Dynamic Models of Mechanical Seals for Turbomachinery Application
Abstract
:1. Introduction
2. Single-Mass Dynamic Model of Mechanical Face Contact Seal
2.1. Model Description
2.2. Calculation Results and Discussion
3. Single-Mass Dynamic Model of Dry Gas Seal
4. Two-Mass Dynamic Model of Dry Gas Seal
4.1. Model Description
4.2. Calculation Results and Discussion
5. Three-Mass Dynamic Model of Dry Gas Seal
5.1. Model Description
5.2. Calculation Results and Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Falaleev, S.V.; Vinogradov, A.S. Analysis of dynamic characteristics for face gas dynamic seal. Proc. Eng. 2015, 106, 210–217. [Google Scholar] [CrossRef]
- Ojile, J.; Teixeira, J.; Carmody, C. Mechanical seal failure analysis. J. Tribol. Trans. 2010, 53, 630–635. [Google Scholar] [CrossRef]
- Bo, R. A semi-analytical solution to the dynamic tracking of non-contacting gas face seals. ASME J. Tribol. 2002, 124, 196–202. [Google Scholar] [CrossRef]
- Varney, P.; Green, I. Impact phenomena in a non-contacting mechanical face seal. ASME J. Tribol. Trans. 2017, 139, 197–231. [Google Scholar] [CrossRef]
- Bo, R. Finite element analysis of the spiral groove gas face seal at the slow speed and the low-pressure conditions—Slip flow consideration. J. Tribol. Trans. 2000, 43, 411–418. [Google Scholar] [CrossRef]
- Xu, J.; Peng, X.; Bai, S.; Meng, X. CFD simulation of microscale flow field in spiral groove dry gas seal. In Proceedings of the 8th International Conference on Mechatronic and Embedded Systems and Applications, Suzhou, China, 8–10 July 2012. [Google Scholar] [CrossRef]
- Wang, B.; Zhang, H.; Cao, H. Flow dynamics of a spiral-groove dry gas seal. Chin. J. Mech. Eng. 2013, 26, 78–84. [Google Scholar] [CrossRef]
- Wu, F.; Jiang, J.; Peng, X.; Teng, L.; Meng, X.; Li, J. Influence of Natural Gas Composition and Operating Conditions on the Steady-State Performance of Dry Gas Seals for Pipeline Compressors. Lubricants 2024, 12, 217. [Google Scholar] [CrossRef]
- Su, H.; Rahmani, R.; Rahnejat, H. Thermohydrodynamics of bidirectional groove dry gas seals with slip flow. Int. J. Thermal. Sci. 2016, 110, 270–284. [Google Scholar] [CrossRef]
- Hu, S.; Huang, W.; Liu, X.; Wang, Y. Stability and tracking analysis of gas face seals under low-parameter conditions considering slip flow. J. Vibroengineering. 2017, 19, 2126–2141. [Google Scholar] [CrossRef]
- Lu, J. Theoretical analysis and experiment on gas film stiffness with slip flow in a spiral-grooved dry gas seal. Ind. Lubr. Tribol. 2021, 73, 1226–1236. [Google Scholar] [CrossRef]
- Park, Y.; Hahn, M.; Jang, G. Effect of Laminar, Turbulent and Slip Conditions on the Dynamic Coefficients of a Dry Gas Seal. Lubricants 2023, 11, 98. [Google Scholar] [CrossRef]
- Chen, Z.; Zhao, P.; Wang, J.; Ji, H. Numerical Simulation of the Influence of the Angle of End Face Gap on the Performance of Dry Gas Seal. J. Adv. Eng. Sci. 2018, 50, 203–210. [Google Scholar] [CrossRef]
- Wang, Y.; Wu, J.H.; Xu, L. Influence of power-law fluid on transient performance of liquid film seal based on the time-dependent non-Newtonian dynamic Reynolds equation. J. Tribol. Int. 2021, 159, 106984. [Google Scholar] [CrossRef]
