Next Issue
Volume 13, September
Previous Issue
Volume 13, July
 
 

Lubricants, Volume 13, Issue 8 (August 2025) – 54 articles

Cover Story (view full-size image): In the face of new environmental challenges, innovative concepts for new fuels are emerging, such as hydrogen combustion engines (ICEs). Due to the different conditions and challenges posed by the new system, the role of all components in the combustion engine is re-evaluated, including that of the lubricant. In hydrogen ICEs, unlike their fossil-fueled counterparts, the main contributor of carbon dioxide is the lubricant; therefore, accurate oil consumption becomes vital in evaluating engine performance. Among the various available techniques, tracer-based methods have been proven to deliver reliable measurements with various types of engine concepts and fuels. However, the technique itself must be validated, and the performance of the oil with the tracer must be compared to that of the oil without the tracer. View this paper
  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Select all
Export citation of selected articles as:
22 pages, 2805 KB  
Review
Recent Developments in Self-Lubricating Thin-Film Coatings Deposited by a Sputtering Technique: A Critical Review of Their Synthesis, Properties, and Applications
by Sunil Kumar Tiwari, Turali Narayana, Rashi Tyagi, Gaurav Pant and Piyush Chandra Verma
Lubricants 2025, 13(8), 372; https://doi.org/10.3390/lubricants13080372 - 21 Aug 2025
Viewed by 803
Abstract
In response to the demand for advanced materials in extreme environments, researchers have developed a variety of bulk and thin-film materials. One of the best-known processes for altering the mechanical and tribological properties of materials is surface engineering techniques. These involve various approaches [...] Read more.
In response to the demand for advanced materials in extreme environments, researchers have developed a variety of bulk and thin-film materials. One of the best-known processes for altering the mechanical and tribological properties of materials is surface engineering techniques. These involve various approaches to synthesize thin-film coatings, along with post-deposition treatments. The need for self-lubricating materials in extreme situations such as high-temperature applications, cryogenic temperatures, and vacuum systems has attracted the attention of researchers. They have fabricated several types of thin films using CVD and PVD techniques to meet this demand. Among the various techniques used for fabricating self-lubricating coatings, sputtering stands out as a special one. It contributes to developing smooth, homogeneous, and crack-free dense microstructures, which further enhance the coatings’ properties. This review explains the need for self-lubricating materials and the different techniques used to synthesize them. It discusses and summarizes the concept of synthesizing various types of self-lubricating films. It shows the different types of self-lubricating material systems, like transition metal-based nitrides and carbides, diamond-like carbon-based materials, and so on. This work also reflects the governing factors like the deposition temperature, doping elements, thickness of the film, deposition pressure, gas flow rate, etc., that influence the deposition results and, consequently, the properties of the film, as well as their advanced applications in different areas. This work reflects the self-lubricating properties of different kinds of films exposed to various environments in terms of their coefficient of friction and wear rate, emphasizing how the friction coefficient affects the wear rate. Full article
Show Figures

Figure 1

18 pages, 8907 KB  
Article
Using the Principle of Newton’s Rings to Monitor Oil Film Thickness in CNC Machine Tool Feed Systems
by Shao-Hsien Chen and Li-Yu Haung
Lubricants 2025, 13(8), 371; https://doi.org/10.3390/lubricants13080371 - 21 Aug 2025
Viewed by 462
Abstract
The lubrication state of the feed system of a CNC machine tool will affect its positioning accuracy, repetition accuracy, and minimum movement amount. Insufficient or excessive lubrication will affect the accuracy. The primary objective of this study is to resolve issues related to [...] Read more.
The lubrication state of the feed system of a CNC machine tool will affect its positioning accuracy, repetition accuracy, and minimum movement amount. Insufficient or excessive lubrication will affect the accuracy. The primary objective of this study is to resolve issues related to the lubrication condition of the feed system, aiming to enhance its operational stability and accuracy. In this study, a measurement system based on images of Newton’s rings was developed. The relationship between the pattern of Newton’s rings and the oil film thickness was established based on the theoretical principle of Newton’s rings. Furthermore, fuzzy logic theory was applied to predict the oil film thickness. In the oil film thickness prediction model based on the radius of Newton’s rings, the average error is 6.5%. When the average feed rate increases by 2 m/min, the oil film thickness value decreases by 43%. Finally, the prediction model is compared with the results of an actual verification experiment. The trends in oil supply timing are consistent between the predicted and experimental results, and the relative error values are less than 10%. Therefore, this study solves the problem of insufficient or excessive oil supply in the feed system guideway, increasing the accuracy of CNC machine tools and contributing to green energy technology. Full article
(This article belongs to the Special Issue Recent Advances in Tribological Properties of Machine Tools)
Show Figures

Figure 1

20 pages, 6506 KB  
Review
Theoretical Modeling and Numerical Simulation of Current-Carrying Friction and Wear: State of the Art and Challenges
by Yijin Sui, Pengfei Xing, Guobin Li, Hongpeng Zhang, Wenzhong Wang and Haibo Zhang
Lubricants 2025, 13(8), 370; https://doi.org/10.3390/lubricants13080370 - 21 Aug 2025
Viewed by 535
Abstract
Current-carrying friction and wear in contact components are key issues in modern electromechanical systems such as slip rings, electrical connectors, motors, and pantographs, directly influencing their efficiency, reliability, and lifespan. Due to the limitations of experimental methods under some extreme conditions, computational simulations [...] Read more.
Current-carrying friction and wear in contact components are key issues in modern electromechanical systems such as slip rings, electrical connectors, motors, and pantographs, directly influencing their efficiency, reliability, and lifespan. Due to the limitations of experimental methods under some extreme conditions, computational simulations have become essential for studying current-carrying friction and wear in such scenarios. This paper presents a comprehensive review of theoretical modeling and numerical simulation methods for current-carrying friction and wear. It begins with discussions of approaches to solve the electrical contact resistance (ECR), a critical parameter that governs current-carrying friction and wear behaviors. Then, it delves into various modeling strategies for current-carrying friction, with an emphasis on the coupled effects of thermal, mechanical, electrical, and magnetic fields. Finally, the review addresses modeling techniques for current-carrying wear, encompassing mechanical wear and arc erosion. By summarizing existing research, this paper identifies key advancements, highlights existing challenges, and outlines future directions, advocating for the development of efficient, universal, and industry-oriented tools that can seamlessly bridge the gap between theoretical modeling and practical applications. Full article
(This article belongs to the Special Issue Advances in Dry and Lubricated Electrical Contacts)
Show Figures

Figure 1

19 pages, 3234 KB  
Article
Effects of Additives Adsorbed to Wet Clutch Disks on Their Tribological Performance Found in a Comparative Investigation
by Charlotte Besser, Christian Tomastik, Astrid Lebel, Mirjam Bäse, Johannes Wirkner, Patrick Strobl, Katharina Voelkel and Karsten Stahl
Lubricants 2025, 13(8), 369; https://doi.org/10.3390/lubricants13080369 - 20 Aug 2025
Viewed by 457
Abstract
Tribolayer build-up was investigated on wet clutch steel disks with experiments in three different test levels of the tribological verification chain via X-ray photoelectron spectroscopy. A new characteristic value of the tribolayers was developed, i.e., the lateral elemental distribution uniformity. This value together [...] Read more.
Tribolayer build-up was investigated on wet clutch steel disks with experiments in three different test levels of the tribological verification chain via X-ray photoelectron spectroscopy. A new characteristic value of the tribolayers was developed, i.e., the lateral elemental distribution uniformity. This value together with the parameters of additive elemental concentration as well as the thickness and the vertical composition of the layers were the basis for the subsequent correlation of the tribolayer properties with the tribological performance of clutch systems from different tests. One important finding was a non-zero threshold concentration of the additive elements calcium and phosphorous below which the clutch performance was unsatisfactory, even with a uniformly covered disk, concluding that the presence of some slightly higher additive element concentration seemed to stabilize the clutch performance. The importance of representative investigation area selection was demonstrated. Full article
Show Figures

