The present study aims to investigate the effects of cutting parameters (cutting speed, Vc: 60–90–120 m/min; feed rate, f: 0.055–0.085–0.115 mm/rev), cutting tool coatings (CVD: TiN/TiCN/Al
2O
3 and PVD: TiAlN), and machining conditions (dry, air, and MQL) on cutting force (Fc),
[...] Read more.
The present study aims to investigate the effects of cutting parameters (cutting speed, Vc: 60–90–120 m/min; feed rate, f: 0.055–0.085–0.115 mm/rev), cutting tool coatings (CVD: TiN/TiCN/Al
2O
3 and PVD: TiAlN), and machining conditions (dry, air, and MQL) on cutting force (Fc), specific energy consumption (SEC), surface roughness (Ra), cutting temperature (T), and tool wear (Vb) during the milling of Ti6Al4V alloy. As a result, it was observed that all machining tests conducted with the Al
2O
3-coated cutting tool showed improvements of 4.7%, 10.75%, 3.8%, and 6.3% in Fc, SEC, Ra, and T, respectively, compared to the tests performed with the TiAlN-coated cutting tool. Under dry machining conditions, the average Fc, SEC, Ra, and T values were 302.82 N, 4.88 j/mm
3, 0.653 µm, and 241.06 °C, respectively. Compared to dry machining conditions, the air and MQL machining conditions demonstrated improvements in the average Fc by 5.15% and 6.3%, SEC by 10.27% and 17.79%, Ra by 6.23% and 11.17%, and T by 8.9% and 19.68%, respectively. The lowest Fc and Ra values for the Al
2O
3-coated cutting tool were measured at 228.33 N and 0.402 µm, respectively, under the MQL machining condition, at a cutting speed of 120 m/min and a feed rate of 0.055 mm/rev. The lowest SEC value (2.694 J/mm
3) was also obtained using the Al
2O
3-coated tool under MQL conditions at a cutting speed of 120 m/min and a feed rate of 0.115 mm/rev. Similarly, the lowest cutting temperature (129 °C) was achieved with the Al
2O
3-coated tool under MQL conditions at a cutting speed of 60 m/min and a feed rate of 0.055 mm/rev. The wear performance of the Al
2O
3-coated cutting tool was observed to be superior to that of the TiAlN-coated tool.
Full article