- Xu, L.; Liu, Y.; Wu, J.H.; Yuan, X.; Hao, M.; Wang, Y.; Liu, F.; Li, Z. Transient dynamic analysis and experimental verification on lubrication regime transition during startup period of non-contacting mechanical seal in liquid oxygen turbopump. J. Tribol. Int. 2022, 176, 107932. [Google Scholar] [CrossRef]
- Falaleev, S.V.; Vinogradov, A.S. Development of a dynamic model and study of the dynamic characteristics of an end gas dynamic seal. J. Mach. Manuf. Reliab. 2017, 46, 40–45. [Google Scholar] [CrossRef]
- Green, I.; Etsion, I. Fluid film dynamic coefficients in mechanical face seals. J. Tribol. 1983, 105, 297–302. [Google Scholar] [CrossRef]
- Bai, S.; Hao, J.; Yang, J.; Song, Y. Gas–Liquid Mass Transfer Behavior of Upstream Pumping Mechanical Face Seals. Materials 2022, 15, 1482. [Google Scholar] [CrossRef]
- Chen, Y.; Jiang, J.; Peng, X. Gas film disturbance characteristics analysis of high-speed and high-pressure dry gas seal. Chin. J. Mech. Eng. 2016, 29, 1226–1233. [Google Scholar] [CrossRef]
- Li, Y.; Hao, M.; Sun, X.; Li, Z.; Wang, Y.; Xu, L.; Cao, H. Dynamic response of spiral groove liquid film seal to impact conditions. Tribol. Int. 2020, 141, 105865. [Google Scholar] [CrossRef]
- Kou, G.; Li, X.; Wang, Y.; Lin, M.; Tan, C.; Mou, M. Steady performance and dynamic characteristics of a superellipse groove dry gas seal at a high-speed condition. Ind. Lubr. Tribol. 2020, 72, 789–796. [Google Scholar] [CrossRef]
- Teng, L.; Jiang, J.; Peng, X.; Li, J.; Zheng, S. Study on Angular Free Vibration Stability and Parameters Influence of Dry Gas Seal Based on the Characteristic Equation. J. Shock. Vib. 2022, 2022, 7378999. [Google Scholar] [CrossRef]
- Wang, Y.; Hao, Z.; Wu, J. Investigation on the dynamic characteristics for high-speed mechanical seal considering turbulent cavitating flow and inertia effect. Ind. Lubr. Tribol. 2024, 76, 864–872. [Google Scholar] [CrossRef]
- Hu, S.; Huang, W.; Liu, X.; Wang, Y. Influence analysis of secondary O-ring seals in dynamic behavior of spiral groove gas face seals. Chin. J. Mech. Eng. 2016, 29, 507–514. [Google Scholar] [CrossRef]
- Green, I.; Etsion, I. Pressure and Sgueeze Effects on the Dynamic Characteristics of Elastomer O-rings Under Small Reciprocating Motion. ASME J. Tribol. Trans. 1986, 108, 439–445. [Google Scholar] [CrossRef]
- Chen, Y.; Peng, X.; Li, J.; Jiang, J. The Influence of Structure Parameters of Spiral Groove on Dynamic Characteristics of Dry Gas Seal. J. Tribol. 2016, 36, 397–405. [Google Scholar] [CrossRef]
- Miller, B.; Green, I. Numerical Formulation for the Dynamic Analysis of Spiral-Grooved Gas Face Seals. ASME J. Tribol. 1998, 120, 345–352. [Google Scholar] [CrossRef]
- Ruan, B. Numerical Modeling of Dynamic sealing behaviors of spiral groove gas face seals. J. Tribol. 2002, 124, 186–195. [Google Scholar] [CrossRef]
- Chen, Y.; Jiang, J.; Peng, X. Dynamic characteristics and transient sealing performance analysis of hyperelliptic curve groove dry gas seals. J. Tribol. Int. 2017, 116, 217–228. [Google Scholar] [CrossRef]
- Chen, Y.; Peng, X.; Jiang, J. Experimental and theoretical studies of the dynamic behavior of a spiral-groove dry gas seal at high-speeds. J. Tribol Int. 2018, 125, 17–26. [Google Scholar] [CrossRef]