Figure 1

14 pages, 3369 KB  
Article
Influence of Machining Environments on the Burnishing Performance of Aluminum Alloy EN AW-2007
by Irina Beșliu-Băncescu and Laurențiu Slătineanu
Lubricants 2025, 13(8), 368; https://doi.org/10.3390/lubricants13080368 - 19 Aug 2025
Viewed by 448
Abstract
The presence of a minimum quantity lubrication (MQL) under the conditions of a burnishing process can contribute to an improvement in the process performance by reducing the heights of the resulting surface asperities, by decreasing the temperature values, and by diminishing the size [...] Read more.
The presence of a minimum quantity lubrication (MQL) under the conditions of a burnishing process can contribute to an improvement in the process performance by reducing the heights of the resulting surface asperities, by decreasing the temperature values, and by diminishing the size of the burnishing force components. On the other hand, there are situations in which it is possible to increase the service life of the parts made of EN AW-2007 aluminum alloy by applying a burnishing process. To verify how the results of applying a burnishing process applied to cylindrical specimens in the aluminum alloy when using and not using a minimum quantity lubrication, an experimental research based on a planned variation between certain limits of the values of the peripheral speed and the feed rate has been conceived and materialized. The experimental results were processed mathematically. It has been found that by using the minimum quantity of mineral oil type Valona MS7023 HC, it was possible to reduce the value of the Sa roughness parameter by up to 18%, a decrease in temperature by about 20 °C, and the size of the burnishing force by up to 45%. Full article
(This article belongs to the Special Issue High Performance Machining and Surface Tribology)
Show Figures

Figure 1

17 pages, 4304 KB  
Article
Environmentally Friendly Phosphating Treatment for Wear-Resistant and Anti-Corrosion Coating on Steel Substrate
by Tengfeng Yan, Ling Li, Lin Zhang, Dan Bai, Guoxin Xie, Bin Wei, Yang Xiao, Chenyang Pan and Guoxing Chen
Lubricants 2025, 13(8), 367; https://doi.org/10.3390/lubricants13080367 - 18 Aug 2025
Viewed by 895
Abstract
An environmentally friendly phosphating process was proposed, which used the synergistic action of citric acid and sodium citrate to form a uniform and dense phosphating film. Compared to the phosphate coating without sodium citrate, the |Z0.01 Hz| of the coating with 0.8 [...] Read more.
An environmentally friendly phosphating process was proposed, which used the synergistic action of citric acid and sodium citrate to form a uniform and dense phosphating film. Compared to the phosphate coating without sodium citrate, the |Z0.01 Hz| of the coating with 0.8 g/L sodium citrate was approximately double. The friction coefficient and wear rate decreased by 29.25% and 94.8%, respectively. The phosphating treatment method reported in this study is expected to become an important way for the anti-corrosion field to environmental protection and economic benefits development. Full article
Show Figures

Figure 1

26 pages, 7806 KB  
Article
Ultrasonic-Assisted Hot-Press Sintering: A Novel Method to Reduce the Densification Temperature and Enhance the Mechanical and Tribological Properties of Cu–Graphite Composites
by Shijia Zhou, Shuang Zhang, Huimin Xiang, Wei Xu, Kuang Sun, Cheng Fang, Wei Xie, Hailong Wang and Yanchun Zhou
Lubricants 2025, 13(8), 366; https://doi.org/10.3390/lubricants13080366 - 18 Aug 2025
Viewed by 500
Abstract
Cu–graphite composites are widely used in pantograph sliders and crane brushes. Conventional sintering protocols, however, mandate processing temperatures above 860 °C with prolonged holding periods, which inevitably introduce defects within copper matrices. Drawing inspiration from ultrasonic machining, this study presents an innovative ultrasonic-assisted [...] Read more.
Cu–graphite composites are widely used in pantograph sliders and crane brushes. Conventional sintering protocols, however, mandate processing temperatures above 860 °C with prolonged holding periods, which inevitably introduce defects within copper matrices. Drawing inspiration from ultrasonic machining, this study presents an innovative ultrasonic-assisted hot-press sintering (UAHP) technique. Using this novel method, Cu–graphite composites with graphite contents ranging from 0 to 30 vol.% were fabricated at a reduced temperature of 700 °C and a short holding time of 10 min, achieving a ca. 160 °C reduction in densification temperature. Aside from the high densification efficiency, enhanced mechanical properties were also obtained for UAHP-sintered Cu–graphite composites. The Cu–15 vol.% graphite composite exhibited a yield strength of 232 MPa, showing only a 7.2% decrease compared to pure Cu. The friction coefficient decreased with increasing graphite content, reaching a plateau value of 0.140 at 15 vol.% graphite, representing a 77.16% reduction compared to pure Cu. The wear rate initially decreased but gradually increased with the increase in graphite content. The superior tribological performance is attributed to the insitu-formed graphite lubricating film, while the primary wear mechanisms are deemed to be oxidative and abrasive wear. The ultrasonic vibration provides additional sintering driving force and enhances elemental diffusion, establishing UAHP as an innovative technical route for fabricating composites with an optimized microstructure and superior comprehensive properties. Full article
Show Figures

Figure 1

19 pages, 944 KB  
Article
A Skid Resistance Predicting Model for Single Carriageways
by Miren Isasa, Ángela Alonso-Solórzano, Itziar Gurrutxaga and Heriberto Pérez-Acebo
Lubricants 2025, 13(8), 365; https://doi.org/10.3390/lubricants13080365 - 16 Aug 2025
Viewed by 508
Abstract
Skid resistance, or friction, on a road surface is a critical parameter in functional highway assessments, given its direct relationships with safety and accident frequency. Therefore, road administrations must collect friction data across their road networks to ensure safe roads for users. In [...] Read more.
Skid resistance, or friction, on a road surface is a critical parameter in functional highway assessments, given its direct relationships with safety and accident frequency. Therefore, road administrations must collect friction data across their road networks to ensure safe roads for users. In addition, having a predictive model of skid resistance for each road section is essential for an efficient pavement management system (PMS). Traditionally, road authorities disregard rural roads, since they are more focused on freeways and traffic-intense roads. This study develops a model for predicting minimum-available skid resistance, which occurs in summer, measured using the Sideway-force Coefficient Routine Investigation Machine (SCRIM), on bituminous pavements in the single-carriageway road network of the Province of Gipuzkoa, Spain. To this end, traffic volume data available in the PMS of the Provincial Council of Gipuzkoa, such as the annual average daily traffic (AADT) and the AADT of heavy vehicles (AADT.HV), were uniquely used to forecast skid-resistance values collected in summer. Additionally, a methodology for eliminating outliers is proposed. Despite the simplicity of the model, which does not include information about the materials at the surface layer, a coefficient of determination (R2) of 0.439 was achieved. This model can help road authorities identify the roads for which lower skid-resistance values are most likely to occur, allowing them to focus their attention and efforts on these roads, which are key infrastructure in rural areas. Full article
(This article belongs to the Special Issue Tire/Road Interface and Road Surface Textures)
Show Figures

