Surface- and Tip-Enhanced Raman Scattering in Tribology and Lubricant Detection—A Prospective
Abstract
:1. Introduction
2. Fundamental Mechanisms
2.1. Fundamental Principle of SERS
2.2. Fundamental Principle of TERS
3. Application of SERS and TERS in Tribology and Lubricant Detection
3.1. Application of SERS in Interface Tribology Reaction Detection
3.2. Application of SERS in Lubricant Detection
3.3. TERS as a Technique with High Chemical Resolution
3.4. Challenges and Opportunities
4. Summary and Perspective
Author Contributions
Funding
Conflicts of Interest
References
- Sawyer, W.G.; Wahl, K.J. Accessing inaccessible interfaces: In situ approaches to materials tribology. MRS Bull. 2008, 33, 1145–1150. [Google Scholar] [CrossRef]
- Belin, M.; Martin, J. Triboscopy, a new approach to surface degradations of thin films. Wear 1992, 156, 151–160. [Google Scholar] [CrossRef]
- Singer, I.; Le Mogne, T.; Donnet, C.; Martin, J. In situ analysis of the tribochemical films formed by SiC sliding against Mo in partial pressures of SO2, O2, and H2S gases. J. Vac. Sci. Technol. A Vac. Surf. Film. 1996, 14, 38–45. [Google Scholar] [CrossRef]
- Cheong, C.U.A.; Stair, P.C. In situ studies of the lubricant chemistry and frictional properties of perfluoropolyalkyl ethers at a sliding contact. Tribol. Lett. 2001, 10, 117–126. [Google Scholar] [CrossRef]
- Hu, J.; Wheeler, R.; Zabinski, J.; Shade, P.; Shiveley, A.; Voevodin, A. Transmission electron microscopy analysis of Mo–W–S–Se film sliding contact obtained by using focused ion beam microscope and in situ microtribometer. Tribol. Lett. 2008, 32, 49–57. [Google Scholar] [CrossRef]
- Merkle, A.; Erdemir, A.; Eryilmaz, O.; Johnson, J.; Marks, L. In situ TEM studies of tribo-induced bonding modifications in near-frictionless carbon films. Carbon 2010, 48, 587–591. [Google Scholar] [CrossRef]
- Dudder, G.J.; Zhao, X.; Krick, B.; Sawyer, W.G.; Perry, S.S. Environmental effects on the tribology and microstructure of MoS 2–Sb 2 O 3–C films. Tribol. Lett. 2011, 42, 203–213. [Google Scholar] [CrossRef]
- Krick, B.A.; Vail, J.R.; Persson, B.N.; Sawyer, W.G. Optical in situ micro tribometer for analysis of real contact area for contact mechanics, adhesion, and sliding experiments. Tribol. Lett. 2012, 45, 185–194. [Google Scholar] [CrossRef]
- Lorenz, B.; Persson, B.; Dieluweit, S.; Tada, T. Rubber friction: Comparison of theory with experiment. Eur. Phys. J. E 2011, 34, 129. [Google Scholar] [CrossRef]
- Muratore, C.; Bultman, J.E.; Aouadi, S.M.; Voevodin, A.A. In situ Raman spectroscopy for examination of high temperature tribological processes. Wear 2011, 270, 140–145. [Google Scholar] [CrossRef]
- Gachot, C.; Rosenkranz, A.; Reinert, L.; Ramos-Moore, E.; Souza, N.; Müser, M.H.; Mücklich, F. Dry friction between laser-patterned surfaces: Role of alignment, structural wavelength and surface chemistry. Tribol. Lett. 2013, 49, 193–202. [Google Scholar] [CrossRef]
- Gachot, C.; Rosenkranz, A.; Hsu, S.; Costa, H. A critical assessment of surface texturing for friction and wear improvement. Wear 2017, 372, 21–41. [Google Scholar] [CrossRef]
- Yoon, E.-S.; Singh, R.A.; Oh, H.-J.; Kong, H. The effect of contact area on nano/micro-scale friction. Wear 2005, 259, 1424–1431. [Google Scholar] [CrossRef]
- Bhushan, B.; Nosonovsky, M. Scale effects in dry and wet friction, wear, and interface temperature. Nanotechnology 2004, 15, 749. [Google Scholar] [CrossRef]
