Plasma electrolytic oxidation of the magnesium alloy MA8 in electrolytes containing TiN nanoparticles. J. Mater. Sci. Technol. 2017, 33, 461–468. [Google Scholar] [CrossRef]
- Lu, X.; Blawert, C.; Huang, Y.; Ovri, H.; Zheludkevich, M.L.; Kainer, K.U. Plasma electrolytic oxidation coatings on Mg alloy with addition of SiO2 particles. Electrochim. Acta 2016, 187, 20–33. [Google Scholar] [CrossRef]
- Lu, X.; Sah, S.P.; Scharnagl, N.; Störmer, M.; Starykevich, M.; Mohedano, M.; Blawert, C.; Zheludkevich, M.L.; Kainer, K.U. Degradation behavior of PEO coating on AM50 magnesium alloy produced from electrolytes with clay particle addition. Surf. Coat. Technol. 2015, 269, 155–169. [Google Scholar] [CrossRef]
- Chen, F.; Zhang, Y.; Zhang, Y. Effect of graphene on micro-structure and properties of MAO coating prepared on Mg-Li alloy. Int. J. Electrochem. Sci. 2017, 12, 6081–6091. [Google Scholar] [CrossRef]
- Wen, C.; Zhan, X.; Huang, X.; Xu, F.; Luo, L.; Xia, C. Characterization and corrosion properties of hydroxyapatite/graphene oxide bio-composite coating on magnesium alloy by one-step micro-arc oxidation method. Surf. Coat. Technol. 2017, 317, 125–133. [Google Scholar] [CrossRef]
- Xiong, Y.; Hu, X.; Song, R. Characteristics of CeO2/ZrO2-HA composite coating on ZK60 magnesium alloy. J. Mater. Res. 2017, 32, 1073–1082. [Google Scholar] [CrossRef]
- Keyvani, A.; Zamani, M.; Bahamirian, M.; Nikoomanzari, E.; Fattah-Alhosseini, A.; Sina, H. Role of incorporation of ZnO nanoparticles on corrosion behavior of ceramic coatings developed on AZ31 magnesium alloy by plasma electrolytic oxidation technique. Surf. Interfaces 2021, 22, 100728. [Google Scholar] [CrossRef]
- Asgari, M.; Aliofkhazraei, M.; Darband, G.B.; Rouhaghdam, A.S. Evaluation of alumina nanoparticles concentration and stirring rate on wear and corrosion behavior of nanocomposite PEO coating on AZ31 magnesium alloy. Surf. Coat. Technol. 2017, 309, 124–135. [Google Scholar] [CrossRef]
- Ma, C.; Lu, Y.; Sun, P.; Yuan, Y.; Jing, X.; Zhang, M. Characterization of plasma electrolytic oxidation coatings formed on Mg–Li alloy in an alkaline polyphosphate electrolyte. Surf. Coat. Technol. 2011, 206, 287–294. [Google Scholar] [CrossRef]
- Pezzato, L.; Angelini, V.; Brunelli, K.; Martini, C.; Dabalà, M. Tribological and corrosion behavior of PEO coatings with graphite nanoparticles on AZ91 and AZ80 magnesium alloys. Trans. Nonferrous Met. Soc. China 2018, 28, 259–272. [Google Scholar] [CrossRef]
- Mortezanejad, E.; Atapour, M.; Salimijazi, H.; Alhaji, A.; Hakimizad, A. Wear and corrosion behavior of aluminate-and phosphate-based plasma electrolytic oxidation coatings with polytetrafluoroethylene nanoparticles on AZ80 Mg alloy. J. Mater. Eng. Perform. 2021, 30, 4030–4044. [Google Scholar] [CrossRef]
- Zehra, T.; Patil, S.A.; Shrestha, N.K.; Fattah-Alhosseini, A.; Kaseem, M. Anionic assisted incorporation of WO3 nanoparticles for enhanced electrochemical properties of AZ31 Mg alloy coated via plasma electrolytic oxidation. J. Alloys Compd. 2022, 916, 165445. [Google Scholar] [CrossRef]