Figure 1

24 pages, 6917 KB  
Article
Multi-Sensor Fusion and Deep Learning for Predictive Lubricant Health Assessment
by Yongxu Chen, Jie Shen, Fanhao Zhou, Huaqing Li, Kun Yang and Ling Wang
Lubricants 2025, 13(8), 364; https://doi.org/10.3390/lubricants13080364 - 16 Aug 2025
Viewed by 582
Abstract
Lubricating oil degradation directly impacts friction coefficient, wear rate, and lubrication regime transitions, making precise health quantification essential for predictive tribological maintenance. However, conventional evaluation methods fail to capture subtle tribological changes preceding lubrication failure, often oversimplifying complex multi-parameter relationships critical to friction [...] Read more.
Lubricating oil degradation directly impacts friction coefficient, wear rate, and lubrication regime transitions, making precise health quantification essential for predictive tribological maintenance. However, conventional evaluation methods fail to capture subtle tribological changes preceding lubrication failure, often oversimplifying complex multi-parameter relationships critical to friction and wear performance. To address this challenge, this study proposes Seasonal–Trend decomposition using Loess, a Factor Attention Network, a Temporal Convolutional Network, and an Informer with Long Short-Term Memory Variational Autoencoder (SFTI-LVAE) framework for continuous tribological health assessment of diesel engine lubricants. The approach integrates Seasonal–Trend decomposition using Loess (STL) for trend–seasonal separation, a Factor Attention Network (FAN) for multidimensional feature fusion, and a Temporal Convolutional Network (TCN)-enhanced Informer for capturing long-term tribological dependencies. By combining Long Short-Term Memory (LSTM) temporal modeling with Variational Autoencoder (VAE) reconstruction, the method quantifies lubricant health through reconstruction error, establishing a direct correlation between data deviation and tribological performance degradation. Additionally, permutation importance-based feature evaluation and parameter contribution quantification techniques enable deep mechanistic analysis and fault source tracing of lubricant health degradation. Experimental validation using multi-sensor monitoring data demonstrates that SFTI-LVAE achieves a 96.67% fault detection accuracy with zero false alarms, providing early warning 6.47 h before lubrication failure. Unlike traditional anomaly detection methods that only classify conditions as abnormal or normal, the proposed continuous health index reveals gradual tribological degradation processes, capturing subtle viscosity–temperature relationships and wear particle evolution indicating early lubrication regime transitions. The health index correlates strongly with tribological performance indicators, enabling a transition from reactive maintenance to predictive tribological management, providing an innovative solution for equipment health evaluation in the digital tribology era. Full article
Show Figures

Figure 1

20 pages, 4979 KB  
Article
Investigation of the Effects of Cutting Tool Coatings and Machining Conditions on Cutting Force, Specific Energy Consumption, Surface Roughness, Cutting Temperature, and Tool Wear in the Milling of Ti6Al4V Alloy
by Barış Özlü, Hasan Basri Ulaş and Fuat Kara
Lubricants 2025, 13(8), 363; https://doi.org/10.3390/lubricants13080363 - 15 Aug 2025
Cited by 1 | Viewed by 1044
Abstract
The present study aims to investigate the effects of cutting parameters (cutting speed, Vc: 60–90–120 m/min; feed rate, f: 0.055–0.085–0.115 mm/rev), cutting tool coatings (CVD: TiN/TiCN/Al2O3 and PVD: TiAlN), and machining conditions (dry, air, and MQL) on cutting force (Fc), [...] Read more.
The present study aims to investigate the effects of cutting parameters (cutting speed, Vc: 60–90–120 m/min; feed rate, f: 0.055–0.085–0.115 mm/rev), cutting tool coatings (CVD: TiN/TiCN/Al2O3 and PVD: TiAlN), and machining conditions (dry, air, and MQL) on cutting force (Fc), specific energy consumption (SEC), surface roughness (Ra), cutting temperature (T), and tool wear (Vb) during the milling of Ti6Al4V alloy. As a result, it was observed that all machining tests conducted with the Al2O3-coated cutting tool showed improvements of 4.7%, 10.75%, 3.8%, and 6.3% in Fc, SEC, Ra, and T, respectively, compared to the tests performed with the TiAlN-coated cutting tool. Under dry machining conditions, the average Fc, SEC, Ra, and T values were 302.82 N, 4.88 j/mm3, 0.653 µm, and 241.06 °C, respectively. Compared to dry machining conditions, the air and MQL machining conditions demonstrated improvements in the average Fc by 5.15% and 6.3%, SEC by 10.27% and 17.79%, Ra by 6.23% and 11.17%, and T by 8.9% and 19.68%, respectively. The lowest Fc and Ra values for the Al2O3-coated cutting tool were measured at 228.33 N and 0.402 µm, respectively, under the MQL machining condition, at a cutting speed of 120 m/min and a feed rate of 0.055 mm/rev. The lowest SEC value (2.694 J/mm3) was also obtained using the Al2O3-coated tool under MQL conditions at a cutting speed of 120 m/min and a feed rate of 0.115 mm/rev. Similarly, the lowest cutting temperature (129 °C) was achieved with the Al2O3-coated tool under MQL conditions at a cutting speed of 60 m/min and a feed rate of 0.055 mm/rev. The wear performance of the Al2O3-coated cutting tool was observed to be superior to that of the TiAlN-coated tool. Full article
(This article belongs to the Special Issue High Performance Machining and Surface Tribology)
Show Figures

Figure 1

34 pages, 7404 KB  
Article
Degradation Law Analysis and Life Estimation of Transmission Accuracy of RV Reducer Based on Tooth Surface and Bearing Wear
by Chang Liu, Wankai Shi, He Yu and Kun Liu
Lubricants 2025, 13(8), 362; https://doi.org/10.3390/lubricants13080362 - 15 Aug 2025
Viewed by 455
Abstract
As a core component of industrial robots, the transmission accuracy life (TAL) of rotary vector (RV) reducers constitutes a primary factor determining the high-precision operation of robotic systems. However, current life evaluation methods for RV reducers predominantly rely on conventional bearing strength life [...] Read more.
As a core component of industrial robots, the transmission accuracy life (TAL) of rotary vector (RV) reducers constitutes a primary factor determining the high-precision operation of robotic systems. However, current life evaluation methods for RV reducers predominantly rely on conventional bearing strength life calculations, while neglecting its transmission accuracy degradation during operation. To address this limitation, a static analysis model of RV reducers is established, through which a calculation method for transmission accuracy and TAL is presented. Simultaneously, tooth surface and bearing wear models are developed based on Archard’s wear theory. Through coupled analysis of the aforementioned models, the transmission accuracy degradation law of RV reducers is revealed. The results show that during the operation of the RV reducer, the transmission error (TE) maintains relative stability over time, whereas the lost motion (LM) exhibits a continuous increase. Based on this observation, LM is defined as the evaluation metric for TAL, and a novel TAL estimation model is proposed. The feasibility of the developed TAL estimation model is ultimately validated through accelerated transmission accuracy degradation tests on RV reducers. The error between the predicted and experimental results is 11.06%. The proposed TAL estimation model refines the life evaluation methodology for RV reducers, establishing a solid foundation for real-time transmission accuracy compensation in reducer operation. Full article
Show Figures