- Sun, D.F.; Sun, J.J.; Ma, C.B.; Yu, Q.P. Frequency-Domain-Based Nonlinear Response Analysis of Stationary Ring Displacement of Noncontact Mechanical Seal. J. Shock. Vib. 2019, 6, 1–8. [Google Scholar] [CrossRef]
- Xu, H.; Yue, Y.; Song, P.; Mao, W.; Deng, Q.; Sun, X. Analysis on the dynamic characteristics of spiral groove dry gas seal based on the gas film adaptive adjustment model. J. Ind. Lubr. Tribol. 2023, 75, 406–414. [Google Scholar] [CrossRef]
- Miller, B.; Green, I. Numerical Techniques for Computing Rotor dynamic Properties of Mechanical Gas Face Seals. ASME J. Tribol. 2001, 123, 395–403. [Google Scholar] [CrossRef]
- Green, I. A transient dynamic analysis of mechanical seals including asperity contact and face deformation. J. Tribol. Lubr. Technol. 2005, 61, 52–63. [Google Scholar] [CrossRef]
- Lee, S.; Zheng, X. Analyses of both steady behavior and dynamic tracking of non-contacting spiral-grooved gas face seals. J. Comput. Fluids 2013, 88, 326–333. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, Q.; Hao, M.; Li, X.; Liu, K. The effect of thermal-elastic deformation on the sealing performance of supercritical CO2 dry gas seal. Ind. Lubr. Tribol. 2023, 75, 950–958. [Google Scholar] [CrossRef]
- Zhu, D.; Yang, J.; Bai, S. Thermoelastohydrodynamic Characteristics of Low-Temperature Helium Gas T-Groove Face Seals. Materials 2021, 14, 2873. [Google Scholar] [CrossRef]
- Blasiak, S.; Zahorulko, A.V. A parametric and dynamic analysis of non-contacting gas face seals with modified surfaces. J. Tribol. Int. 2016, 94, 126–137. [Google Scholar] [CrossRef]
- Teng, L.; Jiang, J.; Peng, X.; Li, J. Influence of surface grooving methods on steady and dynamic performance of spiral groove gas face seals. Alex. Eng. J. 2023, 64, 55–80. [Google Scholar] [CrossRef]
- Chen, Y.; Zhuo, Z.; Li, Y.; Li, X.; Wang, B.; Jin, J.; Zhang, C. Prediction of spiral groove dry gas seal performance and intelligent optimization of structural parameters. Tribol. Int. 2024, 193, 109439. [Google Scholar] [CrossRef]
- Chegodaev, D.E.; Falaleev, S.V. Dynamic characteristics of gas layer of face with elastic surface. Sov. J. Frict. Wear 1985, 6, 136–139. [Google Scholar]
- Badykov, R.R.; Falaleev, S.V.; Wood, H.; Vinogradov, A.S. Gas film vibration inside dry gas seal gap. In Proceedings of the Global Fluid Power Society PhD Symposium, Samara, Russia, 18–20 July 2018. [Google Scholar] [CrossRef]
- Hu, S.T.; Huang, W.F.; Liu, X.F.; Wang, Y.M. Application of Fractal Contact Model in Dynamic Performance Analysis of Gas Face Seals. Chin. J. Mech. Eng. 2018, 31, 27. [Google Scholar] [CrossRef]
- Green, I. Dynamic Sensitivities to Fractal Machine Noises in a Mechanical Face Seal. J. Vib. Acoust. 2023, 145, 031001. [Google Scholar] [CrossRef]
- Falaleev, S.V.; Novikov, D.K.; Balyakin, V.B.; Sedov, V.V. Tortsevye gazodinamicheskie uplotneniya [Dry Gas Seals]; Samara Scientific Center of the Russian Academy of Sciences: Samara, Russia, 2013; 300p. [Google Scholar]
- EagleBurgmann Mechanical Seal (M.S.). Operating Manual DGS/PDGS/CDGS / dn–..., Äussere Sauerlacher Straße 6-10; EagleBurgmann Germany GmbH & Co. KG: Wolfratshausen, Germany, 2017; 38p. [Google Scholar]