- Espiritu, J.; Sefa, S.; Ćwieka, H.; Greving, I.; Flenner, S.; Willumeit-Römer, R.; Seitz, J.M.; Zeller-Plumhoff, B. Detailing the influence of PEO-coated biodegradable Mg-based implants on the lacuno-canalicular network in sheep bone: A pilot study. Bioact. Mater. 2023, 26, 14–23. [Google Scholar] [CrossRef]
- Bordbar-Khiabani, A.; Bahrampour, S.; Mozafari, M.; Gasik, M. Surface functionalization of anodized tantalum with Mn3O4 nanoparticles for effective corrosion protection in simulated inflammatory condition. Ceram. Int. 2022, 48, 3148–3156. [Google Scholar] [CrossRef]
- Pezzato, L.; Coelho, L.B.; Bertolini, R.; Settimi, A.G.; Brunelli, K.; Olivier, M.; Dabalà, M. Corrosion and mechanical properties of plasma electrolytic oxidation-coated AZ80 magnesium alloy. Mater. Corros. 2019, 70, 2103–2112. [Google Scholar] [CrossRef]
- Bordbar-Khiabani, A.; Yarmand, B.; Mozafari, M. Effect of ZnO pore-sealing layer on anti-corrosion and in-vitro bioactivity behavior of plasma electrolytic oxidized AZ91 magnesium alloy. Mater. Lett. 2020, 258, 126779. [Google Scholar] [CrossRef]
- Çelik, A.; Bozkurt, Y.B. Improvement of tribological performance of AZ31 biodegradable alloy by TiN-based PVD coatings. Tribol. Int. 2022, 173, 107684. [Google Scholar] [CrossRef]
- Niraj, N.; Pandey, K.M.; Dey, A. Tribological behaviour of Magnesium Metal Matrix Composites reinforced with fly ash cenosphere. Mater. Today Proc. 2018, 5, 20138–21044. [Google Scholar] [CrossRef]
- Sidhu, V.P.; Marchi, J.; Borges, R.; Ahmadi, E. Surface modification of metallic orthopedic implants for anti-pathogenic characteristics. J. Compos. Compd. 2022, 4, 51–60. [Google Scholar]
- Jagadeesh, G.V.; Gangi Setti, S. Tribological performance evaluation of ball burnished magnesium alloy for bioresorbable implant applications. J. Mater. Eng. Perform. 2022, 31, 1170–1186. [Google Scholar] [CrossRef]
- Singh, H.; Lodhi, A.P.S.; Verma, T.; Kumar, D.; Jain, J. Tribological response of binary Mg-xZn (Where X = 1, 3 and 6 wt%) alloys. Mater. Today Proc. 2021, 41, 786–790. [Google Scholar] [CrossRef]
- Fattah-alhosseini, A.; Molaei, M.; Nouri, M.; Babaei, K. Antibacterial activity of bioceramic coatings on Mg and its alloys created by plasma electrolytic oxidation (PEO): A review. J. Magnes. Alloy. 2022, 10, 81–96. [Google Scholar] [CrossRef]
- Esmaeili, M.; Tadayonsaidi, M.; Ghorbanian, B. The effect of PEO parameters on the properties of biodegradable Mg alloys: A review. Surf. Innov. 2021, 9, 184–198. [Google Scholar] [CrossRef]
- Fattah-alhosseini, A.; Molaei, M.; Attarzadeh, N.; Babaei, K.; Attarzadeh, F. On the enhanced antibacterial activity of plasma electrolytic oxidation (PEO) coatings that incorporate particles: A review. Ceram. Int. 2020, 46, 20587–20607. [Google Scholar] [CrossRef]
- Chaharmahali, R.; Fattah-Alhosseini, A.; Esfahani, H. Increasing the in-vitro corrosion resistance of AZ31B-Mg alloy via coating with hydroxyapatite using plasma electrolytic oxidation. J. Asian Ceram. Soc. 2020, 8, 39–49. [Google Scholar] [CrossRef]