Figure 1

14 pages, 4908 KB  
Article
The Synergistic Anti-Friction and Anti-Wear Mechanisms of Betaine-Functionalized Montmorillonite Nano-Lubricants
by Qiang Wang, Zhengkun Yao, Diange Guo, Shuai-Shuai Li and Xia Zhang
Lubricants 2025, 13(8), 361; https://doi.org/10.3390/lubricants13080361 - 14 Aug 2025
Viewed by 495
Abstract
To address the challenges of friction and wear in mechanical systems, two functionalized montmorillonite (MMT) nanolubricants were developed through mechanochemistry, namely 3-sulfotetradecyldimethyl betaine-modified MMT (BS-MMT) and coconut amide propyl betaine-modified MMT (CAB-MMT) lubricants. The modification significantly expanded MMT’s interlayer spacing, with CAB-MMT exhibiting [...] Read more.
To address the challenges of friction and wear in mechanical systems, two functionalized montmorillonite (MMT) nanolubricants were developed through mechanochemistry, namely 3-sulfotetradecyldimethyl betaine-modified MMT (BS-MMT) and coconut amide propyl betaine-modified MMT (CAB-MMT) lubricants. The modification significantly expanded MMT’s interlayer spacing, with CAB-MMT exhibiting superior delamination and dispersion stability due to its coconut fatty amide groups. Tribological tests demonstrated that 0.5% CAB-MMT reduced the friction coefficient by 71.4% (to 0.08) and wear scar diameter by 58.8%, while maintaining stable performance under high loads (392 N) and speeds (1450 rpm). The exceptional performance stems from a synergistic mechanism involving the physical adsorption of MMT nanosheets, chemical adhesion via Fe-N/C-N+ bonds, and dynamic repair by friction-induced oxides. This work presents an eco-friendly, high-performance water-based nano-lubricant with broad industrial application potential. Full article
Show Figures

Figure 1

27 pages, 8160 KB  
Article
Real-Time Prediction of Pressure and Film Height Distribution in Plain Bearings Using Physics-Informed Neural Networks (PINNs)
by Ahmed Saleh, Georg Jacobs, Dhawal Katre, Benjamin Lehmann and Mattheüs Lucassen
Lubricants 2025, 13(8), 360; https://doi.org/10.3390/lubricants13080360 - 14 Aug 2025
Viewed by 898
Abstract
The increasing application of plain bearings in various industries, especially under challenging conditions like thin lubricating films and high temperatures, necessitates effective monitoring to prevent failures and ensure reliable performance. While sensor-based monitoring incurs significant costs and complex installation due to physical sensors [...] Read more.
The increasing application of plain bearings in various industries, especially under challenging conditions like thin lubricating films and high temperatures, necessitates effective monitoring to prevent failures and ensure reliable performance. While sensor-based monitoring incurs significant costs and complex installation due to physical sensors and data acquisition systems, model-based tracking offers a more cost-effective alternative. Model-based monitoring relies on mathematical or physics-based models to estimate system behaviour, reducing the need for extensive sensor data. However, reliable results depend on real-time capable and precise simulation models. Conventional real-time modelling techniques, including analytical calculations, empirical formulas, and data-driven methods, exhibit significant limitations in real-world applications. Analytical methods often have a restricted range of applicability and do not match the accuracy of numerical methods. Meanwhile, data-driven approaches rely heavily on the quality and quantity of training data and are inherently constrained to their training domain. Recently, Physics-Informed Neural Networks (PINNs) have emerged as a promising solution for model-based monitoring to capture complex system behaviour. This approach combines physical modelling with data-driven learning, allowing for better generalisation beyond the training domain while reducing reliance on extensive data. Thus, this study presents an approach for load monitoring in radial plain bearings using PINNs. It extends the application of PINNs by relying solely on simple sensor inputs, such as radial load and rotational speed, to predict the hydrodynamic pressure and oil film thickness distribution under varying stationary conditions. The real-time model is trained, validated, and evaluated within and beyond the training domain using elastohydrodynamic simulation results. The developed real-time model enables load monitoring in plain bearings by identifying critical hydrodynamic pressure and oil film thickness values using readily available speed and load sensor data under varying stationary conditions. Full article
(This article belongs to the Special Issue New Horizons in Machine Learning Applications for Tribology)
Show Figures

Figure 1

14 pages, 7694 KB  
Article
Effect of Laser Scanning Speed on Microstructure and Wear Resistance of TiC-TiB2-Reinforced 316L Laser-Clad Coatings
by Dongdong Zhang, Jingyu Jiang, Yu Liu, Haozhe Li and Zhanhui Zhang
Lubricants 2025, 13(8), 359; https://doi.org/10.3390/lubricants13080359 - 13 Aug 2025
Viewed by 520
Abstract
To enhance the wear resistance of laser-clad coatings, this study investigates the underlying modulation mechanisms of scanning speed on the microstructure and properties of TiC-TiB2-reinforced 316L stainless steel composite coatings. TiC/TiB2 particle-reinforced 316L stainless steel composite coatings were fabricated on [...] Read more.
To enhance the wear resistance of laser-clad coatings, this study investigates the underlying modulation mechanisms of scanning speed on the microstructure and properties of TiC-TiB2-reinforced 316L stainless steel composite coatings. TiC/TiB2 particle-reinforced 316L stainless steel composite coatings were fabricated on 45# steel substrates via laser cladding. Our analysis reveals that scanning speed critically governs the thermal cycle of the melt pool, thereby modulating the coating’s microstructure and properties: Lower scanning speeds prolong melt pool duration, consequently intensifying ceramic particle dissolution, coarsening, and tendencies toward agglomeration and settling. Conversely, higher scanning speeds promote rapid solidification, which both preserves ceramic particles and refines the matrix grains. With increasing scanning speed, accelerated melt pool cooling rates drive a microstructural transition from coarse dendrites to refined equiaxed grains, accompanied by dramatically enhanced uniformity in ceramic particle distribution. Coatings deposited at higher scanning speeds exhibit a 22% increase in hardness compared to those at lower speeds. Wear resistance evolution parallels this hardness trend: at 480 mm/min scanning speed, wear reduction can be expected, with the wear volume decreasing by 58.60% and the friction coefficient reducing by 42.1% relative to 120 mm/min. Full article
Show Figures

Figure 1

23 pages, 2358 KB  
Article
Synergistic Enhancement of Tribological Behavior and Colloidal Stability in CuO Nanolubricants via Ligand Tuning
by Sherif Elsoudy, Sayed Akl, Ahmed A. Abdel-Rehim, Esme Lane, Abas Hadawey and Philip D. Howes
Lubricants 2025, 13(8), 358; https://doi.org/10.3390/lubricants13080358 - 12 Aug 2025
Viewed by 611
Abstract
Nanoparticle-based lubricants, or nanolubricants, can exhibit superior tribological properties compared to unmodified base oils. However, these performance gains are highly dependent on the nanoparticle surface chemistry, particularly in maintaining stable colloidal dispersions. This study explores the influence of oleic acid (OA) and oleylamine [...] Read more.
Nanoparticle-based lubricants, or nanolubricants, can exhibit superior tribological properties compared to unmodified base oils. However, these performance gains are highly dependent on the nanoparticle surface chemistry, particularly in maintaining stable colloidal dispersions. This study explores the influence of oleic acid (OA) and oleylamine (OAm) functionalization on the tribological and colloidal properties of CuO nanoparticles dispersed in an SAE 20W50 base oil. We present a hybrid optimization framework combining Response Surface Methodology (RSM) with Bayesian Optimization (BO) to identify the optimal OA to OAm ratio (OA–OAm) for CuO nanolubricants. Unlike prior studies that employed either RSM alone or trial-and-error approaches, this integrated method enables precise tuning of ligand ratios, achieving balanced tribological performance and colloidal stability. Characterization techniques, including UV–vis spectroscopy, FTIR, Raman spectroscopy, and TGA, were employed to investigate dispersion stability. Results demonstrate that OA/OAm-functionalized CuO nanoparticles exhibit improved dispersion stability and reduced sedimentation compared to non-functionalized counterparts. Tribological evaluations using the four-ball test revealed that the ligand-tuned CuO nanolubricants maintained their tribological enhancements under a variety of additive loadings and ligand combinations, with an improvement ranging from 44.9% to 60.6% in the coefficient of friction (COF) and from 29.2% to 63.9% in the specific wear rate (SWR). For the colloidal stability, OA/OAm-functionalized CuO nanoparticles exhibited a 75% reduction in sedimentation rate (k = 0.003 day−1) compared to unfunctionalized CuO (k = 0.012 day−1). Finally, the high thermal stability of the functionalized nanoparticles ensures their suitability for high-performance applications. Overall, this work represents a crucial step towards commercial applications of CuO-enhanced lubricants. Full article
Show Figures