- Badykov, R.R.; Falaleev, S.V. Influence of turbomachinery vibration processes on the mechanical contact and dry gas seals. In Proceedings of the 2020 International Conference on Dynamics and Vibroacoustics of Machines, Samara, Russia, 16–18 September 2020. [Google Scholar] [CrossRef]
Parameters | Values |
---|---|
Inside radius (r1, mm) | 120 |
Pressure difference (∆P, MPa) | 0.15 |
Spring force (Fsp, N) | 285 |
Stiffness of the spring (Ksp, kN/m) | 30 |
Elastomer O-ring friction force (Ffr, N) | 100 |
Stator rings mass (m, kg) | 1.25 |
Parameters | Values |
---|---|
Outside radius, (r2, mm) | 94 |
Inside radius, (r1, mm) | 75 |
Groove radius, (rG, mm) | 85 |
Groove angle, (α, degree) | 15 |
Ridge width/Groove width, (b1/b2) | 1 |
Balance radius (elastomer O-ring), (rB, mm) | 78.85 |
Groove depth, (dG, µm) | 7 |
Equilibrium gap, (h, µm) | 2.5 |
Outside pressure, (P2, MPa) | 5.2 |
Inside pressure, (P1, MPa) | 0.1 |
Outside temperature, (T2, K) | 298 |
Rotational speed, (ω, RPM) | 7300 |
Groove number, (n) | 12 |
Elastomer O-ring stiffness, (K1, kN/mm) | 5.8 |
Elastomer O-ring damping, (D1, N∙s/mm) | 4.2 |
Fluid | air |
Parameters | N370 | Bidirectional Seal |
---|---|---|
Outside radius, (r2, mm) | 112.5 | 54.18 |
Inside radius, (r1, mm) | 89.85 | 41.35 |
Groove radius, (rG, mm) | 101 | 50.15/46.4 |
Groove angle, (α, deg.) | 15 | 21/6.5 |
Ridge-to-groove width ratio, (b1/b2) | 1 | 5.85 |
Balance radius (elastomer O-ring), (rB, mm) | 92.5 | 42.6 |
Groove depth, (dG, µm) | 7 | 5/12.5 |
Equilibrium gap, (h, µm) | 2.25 | 10.3 |
Stator ring roughness, (RaS, µm) | 0.04 | 0.04 |
Rotor ring roughness, (RaR, µm) | 0.03 | 0.03 |
Groove roughness, (RaG, µm) | 0.20 | 0.20 |
Outside pressure, (P2, MPa) | 6.180 | 0.1186 |
Inside pressure, (P1, MPa) | 0.101 | 0.101 |
Outside temperature, (T2, K) | 298 | 394 |
Rotational speed, (ω, RPM) | 5500 | 30,000 |
Closing Force, (Fcls, kN) | 80.680 | 0.454 |
Groove number, (n) | 12 | 8 |
Fluid | air | natural gas |
Elastomer O-ring stiffness, (K2, kN/mm) | 5.84 | 1.250 |
Spring stiffness, (Ksp, N/mm) | 4.60 | 4.2 |
Elastomer O-ring equivalent damping, (D’2, N∙s/mm) | 4.18 | 1.486 |
Stator rings mass, (mst, kg) | 0.35 | 0.0976 |
Rotor ring mass, (mrt, kg) | 3.82 | 0.7385 |
Spring-loaded ring mass, (msp, kg) | 0.25 | 0.0768 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Badykov, R.; Falaleev, S.; Benedyuk, M.; Diligenskiy, D. Dynamic Models of Mechanical Seals for Turbomachinery Application. Lubricants 2024, 12, 355. https://doi.org/10.3390/lubricants12100355
Badykov R, Falaleev S, Benedyuk M, Diligenskiy D. Dynamic Models of Mechanical Seals for Turbomachinery Application. Lubricants. 2024; 12(10):355. https://doi.org/10.3390/lubricants12100355
Chicago/Turabian StyleBadykov, Renat, Sergei Falaleev, Maxim Benedyuk, and Dmitriy Diligenskiy. 2024. "Dynamic Models of Mechanical Seals for Turbomachinery Application" Lubricants 12, no. 10: 355. https://doi.org/10.3390/lubricants12100355
APA StyleBadykov, R., Falaleev, S., Benedyuk, M., & Diligenskiy, D. (2024). Dynamic Models of Mechanical Seals for Turbomachinery Application. Lubricants, 12(10), 355. https://doi.org/10.3390/lubricants12100355