- Fattah-alhosseini, A.; Chaharmahali, R.; Alizad, S.; Kaseem, M. Corrosion behavior of composite coatings containing hydroxyapatite particles on Mg alloys by plasma electrolytic oxidation: A review. J. Magnes. Alloy. 2023, 11, 2999–3011. [Google Scholar] [CrossRef]
- Molaei, M.; Babaei, K.; Fattah-alhosseini, A. Improving the wear resistance of plasma electrolytic oxidation (PEO) coatings applied on Mg and its alloys under the addition of nano-and micro-sized additives into the electrolytes: A review. J. Magnes. Alloy. 2021, 9, 1164–1186. [Google Scholar] [CrossRef]
- Buling, A.; Zerrer, J. Increasing the application fields of magnesium by ultraceramic®: Corrosion and wear protection by plasma electrolytical oxidation (PEO) of Mg alloys. Surf. Coat. Technol. 2019, 369, 142–155. [Google Scholar] [CrossRef]
- Asgari, M.; Aliofkhazraei, M.; Darband, G.B.; Rouhaghdam, A.S. How nanoparticles and submicron particles adsorb inside coating during plasma electrolytic oxidation of magnesium? Surf. Coat. Technol. 2020, 383, 125252. [Google Scholar] [CrossRef]
- Long, Y.; Wu, L.; Zhang, Z.; Atrens, A.; Pan, F.; Tang, A.; Zhang, G. Enhanced corrosion resistance of anodic films containing alumina nanoparticles on as-rolled AZ31 alloy. Int. J. Electrochem. Sci. 2018, 13, 7157–7174. [Google Scholar] [CrossRef]
- Gheytani, M.; Bagheri, H.R.; Masiha, H.R.; Aliofkhazraei, M.; Sabour Rouhaghdam, A.; Shahrabi, T. Effect of SMAT preprocessing on MAO fabricated nanocomposite coating. Surf. Eng. 2014, 30, 244–255. [Google Scholar] [CrossRef]
- Gnedenkov, S.V.; Sinebryukhov, S.L.; Mashtalyar, D.V.; Imshinetskiy, I.M.; Samokhin, A.V.; Tsvetkov, Y.V. Fabrication of coatings on the surface of magnesium alloy by plasma electrolytic oxidation using ZrO2 and SiO2 nanoparticles. J. Nanomater. 2015, 2015, 154298. [Google Scholar] [CrossRef]
- Tezcan, M.M.; Yetgin, A.G.; Canakoglu, A.I.; Cevher, B.; Turan, M.; Ayaz, M.; Vasko, M.; Handrik, M.; Jakubovicova, L.; Kopas, P.; et al. Investigation of the effects of the equivalent circuit parameters on induction motor torque using three different equivalent circuit models. MATEC Web Conf. 2018, 157, 11. [Google Scholar] [CrossRef]
- Imshinetsky, I.M.; Gnedenkov, S.V.; Sinebryukhov, S.L.; Mashtalyar, D.V.; Samokhin, A.V.; Tsvetkov, Y.V. Incorporation of Composite Zirconia-Silica Nanoparticles into PEO-Coatings on Magnesium Alloys. Defect Diffus. Forum 2018, 386, 321–325. [Google Scholar] [CrossRef]
- Atapour, M.; Blawert, C.; Zheludkevich, M.L. The wear characteristics of CeO2 containing nanocomposite coating made by aluminate-based PEO on AM 50 magnesium alloy. Surf. Coat. Technol. 2019, 357, 626–637. [Google Scholar] [CrossRef]
- Madhankumar, A.; Thangavel, E.; Ramakrishna, S.; Obot, I.B.; Jung, H.C.; Shin, K.S.; Gasem, Z.M.; Kim, H.; Kim, D.E. Multi-functional ceramic hybrid coatings on biodegradable AZ31 Mg implants: Electrochemical, tribological and quantum chemical aspects for orthopaedic applications. Rsc Adv. 2014, 4, 24272–24285. [Google Scholar] [CrossRef]