Figure 1

35 pages, 7060 KB  
Review
A Comprehensive Review of Safety Tire Research
by Liguo Zang, Jing Sun, Xinlei Peng, Fen Lin, Yaoji Deng and Yuxing Bai
Lubricants 2025, 13(8), 357; https://doi.org/10.3390/lubricants13080357 - 12 Aug 2025
Viewed by 1032
Abstract
In frequent traffic accidents, the issue of vehicle losing control due to tire blowouts is particularly critical. Once it occurs, it severely threatens the safety of life and property. Therefore, developing safety tires that meet public needs is of significant practical importance. This [...] Read more.
In frequent traffic accidents, the issue of vehicle losing control due to tire blowouts is particularly critical. Once it occurs, it severely threatens the safety of life and property. Therefore, developing safety tires that meet public needs is of significant practical importance. This paper first reviews the evolutionary history of safety tires, classifying them by structural design and detailing the characteristics of run-flat tires (RFTs) and non-pneumatic tires (NPTs). It summarizes the key experimental characterization, numerical simulation and theoretical modeling methods that support their development, while also emphasizing the insufficiency in experimental verification. Next, the research advancements in materials and manufacturing processes for key components across these two tire categories are summarized. Subsequently, a review is provided on the mechanical characteristics of RFTs and NPTs. Finally, this paper discusses existing research gaps and future development directions for safety tires, emphasizing the importance of multi-disciplinary integration and sustainable design. Full article
Show Figures

Figure 1

23 pages, 11067 KB  
Article
The Influence of Selected Process Parameters on Wire Wear and Surface Quality of Nickel, Titanium and Steel Alloy Parts in WEDM
by Jarosław Buk, Anna Bazan and Paweł Sułkowicz
Lubricants 2025, 13(8), 356; https://doi.org/10.3390/lubricants13080356 - 12 Aug 2025
Viewed by 550
Abstract
Research on the WEDM process has traditionally focused on analyzing discharge initiation, material removal mechanisms and surface formation from the perspective of the machined part. However, the same phenomena also affect the tool, namely the wire electrode. A comprehensive understanding of the process [...] Read more.
Research on the WEDM process has traditionally focused on analyzing discharge initiation, material removal mechanisms and surface formation from the perspective of the machined part. However, the same phenomena also affect the tool, namely the wire electrode. A comprehensive understanding of the process requires to examine how these effects impact the electrode itself, particularly in terms of wear. Despite its significance, electrode wear in WEDM is not a topic frequently addressed in the literature. The most common method for evaluating wear involves determining the wire wear ratio (WWR), based on the electrode’s weight before and after machining. However, this approach does not provide insight into changes in the microstructure of the electrode surface. This study presents an alternative approach to interpreting wire electrode wear, using surface roughness parameters in relation to the surface texture of the machined workpiece. Measurements were conducted using an optical focus variation microscope. The influence of selected process parameters—including discharge current Ip, pulse-off time toff and workpiece height h—on selected surface roughness parameters was investigated. The experimental tests were carried out for three alloys representing distinct material groups: 42CrMo4 steel, Inconel 718 nickel alloy, and Ti6Al4V titanium alloy. The results were compared with the roughness parameters of the corresponding machined surfaces. The presented interpretation of the key factors affecting the electrode surface condition after WEDM serves as an initial step in a broader research initiative. It lays the foundation for further studies on wire electrode wear and the development of new wear assessment parameters such as the electrode wear index based on surface texture parameters. Full article
(This article belongs to the Special Issue High Performance Machining and Surface Tribology)
Show Figures

Figure 1

12 pages, 1633 KB  
Article
An Optimal Preprocessing Method for Predicting the Acid Number of Lubricating Oil Based on PLSR and Infrared Spectroscopy
by Fanhao Zhou, Jie Shen, Xiaojun Li, Kun Yang and Ling Wang
Lubricants 2025, 13(8), 355; https://doi.org/10.3390/lubricants13080355 - 10 Aug 2025
Viewed by 503
Abstract
The acid number evaluates the degree of deterioration of lubricating oil. Existing methods for evaluating the performance degradation of lubricating oils are mostly based on the detection of traditional physical and chemical indicators, which often only reflect a single dimension of the degradation [...] Read more.
The acid number evaluates the degree of deterioration of lubricating oil. Existing methods for evaluating the performance degradation of lubricating oils are mostly based on the detection of traditional physical and chemical indicators, which often only reflect a single dimension of the degradation process, thus affecting the accuracy and repeatability of the results. Integrating multi-dimensional information can more comprehensively reflect the essence of degradation, which can improve the accuracy and reliability of the evaluation results. Mid-infrared spectroscopy is an effective means of monitoring the acid number. In this study, a combination of infrared spectroscopy quantitative analysis and chemometrics was used. The oil sample data was divided into training set and validation set by the Kennard–Stone method. In the experiment, a Fourier transform infrared spectrometer equipped with an attenuated total reflection accessory (ATR-FTIR) was used to collect spectral data of the samples in the wavenumber range of 1750–1700 cm−1 (this range corresponds to the characteristic absorption of carboxyl groups and is directly related to the acid number). Meanwhile, a G20S automatic potentiometric titrator was used to determine the acid number as a reference value in accordance with GB/T 7304. The study compared various preprocessing methods. A regression prediction model between the spectra and acid number was established using partial least squares regression (PLSR) within the selected wavenumber range, with the root mean square error of cross-validation (RMSECV), root mean square error of prediction (RMSEP), and coefficient of determination (R) as evaluation indicators. The experimental results showed that the PLSR model established after preprocessing with second derivative combined with seven-point smoothing exhibited the optimal performance, with an RMSECV of 0.00505, an RMSEP of 0.14%, and an R of 0.9820. Compared with the traditional titration method, this prediction method is more suitable for real-time monitoring of production lines or rapid on-site screening of equipment. It can in a timely manner warn of the deterioration trend of lubricating oil, reduce the risk of equipment wear caused by oil failure, and provide efficient technical support for lubricating oil life management. Full article
Show Figures

Figure 1

32 pages, 6746 KB  
Article
Tribo-Electric Performance of Nano-Enhanced Palm Oil-Based Glycerol Grease for Electric Vehicle Bearings
by Amany A. Abozeid, May M. Youssef, Tamer F. Megahed, Mostafa El-Helaly, Florian Pape and Mohamed G. A. Nassef
Lubricants 2025, 13(8), 354; https://doi.org/10.3390/lubricants13080354 - 8 Aug 2025
Cited by 1 | Viewed by 824
Abstract
Rolling Bearings are crucial components for induction motors and generators in electric vehicles (EVs), as their performance considerably influences the system’s operational reliability and safety. However, the commercial greases used for bearing lubrication in EV motors pose a detrimental impact on the environment. [...] Read more.
Rolling Bearings are crucial components for induction motors and generators in electric vehicles (EVs), as their performance considerably influences the system’s operational reliability and safety. However, the commercial greases used for bearing lubrication in EV motors pose a detrimental impact on the environment. In addition, they are ineffective in mitigating the effect of electric discharges on rolling surfaces leading to premature bearing failures. This study investigates the viability of a developed eco-friendly grease from palm olein as the base oil and glycerol monostearate as the thickener, enhanced with conductive multi-walled carbon nanotubes (MWCNTs) for EV motor bearings prone to electrical currents. Chemical–physical, tribological, and electrical tests were conducted on the developed grease samples without and with MWCNTs at 1 wt.%, 2 wt.%. and 3 wt.% concentrations and results were compared to lithium and sodium greases. Palm grease samples demonstrated a lower EDM voltage range reaching 1.0–2.2 V in case of 3 wt.% MWCNTs blends, indicating better electrical conductivity and protecting the bearing surfaces from electric-related faults. These findings were further confirmed using vibrations measurement and SEM-EDX analysis of the electrically worn bearings. Bearings lubricated with palm grease blends exhibited lower vibration levels. Palm grease with 2 wt.% MWCNTs reduced vibration amplitudes by 28.4% (vertical) and 32.3% (horizontal). Analysis of bearing damaged surfaces revealed enhanced damaged surface morphology for MWCNT-enhanced palm grease as compared to surface lubricated by commercial greases. The results of this work indicate that the proposed bio-grease is a promising candidate for future application in the field of next-generation electric mobility systems. Full article
(This article belongs to the Special Issue Tribology in Vehicles)
Show Figures

Figure 1

19 pages, 440 KB  
Article
Reynolds Equation for a Micro-Scale Lubrication of a Gas Between Eccentric Circular Cylinders with an Arbitrary Temperature Difference Based on Slip-Flow Theory
by Toshiyuki Doi
Lubricants 2025, 13(8), 353; https://doi.org/10.3390/lubricants13080353 - 7 Aug 2025
Viewed by 553
Abstract
Micro-scale lubrication flow of a gas between eccentric circular cylinders with an arbitrary temperature difference is studied on the basis of the Navier–Stokes set of equations and the velocity slip and temperature jump boundary conditions. The dimensionless curvature, which is defined as the [...] Read more.
Micro-scale lubrication flow of a gas between eccentric circular cylinders with an arbitrary temperature difference is studied on the basis of the Navier–Stokes set of equations and the velocity slip and temperature jump boundary conditions. The dimensionless curvature, which is defined as the mean clearance divided by the radius of the inner cylinder, is small, the Knudsen number and the Reynolds number based on the mean clearance are small, and the temperature ratio is arbitrary. The Reynolds-type lubrication equation is derived analytically. For a verification of the equation, an assessment is conducted against the solution of the direct numerical analysis of the Bhatnagar–Gross–Krook–Welander (BGKW) model of the Boltzmann equation in the author’s previous work [Doi, T. Phys. Fluids 2024, 36, 042016]. The solution of the lubrication equation agrees with that of the Boltzmann equation satisfactorily well over the slip flow regime, not only in the eccentric force and the torque but also in the local distribution of the temperature, flow velocity, and the normal stress. A superiority of the lubrication equation over the lubrication model proposed in the author’s previous work is also discussed. Full article
(This article belongs to the Special Issue Gas Lubrication and Dry Gas Seal, 2nd Edition)
Show Figures

Figure 1

26 pages, 8019 KB  
Article
Tribo-Dynamic Investigation of Cryogenic Ball Bearings Considering Varying Traction Parameters
by Shijie Zhang, Shuangshuang Jia, Yuhao Zhao, Jing Wei and Yanyang Zi
Lubricants 2025, 13(8), 352; https://doi.org/10.3390/lubricants13080352 - 5 Aug 2025
Viewed by 562
Abstract
The traction behavior in cryogenic solid-lubricated ball bearings (CSLBBs) used in liquid rocket engines (LREs) affects not only the dynamic response of the bearing but also the lubricity and wear characteristics of the solid lubrication coating. The traction coefficient between the ball and [...] Read more.
The traction behavior in cryogenic solid-lubricated ball bearings (CSLBBs) used in liquid rocket engines (LREs) affects not only the dynamic response of the bearing but also the lubricity and wear characteristics of the solid lubrication coating. The traction coefficient between the ball and raceway depends on factors such as contact material, relative sliding velocity, and contact pressure. However, existing traction curve models for CSLBBs typically consider only one or two of these factors, limiting the accuracy and applicability of theoretical predictions. In this study, a novel traction model for CSLBBs is proposed, which incorporates the combined effects of contact material, relative sliding velocity, and contact pressure. Based on this model, a tribo-dynamic framework is developed to investigate the tribological and dynamic behavior of CSLBBs. The model is validated through both theoretical analysis and experimental data. Results show that the inclusion of solid lubricant effects significantly alters the relative sliding and frictional forces between the rolling elements and the raceway. These changes in turn influence the impact dynamics between the rolling elements and the cage, leading to notable variations in the bearing’s vibrational response. The findings may offer valuable insights for the wear resistance and vibration reduction design of CSLBBs. Full article
(This article belongs to the Special Issue Tribological Characteristics of Bearing System, 3rd Edition)
Show Figures

Figure 1

18 pages, 1899 KB  
Article
Performance Analysis of New Deuterium Tracer for Online Oil Consumption Measurements
by Francesco Marzemin, Martin Vareka, Kevin Gschiel, Bernhard Rossegger, Peter Grabner, Michael Engelmayer and Nicole Wermuth
Lubricants 2025, 13(8), 351; https://doi.org/10.3390/lubricants13080351 - 5 Aug 2025
Viewed by 621
Abstract
The accurate and precise measurement of lubricating oil consumption is critical for developing environmentally friendly internal combustion engines, particularly hydrogen-fueled internal combustion engines. The deuterium tracer method is based on the addition of poly-deuterated base oil tracers to fully formulated oils for precise, [...] Read more.
The accurate and precise measurement of lubricating oil consumption is critical for developing environmentally friendly internal combustion engines, particularly hydrogen-fueled internal combustion engines. The deuterium tracer method is based on the addition of poly-deuterated base oil tracers to fully formulated oils for precise, accurate, and fast lubricating oil consumption measurements. Previously performed measurements have shown that the use of poly-deuterated poly-alpha olefins has minimal impact on lubricating oil properties, except for a slight drop in oil viscosity. To further reduce the impact on lubricating oil characteristics, a new base oil for the synthesis of a poly-deuterated tracer is introduced, and its influence on the lubricating oil’s chemical, tribological, and rheological properties is analyzed. Furthermore, the influence of the tracer addition on the preignition tendencies of the fully formulated oil is also examined. Based on the analyses, no relevant changes in the lubricating oil properties, such as viscosity, density, and thermal degradation behavior, can be observed. Additionally, the deuterium tracer does not negatively influence combustion anomalies, thus reducing preignition tendencies. These results establish the method’s compatibility with new-generation engines, especially hydrogen-fueled internal combustion engines. Full article
Show Figures