- Yu, L.; Cao, J.; Cheng, Y. An improvement of the wear and corrosion resistances of AZ31 magnesium alloy by plasma electrolytic oxidation in a silicate–hexametaphosphate electrolyte with the suspension of SiC nanoparticles. Surf. Coat. Technol. 2015, 276, 266–278. [Google Scholar] [CrossRef]
- Vatan, H.N.; Kahrizsangi, R.E.; Asgarani, M.K. Growth, corrosion and wear resistance of SiC nanoparticles embedded MAO coatings on AZ31B magnesium alloy. Prot. Met. Phys. Chem. Surf. 2016, 52, 859–868. [Google Scholar] [CrossRef]
- Ebrahimi-Kahrizsangi, R.; Vatan, H.V. Improvement of Wear Resistance of AZ31 B Mg Alloy by Applying Oxide-Sic Nanocomposite Coating via Plasma Electrolytic Oxidation. In Proceedings of the 2nd World Congress on New Technologies 2016, Budapest, Hungary, 18–19 August 2016. [Google Scholar] [CrossRef]
- Wang, S.Y.; Si, N.C.; Xia, Y.P.; Liu, L. Influence of nano-SiC on microstructure and property of MAO coating formed on AZ91D magnesium alloy. Trans. Nonferrous Met. Soc. China 2015, 25, 1926–1934. [Google Scholar] [CrossRef]
- Vatan, H.N.; Ebrahimi-Kahrizsangi, R.; Kasiri-Asgaranim, M. Wear and Corrosion Performance of PEO-synthesized SiC Nanocomposite Coatings: Effect of Processing Time and Current Density. Int. J. Electrochem. Sci. 2016, 11, 5631–5654. [Google Scholar] [CrossRef]
- NasiriVatan, H.; Ebrahimi-Kahrizsangi, R.; Asgarani, M.K. Tribological performance of PEO-WC nanocomposite coating on Mg alloys deposited by plasma electrolytic oxidation. Tribol. Int. 2016, 98, 253–260. [Google Scholar] [CrossRef]
- Nasiri Vatan, H.; Adabi, M. Investigation of wear and corrosion resistance of nanocomposite coating formed on AZ31B Mg alloy by plasma electrolytic oxidation. Trans. Inst. Met. Finish. 2017, 95, 308–315. [Google Scholar] [CrossRef]
- Polunin, A.V.; Borgardt, E.D.; Shafeev, M.R.; Krishtal, M.M. The effect of tungsten carbide nanoparticles added to electrolyte on the composition and properties of oxide layers formed by plasma electrolytic oxidation on pre-eutectic silumin. J. Phys. Conf. Ser. 2019, 1396, 012032. [Google Scholar] [CrossRef]
- Imshinetsky, I.M.; Mashtalyar, D.V.; Sunebryukhov, S.L.; Gnedenkov, S.V. Mechanical properties of PEO-coatings on the surface of magnesium alloy MA8 modified by TiN nanoparticles. AIP Conf. Proc. 2017, 1874, 040012. [Google Scholar] [CrossRef]
- Mashtalyar, D.V.; Sinebryukhov, S.L.; Imshinetskiy, I.M.; Gnedenkov, A.S.; Nadaraia, K.V.; Ustinov, A.Y.; Gnedenkov, S.V. Hard wearproof PEO-coatings formed on Mg alloy using TiN nanoparticles. Appl. Surf. Sci. 2020, 503, 144062. [Google Scholar] [CrossRef]
- Li, Z.; Wang, X.; Dong, X.; Hu, F.; Liu, S.; Zhang, M.; Yuan, T.; Yu, Y.; Kuang, Q.; Ren, Q.; et al. Creating high-performance bi-functional composite coatings on magnesium−8lithium alloy through electrochemical surface engineering with highly enhanced corrosion and wear protection. J. Alloys Compd. 2020, 818, 153341. [Google Scholar] [CrossRef]
- Fu, J.-G.; Ma, S.-L.; Zhu, X.-H.; Xu, C.-Q.; Yan, Z.-J.; Cheng, D.; Ma, C.-S. Influence of solid lubricant WS2 on the tribological properties of plasma electrolytic oxidation coating of ZL109. Mater. Res. Expr. 2020, 6, 1265c8. [Google Scholar]