Figure 1

24 pages, 13175 KB  
Article
Fault Diagnosis for CNC Machine Tool Feed Systems Based on Enhanced Multi-Scale Feature Network
by Peng Zhang, Min Huang and Weiwei Sun
Lubricants 2025, 13(8), 350; https://doi.org/10.3390/lubricants13080350 - 5 Aug 2025
Viewed by 601
Abstract
Despite advances in Convolutional Neural Networks (CNNs) for intelligent fault diagnosis in CNC machine tools, bearing fault diagnosis in CNC feed systems remains challenging, particularly in multi-scale feature extraction and generalization across operating conditions. This study introduces an enhanced multi-scale feature network (MSFN) [...] Read more.
Despite advances in Convolutional Neural Networks (CNNs) for intelligent fault diagnosis in CNC machine tools, bearing fault diagnosis in CNC feed systems remains challenging, particularly in multi-scale feature extraction and generalization across operating conditions. This study introduces an enhanced multi-scale feature network (MSFN) that addresses these limitations through three integrated modules designed to extract critical fault features from vibration signals. First, a Soft-Scale Denoising (S2D) module forms the backbone of the MSFN, capturing multi-scale fault features from input signals. Second, a Multi-Scale Adaptive Feature Enhancement (MS-AFE) module based on long-range weighting mechanisms is developed to enhance the extraction of periodic fault features. Third, a Dynamic Sequence–Channel Attention (DSCA) module is incorporated to improve feature representation across channel and sequence dimensions. Experimental results on two datasets demonstrate that the proposed MSFN achieves high diagnostic accuracy and exhibits robust generalization across diverse operating conditions. Moreover, ablation studies validate the effectiveness and contributions of each module. Full article
(This article belongs to the Special Issue Advances in Tool Wear Monitoring 2025)
Show Figures

Figure 1

29 pages, 2636 KB  
Review
Review on Tribological and Vibration Aspects in Mechanical Bearings of Electric Vehicles: Effect of Bearing Current, Shaft Voltage, and Electric Discharge Material Spalling Current
by Rohan Lokhande, Sitesh Kumar Mishra, Deepak Ronanki, Piyush Shakya, Vimal Edachery and Lijesh Koottaparambil
Lubricants 2025, 13(8), 349; https://doi.org/10.3390/lubricants13080349 - 5 Aug 2025
Viewed by 1372
Abstract
Electric motors play a decisive role in electric vehicles by converting electrical energy into mechanical motion across various drivetrain components. However, failures in these motors can interrupt the motor function, with approximately 40% of these failures stemming from bearing issues. Key contributors to [...] Read more.
Electric motors play a decisive role in electric vehicles by converting electrical energy into mechanical motion across various drivetrain components. However, failures in these motors can interrupt the motor function, with approximately 40% of these failures stemming from bearing issues. Key contributors to bearing degradation include shaft voltage, bearing current, and electric discharge material spalling current, especially in motors powered by inverters or variable frequency drives. This review explores the tribological and vibrational aspects of bearing currents, analyzing their mechanisms and influence on electric motor performance. It addresses the challenges faced by electric vehicles, such as high-speed operation, elevated temperatures, electrical conductivity, and energy efficiency. This study investigates the origins of bearing currents, damage linked to shaft voltage and electric discharge material spalling current, and the effects of lubricant properties on bearing functionality. Moreover, it covers various methods for measuring shaft voltage and bearing current, as well as strategies to alleviate the adverse impacts of bearing currents. This comprehensive analysis aims to shed light on the detrimental effects of bearing currents on the performance and lifespan of electric motors in electric vehicles, emphasizing the importance of tribological considerations for reliable operation and durability. The aim of this study is to address the engineering problem of bearing failure in inverter-fed EV motors by integrating electrical, tribological, and lubrication perspectives. The novelty lies in proposing a conceptual link between lubricant breakdown and damage morphology to guide mitigation strategies. The study tasks include literature review, analysis of bearing current mechanisms and diagnostics, and identification of technological trends. The findings provide insights into lubricant properties and diagnostic approaches that can support industrial solutions. Full article
(This article belongs to the Special Issue Tribology of Electric Vehicles)
Show Figures

Figure 1

32 pages, 14398 KB  
Article
Crushing Removal Conditions and Experimental Research on Abrasive Water Jets Impacting Rock
by Hongqi Wang, Ruifu Yuan, Xinmin Zhang, Penghui Zai, Junkai Fan and Junhao Deng
Lubricants 2025, 13(8), 348; https://doi.org/10.3390/lubricants13080348 - 4 Aug 2025
Viewed by 503
Abstract
This paper describes the complex process of rock crushing removal by AWJ impact from the microscopic perspective. The acceleration and deceleration mechanism of abrasive particles throughout the whole process of single abrasive particles impacting rocks, the spherical cavity expansion mechanism of the abrasive [...] Read more.
This paper describes the complex process of rock crushing removal by AWJ impact from the microscopic perspective. The acceleration and deceleration mechanism of abrasive particles throughout the whole process of single abrasive particles impacting rocks, the spherical cavity expansion mechanism of the abrasive particles’ impact on the rock, and the elastic contact force of the collision between the abrasive particles and rock were investigated; a mathematical model of AWJ’s impact on the rock crushing removal conditions was established; and the threshold values of the jet impact parameters were obtained. The mathematical model of the rock crushing removal conditions was verified through numerical simulation and jet impact experiments. The research results show that the theoretical value of the jet impact velocity that meets the conditions for limestone crushing removal is greater than or equal to 36 m/s, and the theoretical value of the pressure is greater than or equal to 2.7 MPa. Numerical simulation was used to obtain the displacement of marked points, stress, and strain variation in marked elements of rock under different impact velocities. The effect of impact rock breaking obtained through the experiment demonstrates the correspondence between the test pressure and the theoretical pressure, which verifies the accuracy of the mathematical model of the rock crushing removal conditions. Full article
Show Figures

Figure 1

13 pages, 4747 KB  
Article
Biodegradable Polyalphaolefins for Gear Lubrication in Electrical Drives: Aging and Wetting
by Kevin Holderied, Joachim Albrecht, Elisabeth Distler, Katharina Weber and Nahed El Mahallawy
Lubricants 2025, 13(8), 347; https://doi.org/10.3390/lubricants13080347 - 4 Aug 2025
Viewed by 625
Abstract
Electric propulsion requires engines and transmission systems that run at higher speeds compared to combustion engines. For improving sustainability and environmental protection, biodegradable oils are suggested for the lubrication of high-speed gears that require particularly quick wetting of the steel surfaces. Newly developed [...] Read more.
Electric propulsion requires engines and transmission systems that run at higher speeds compared to combustion engines. For improving sustainability and environmental protection, biodegradable oils are suggested for the lubrication of high-speed gears that require particularly quick wetting of the steel surfaces. Newly developed promising candidates include short-chained polyalphaolefins. In the present work, a study on the applicability of such oil is presented and discussed with respect to different aging levels based on biodegradable properties. It focuses on the wettability of metallic surfaces investigated through time-resolved contact angle measurements. Carbon steels with different carbon contents and microstructures are selected as the most commonly used materials for gears. Effects of steel composition, surface roughness and oil oxidation are studied. The results show that in most cases, the application of biodegradable polyalphaolefins is not critical; however, a combination of steels with inhomogeneous microstructure, high surface roughness and aged oil can be critical because of limited wetting. Full article
(This article belongs to the Special Issue Tribology of Electric Vehicles)
Show Figures