- Nasiri Vatan, H.; Adabi, M. Investigation of tribological behavior of ceramic–graphene composite coating produced by plasma electrolytic oxidation. Trans. Indian Inst. Met. 2018, 71, 1643–1652. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, F.; Zhang, Y.; Du, C. 1Influence of graphene oxide additive on the tribological and electrochemical corrosion properties of a PEO coating prepared on AZ31 magnesium alloy. Tribol. Int. 2020, 146, 106135. [Google Scholar] [CrossRef]
- Mozafarnia, H.; Fattah-Alhosseini, A.; Chaharmahali, R.; Nouri, M.; Keshavarz, M.K.; Kaseem, M. Corrosion, wear, and antibacterial behaviors of hydroxyapatite/MgO composite PEO coatings on AZ31 Mg alloy by incorporation of TiO2 nanoparticles. Coatings 2022, 12, 1967. [Google Scholar] [CrossRef]
- Zheng, Z.; Zhao, M.C.; Tan, L.; Zhao, Y.C.; Xie, B.; Yin, D.; Yang, K.; Atrens, A. Corrosion behavior of a self-sealing coating containing CeO2 particles on pure Mg produced by micro-arc oxidation. Surf. Coat. Technol. 2020, 386, 125456. [Google Scholar] [CrossRef]
- da Silva Rodrigues, J.; Antonini, L.M.; da Cunha Bastos, A.A.; Zhou, J.; de Fraga Malfatti, C. Corrosion resistance and tribological behavior of ZK30 magnesium alloy coated by plasma electrolytic oxidation. Surf. Coat. Technol. 2021, 410, 126983. [Google Scholar] [CrossRef]
- Babaei, K.; Fattah-Alhosseini, A.; Molaei, M. The effects of carbon-based additives on corrosion and wear properties of Plasma electrolytic oxidation (PEO) coatings applied on Aluminum and its alloys: A review. Surf. Interfaces 2020, 21, 100677. [Google Scholar] [CrossRef]
- Polunin, A.V.; Cheretaeva, A.O.; Borgardt, E.D.; Rastegaev, I.A.; Krishtal, M.M.; Katsman, A.V.; Yasnikov, I.S. Improvement of oxide layers formed by plasma electrolytic oxidation on cast AlSi alloy by incorporating TiC nanoparticles. Surf. Coat. Technol. 2021, 423, 127603. [Google Scholar] [CrossRef]
- Meenashisundaram, G.K.; Gupta, M. Synthesis and characterization of high performance low volume fraction TiC reinforced Mg nanocomposites targeting biocompatible/structural applications. Mater. Sci. Eng. 2015, 627, 306–315. [Google Scholar] [CrossRef]
- Jonda, E.; Łatka, L.; Godzierz, M.; Maciej, A. Investigations of microstructure and corrosion resistance of WC-Co and WC-Cr3C2-Ni coatings deposited by HVOF on magnesium alloy substrates. Surf. Coat. Technol. 2023, 459, 129355. [Google Scholar] [CrossRef]
- Lou, B.S.; Lin, Y.Y.; Tseng, C.M.; Lu, Y.C.; Duh, J.G.; Lee, J.W. Plasma electrolytic oxidation coatings on AZ31 magnesium alloys with Si3N4 nanoparticle additives. Surf. Coat. Technol. 2017, 332, 358–367. [Google Scholar] [CrossRef]
- Tonelli, L.; Pezzato, L.; Dolcet, P.; Dabalà, M.; Martini, C. Effects of graphite nano-particle additions on dry sliding behaviour of plasma-electrolytic-oxidation-treated EV31A magnesium alloy against steel in air. Wear 2018, 404, 122–132. [Google Scholar] [CrossRef]