Figure 1

17 pages, 3469 KB  
Article
Performance Characteristics of a New Aerostatic Thrust Bearing with Poro-Elastic Restrictor
by Alin Mărgineanu, Alice Marinescu, Aurelian Fatu, Traian Cicone and Yann Henry
Lubricants 2025, 13(8), 346; https://doi.org/10.3390/lubricants13080346 - 3 Aug 2025
Viewed by 629
Abstract
Aerostatic bearings were proven to be an optimal choice in situations where low friction, cleanliness, and high motion accuracy are required. Their functionality relies heavily on flow restrictors, which are responsible for regulating and controlling the supply flow, and consequently, the thickness and [...] Read more.
Aerostatic bearings were proven to be an optimal choice in situations where low friction, cleanliness, and high motion accuracy are required. Their functionality relies heavily on flow restrictors, which are responsible for regulating and controlling the supply flow, and consequently, the thickness and stiffness of the fluid film. A diverse range of restrictors with varying characteristics is used, among which are the porous restrictors. The current work introduces a novel solution involving a porous, highly compressible restrictor, whose element of novelty compared to its predecessors consists of its variable thickness and corresponding permeability, regulated by the load on the bearing. The gas is supplied through an annular, elastic, deformable, porous disc, which is compressed by a metal plate, subjected to compression by the recess pressure on one side and by the supply pressure on the other side. One or more springs are used in parallel with the porous disc to obtain the optimum elastic response. The objective of this study is to evaluate the performance characteristics and compare them to a conventional restrictor. A parametric analysis is performed to define the size and properties of the porous restrictor. Full article
(This article belongs to the Special Issue Advances in Lubricated Bearings, 2nd Edition)
Show Figures

Figure 1

15 pages, 1258 KB  
Article
Synthesis and Evaluation of Sunflower-Oil-Based Esters as Biolubricant Base Oils Using Ca/TEA Alkoxide Catalyst
by Dimosthenis Filon, George Anastopoulos and Dimitrios Karonis
Lubricants 2025, 13(8), 345; https://doi.org/10.3390/lubricants13080345 - 2 Aug 2025
Viewed by 735
Abstract
This study evaluates the production of base oils for biolubricants using fatty acid methyl esters (FAMEs) derived from sunflower oil as the raw material. The production process involved the synthesis of oleochemical esters through a single-step alkaline transesterification reaction with a high-molecular-weight polyol, [...] Read more.
This study evaluates the production of base oils for biolubricants using fatty acid methyl esters (FAMEs) derived from sunflower oil as the raw material. The production process involved the synthesis of oleochemical esters through a single-step alkaline transesterification reaction with a high-molecular-weight polyol, such as trimethylolpropane (TMP). To assess the effectiveness of the developed catalytic system in conducting the transesterification reactions and its impact on the properties of the final product, two types of alkaline catalysts were used. Specifically, the reactions were carried out using either Ca/TEA alkoxide or sodium methoxide as catalysts in various configurations and concentrations to determine the optimal catalyst concentration and reaction conditions. Sodium methoxide served as the commercial benchmark catalyst, while the Ca/TEA alkoxide was prepared in the laboratory. The optimal concentration of Ca/TEA was determined to be 3.0% wt. in the presence of iso-octane and 3.5% wt. under vacuum, while the corresponding concentrations of CH3ONa for both cases were determined to be 2.0% wt. The synthesized biolubricant esters exhibit remarkable performance characteristics, such as high kinematic viscosities and low pour points—ranging from 33–48 cSt at 40 °C, 7.68–10.03 cSt at 100 °C, to −14 to −7 °C, respectively—which are comparable to or improved over those of mineral oils such as SN-150 or SN-500, with the Ca/TEA alkoxide-catalyzed systems showing superior oxidation stability and reduced byproduct formation. Full article
(This article belongs to the Special Issue Tribological Properties of Biolubricants)
Show Figures

Figure 1

22 pages, 24500 KB  
Article
Ambient to Elevated Temperature: Ecotribology of Water-Based Lubricants Incorporating hBN/TiO2 Nanoadditives
by Afshana Morshed, Fei Lin, Hui Wu, Zhao Xing, Sihai Jiao and Zhengyi Jiang
Lubricants 2025, 13(8), 344; https://doi.org/10.3390/lubricants13080344 - 1 Aug 2025
Viewed by 627
Abstract
Ecotribology focuses on both saving energy resources and reducing environmental pollution. Considering environmental concerns, water-based nanolubricants have gained significant attention over conventional oil-based ones. Non-ecotoxic and highly environmentally friendly nanoadditives were chosen for nanolubricant synthesis, especially considering their use at elevated temperatures. In [...] Read more.
Ecotribology focuses on both saving energy resources and reducing environmental pollution. Considering environmental concerns, water-based nanolubricants have gained significant attention over conventional oil-based ones. Non-ecotoxic and highly environmentally friendly nanoadditives were chosen for nanolubricant synthesis, especially considering their use at elevated temperatures. In this study, hexagonal boron nitride nanosheets (hBNNSs) and titanium dioxide nanoparticles (TiO2 NPs) were used to prepare water-based lubricants with glycerol and surfactant sodium dodecyl benzene sulfonate (SDBS) in water under ultrasonication. An Rtec ball-on-disk tribometer was used to investigate the tribological performance of the synthesised water-based lubricants containing different nano-hBN/TiO2 concentrations, with dry and water conditions used as benchmarks. The results indicated that the water-based nanolubricant containing 0.5 wt% hBN and 0.5 wt% TiO2 exhibited the best tribological performance at both ambient (25 °C) and elevated (500 °C) temperatures. This optimal concentration leads to a reduction in the coefficient of friction (COF) by 72.9% and 37.5%, wear of disk by 62.5% and 49%, and wear of ball by 74% and 69% at ambient and elevated temperatures, respectively, compared to that of distilled water. Lubrication mechanisms were attributed to the rolling, mending, tribofilm, solid layer formation, and synergistic effects of hBNNSs and TiO2 NPs. Full article
(This article belongs to the Special Issue Tribology in Manufacturing Engineering)
Show Figures

Graphical abstract

19 pages, 4045 KB  
Article
Response Surface Optimization Design for High-Speed Ball Bearing Double-Lip Seals Considering Wear Characteristics
by Hengdi Wang, Yulu Yue, Yongcun Cui, Lina Lou and Chang Li
Lubricants 2025, 13(8), 343; https://doi.org/10.3390/lubricants13080343 - 1 Aug 2025
Viewed by 572
Abstract
This paper focuses on the sealing failure problem of double-lip seal rings for high-speed ball bearings used in unmanned aerial vehicles. By using ANSYS 2023R1 software, a thermal–stress–wear coupled finite element model was established. Taking the contact pressure and volume loss due to [...] Read more.
This paper focuses on the sealing failure problem of double-lip seal rings for high-speed ball bearings used in unmanned aerial vehicles. By using ANSYS 2023R1 software, a thermal–stress–wear coupled finite element model was established. Taking the contact pressure and volume loss due to wear as indicators to evaluate sealing performance, this study analyzed the influence of lip seal structural parameters on sealing performance, performed response surface optimization of the seal structure parameters and conducted a comparative test on lip seals before and after optimization. The research results show that the contact pressure at the main lip of the lip seal was the greatest, which was 0.79 MPa, and the volume loss due to wear lip seal was 7.94 × 10−7 mm3. Optimal sealing performance is achieved when the seal lip inclination angle is 41.68°, the middle width of the lip seal is 0.153 mm, the main lip height is 0.179 mm, the spring center distance is 0.37 mm and the radial interference is 0.0034 mm. After optimization, the grease leakage rate of the sealing ring decreased by 48% compared to before optimization. Full article
Show Figures

Figure 1

Previous Issue
Back to TopTop