- Aydin, F.; Ayday, A.; Turan, M.E.; Zengin, H. Role of graphene additive on wear and electrochemical corrosion behaviour of plasma electrolytic oxidation (PEO) coatings on Mg–MWCNT nanocomposite. Surf. Eng. 2020, 36, 791–799. [Google Scholar] [CrossRef]
- Safari, N.; Golafshan, N.; Kharaziha, M.; Reza Toroghinejad, M.; Utomo, L.; Malda, J.; Castilho, M. Stable and antibacterial magnesium–graphene nanocomposite-based implants for bone repair. ACS Biomater. Sci. Eng. 2020, 6, 6253–6262. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, F.; Zhang, Y.; Liu, Z.; Wang, X.; Du, C. Influence of graphene oxide on the antiwear and antifriction performance of MAO coating fabricated on MgLi alloy. Surf. Coat. Technol. 2019, 364, 144–156. [Google Scholar] [CrossRef]
Substrate | Incorporated Particle Type | Corrosive Media | Without Particles | With Particles | Ref. | ||
---|---|---|---|---|---|---|---|
Ecorr (mV) | icorr (µA.cm−2) | Ecorr (mV) | icorr (µA.cm−2) | ||||
Pure Mg | La2O3 | SBF | −1770 | 33.6 | −1590 | 0.68 | [92] |
AZ91 | ZnO | SBF | −1742 | 6.17 | −1386 | 0.063 | [93] |
AZ80 | CNT | 3.5 wt% NaCl | −1380 | 2.5 | −1250 | 0.56 | [103] |
AZ91 | ZrO2 | 3.5 wt% NaCl | −1400 | 0.727 | −1300 | 0.07 | [140] |
AZ91 | CeO2 | 3.5 wt% NaCl | - | - | −360 | 0.478 | [141] |
AZ31 | CeO2 | 3.5 wt% NaCl | −1540 | 8.6 | −1450 | 0.04 | [142] |
AZ31 | MoS2 | 3.5 wt% NaCl | −100 | 2.96 | −1300 | 0.83 | [143] |
AZ31 | SiC | 3.5 wt% NaCl | −1485 | 1.84 | −1470 | 0.13 | [144] |
AZ31 | WC | 3.5 wt% NaCl | −1460 | 31.85 | −1451 | 10.23 | [145] |
AZ31 | GO | 3.5 wt% NaCl | −1490 | 0.124 | −1440 | 0.033 | [146] |
AZ31 | HA | SBF | −1610 | 4.77 | −1540 | 0.123 | [147] |
MA8 | TiN | 3 wt% NaCl | −1370 | 0.12 | −1440 | 0.14 | [148] |
AM50 | SiO2 | 0.5 wt% NaCl | −1449 | 1.2 | −1556 | 0.19 | [149] |
AM50 | Clay | 0.5 wt% NaCl | −1477 | 63 | −1542 | 58 | [150] |
Mg-Li | Graphene | 3.5 wt% NaCl | −1600 | 1.2 | −1512 | 0.106 | [151] |
AZ31 | HA/GO | SBF | −1598 | 122.1 | −1472 | 36.43 | [152] |
ZK60 | CeO2/ZrO2-HA | SBF | - | - | −1289 | 43.84 | [153] |
AZ31 | ZnO | Hank | −1390 | 0.65 | −1461 | 0.08 | [154] |
AZ31 | Al2O3 | 3.5 wt% NaCl | −1561 | 18.89 | −1509 | 0.65 | [155] |
Mg-Li | TiO2 | 3.5 wt% NaCl | −1529 | 4.409 | −1.495 | 1.725 | [156] |
AZ91 | Graphite | 0.5 wt% NaCl | −1700 | 2.0 | −1720 | 0.6 | [157] |
AZ80 | PTFE | 0.5 wt% NaCl | −1520 | 0.878 | −1510 | 0.161 | [158] |
AZ31 | WO3 | 3.5 wt% NaCl | −1820 | 0.077 | −1670 | 0.021 | [159] |
Substrate | Incorporated Particle Type | Wear Rate of PEO Coatings without Particles | Wear Rate of PEO Coatings with Particles | Reduction of Wear Rate | Ref. |
---|---|---|---|---|---|
AZ31B | Al2O3 | 0.45 × 10−6 (g·Nm−1) | 0.15 × 10−6 (g·Nm−1) | 66.67% | [176] |
AZ31 | 3.09 × 10−4 (mg·Nm−1) | 1.55 × 10−4 (mg·Nm−1) | 49.84% | [155] | |
AZ31 | 4.375 × 10−5 (mm3·Nm−1) | 2.5 × 10−5 (mm3·Nm−1) | 42.86% | [177] | |
AZ31B | 8.3 × 10−3 (mg·Nm−1) | 1.0 × 10−3 (mg·Nm−1) | 87.95% | [178] | |
MA8 | ZrO2 | 4.1 × 10−5 (mm3·Nm−1) | 2.9 × 10−5 (mm3·Nm−1) | 29.27% | [179] |
AZ31 | 4.1 × 10−5 (mm3·Nm−1) | 2.9 × 10−5 (mm3·Nm−1) | 29.27% | [180] | |
MA8 | ZrO2/SiO2 | 4.3 × 10−5 (mm3·Nm−1) | 3.2 × 10−5 (mm3·Nm−1) | 25.58% | [181] |
AM50 | CeO2 | 1.90 × 10−4 (mm3·Nm−1) | 6.15 × 10−5 (mm3·Nm−1) | 67.63% | [182] |
AM50 | SiO2 | 3.7 × 10−3 (mm3·Nm−1) | 7.3 × 10−4 (mm3·Nm−1) | 80.27% | [149] |
MA8 | 4.1 × 10−5 (mm3·Nm−1) | 3.5 × 10−5 (mm3·Nm−1) | 14.63% | [179] | |
AZ31 | Ta2O5 | 1.1 (µm3·Nm−1) | 0.1 (µm3·Nm−1) | 90.91% | [183] |
AZ31 | SiC | 3.8 × 10−4 (mm3·Nm−1) | 3.3 × 10−4 (mm3·Nm−1) | 13.16% | [184] |
AZ31 | 14.57 × 10−4 (mg·Nm−1) | 8.68 × 10−4 (mg·Nm−1) | 40.43% | [144] | |
AZ31B | 24 × 10−4 (mg·mN−1) | 13 × 10−4 (mg·mN−1) | 45.83% | [185] | |
AZ31B | 5 × 10−3 (mg·m−1) | 4 × 10−4 (mg·m−1) | 92% | [186] | |
AZ91D | 2.67 × 10−2 (mg·min−1) | 1.33 × 10−2 (mg·min−1) | 50.19% | [187] | |
AZ31 | 22.47 × 10−4 (mg·Nm−1) | 9.49 × 10−4 (mg·Nm−1) | 57.77% | [188] | |
AZ31B | WC | 28.65 × 10−4 (mg·Nm−1) | 6.67 × 10−4 (mg·Nm−1) | 76.72% | [189] |
AZ31B | 15.20 × 103 (mg·m−1) | 5 × 103 (mg·m−1) | 67.11% | [190] | |
AZ31B | 24.58 × 10−4 (mg·Nm−1) | 11.86 × 10−4 (mg·Nm−1) | 51.75% | [191] | |
MA8 | TiN | 1.1 × 10−5 (mm3·Nm−1) | 5.0 × 10−6 (mm3·Nm−1) | 54.55% | [192] |
MA8 | 4.3 × 10−5 (mm3·Nm−1) | 1.9 × 10−6 (mm3·Nm−1) | 95.5% | [193] | |
MA8 | 4.3 × 10−5 (mm3·Nm−1) | 1.9 × 10−5 (mm3·Nm−1) | 55.81% | [194] | |
Mg–Li | WS2 | 9.27 × 10−5 (mm3·Nm−1) | 4.37 × 10−5 (mm3·Nm−1) | 52.86% | [195] |
AZ31 | MoS2 | 0.91 × 10−6 (mm3·Nm−1) | 4.76 × 10−4 (mm3·Nm−1) | 99.8% | [195] |
Mg–Li | Graphite | 9.27 × 10−5 (mm3·Nm−1) | 4.80 × 10−5 (mm3·Nm−1) | 48.22% | [194] |
AZ31 | Graphene | 16 × 103 (mg·m−1) | 4 × 103 (mg·m−1) | 75% | [196] |
AZ31 | GO | 5.62 × 10−4 (mm3·Nm−1) | 1.34 × 10−4 (mm3·Nm−1) | 76.16% | [197] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Almajidi, Y.Q.; Ali, E.; Jameel, M.F.; Saleh, L.H.; Aggarwal, S.; Zearah, S.A.; Alamula, A.F.; Alsaalamy, A.; Sharifianjazi, F.; Bathaei, M.S. Unveiling the Effect of Particle Incorporation in PEO Coatings on the Corrosion and Wear Performance of Magnesium Implants. Lubricants 2023, 11, 519. https://doi.org/10.3390/lubricants11120519
Almajidi YQ, Ali E, Jameel MF, Saleh LH, Aggarwal S, Zearah SA, Alamula AF, Alsaalamy A, Sharifianjazi F, Bathaei MS. Unveiling the Effect of Particle Incorporation in PEO Coatings on the Corrosion and Wear Performance of Magnesium Implants. Lubricants. 2023; 11(12):519. https://doi.org/10.3390/lubricants11120519
Chicago/Turabian StyleAlmajidi, Yasir Q., Eyhab Ali, Madiha Fouad Jameel, Luma Hussain Saleh, Saurabh Aggarwal, Sajad Ali Zearah, Abbas Firras Alamula, Ali Alsaalamy, Fariborz Sharifianjazi, and Masoud Soroush Bathaei. 2023. "Unveiling the Effect of Particle Incorporation in PEO Coatings on the Corrosion and Wear Performance of Magnesium Implants" Lubricants 11, no. 12: 519. https://doi.org/10.3390/lubricants11120519
APA StyleAlmajidi, Y. Q., Ali, E., Jameel, M. F., Saleh, L. H., Aggarwal, S., Zearah, S. A., Alamula, A. F., Alsaalamy, A., Sharifianjazi, F., & Bathaei, M. S. (2023). Unveiling the Effect of Particle Incorporation in PEO Coatings on the Corrosion and Wear Performance of Magnesium Implants. Lubricants, 11(12), 519. https://doi.org/10.3390/lubricants11120519