- Prodanov, N.; Gachot, C.; Rosenkranz, A.; Mücklich, F.; Müser, M.H. Contact mechanics of laser-textured surfaces. Tribol. Lett. 2013, 50, 41–48. [Google Scholar] [CrossRef]
- Hsu, C.-J.; Stratmann, A.; Rosenkranz, A.; Gachot, C. Enhanced growth of ZDDP-based tribofilms on laser-interference patterned cylinder roller bearings. Lubricants 2017, 5, 39. [Google Scholar] [CrossRef]
- Gachot, C.; Grützmacher, P.; Rosenkranz, A. Laser surface texturing of TiAl multilayer films—Effects of microstructure and topography on friction and wear. Lubricants 2018, 6, 36. [Google Scholar] [CrossRef]
- Shen, Y. Surface properties probed by second-harmonic and sum-frequency generation. Nature 1989, 337, 519. [Google Scholar] [CrossRef]
- Gautam, K.; Schwab, A.D.; Dhinojwala, A.; Zhang, D.; Dougal, S.; Yeganeh, M. Molecular structure of polystyrene at air/polymer and solid/polymer interfaces. Phys. Rev. Lett. 2000, 85, 3854. [Google Scholar] [CrossRef]
- Yan, E.C.; Fu, L.; Wang, Z.; Liu, W. Biological macromolecules at interfaces probed by chiral vibrational sum frequency generation spectroscopy. Chem. Rev. 2014, 114, 8471–8498. [Google Scholar] [CrossRef]
- Ge, A.; Wu, H.; Darwish, T.A.; James, M.; Osawa, M.; Ye, S. Structure and lateral interaction in mixed monolayers of dioctadecyldimethylammonium chloride (DOAC) and stearyl alcohol. Langmuir 2013, 29, 5407–5417. [Google Scholar] [CrossRef]
- Kudelski, A. Analytical applications of Raman spectroscopy. Talanta 2008, 76, 1–8. [Google Scholar] [CrossRef]
- Hu, Z.-S.; Hsu, S.M.; Wang, P.S. Tribochemical reaction of stearic acid on copper surface studied by surface enhanced Raman spectroscopy. Tribol. Trans. 1992, 35, 417–422. [Google Scholar] [CrossRef]
- Vergoten, G.; Fleury, G. Overall and lattice vibrations of fatty acids. 1—C form of stearic acid. J. Raman Spectrosc. 1982, 12, 206–210. [Google Scholar] [CrossRef]
- Zerbi, G.; Conti, G.; Minoni, G.; Pison, S.; Bigotto, A. Premelting phenomena in fatty acids: An infrared and Raman study. J. Phys. Chem. 1987, 91, 2386–2393. [Google Scholar] [CrossRef]
- Gao, C.; Hu, Y.; Wang, M.; Chi, M.; Yin, Y. Fully alloyed Ag/Au nanospheres: Combining the plasmonic property of Ag with the stability of Au. J. Am. Chem. Soc. 2014, 136, 7474–7479. [Google Scholar] [CrossRef]
- Liu, K.; Bai, Y.; Zhang, L.; Yang, Z.; Fan, Q.; Zheng, H.; Yin, Y.; Gao, C. Porous Au–Ag nanospheres with high-density and highly accessible hotspots for SERS analysis. Nano Lett. 2016, 16, 3675–3681. [Google Scholar] [CrossRef]
- Moskovits, M. Surface-enhanced spectroscopy. Rev. Mod. Phys. 1985, 57, 783. [Google Scholar] [CrossRef]
- Stiles, P.L.; Dieringer, J.A.; Shah, N.C.; Van Duyne, R.P. Surface-enhanced Raman spectroscopy. Annu. Rev. Anal. Chem. 2008, 1, 601–626. [Google Scholar] [CrossRef]
- Yoshida, K.-i.; Itoh, T.; Tamaru, H.; Biju, V.; Ishikawa, M.; Ozaki, Y. Quantitative evaluation of electromagnetic enhancement in surface-enhanced resonance Raman scattering from plasmonic properties and morphologies of individual Ag nanostructures. Phys. Rev. B 2010, 81, 115406. [Google Scholar] [CrossRef]
- Tao, A.; Sinsermsuksakul, P.; Yang, P. Tunable plasmonic lattices of silver nanocrystals. Nat. Nanotechnol. 2007, 2, 435. [Google Scholar] [CrossRef]
- Anker, J.N.; Hall, W.P.; Lyandres, O.; Shah, N.C.; Zhao, J.; Van Duyne, R.P. Biosensing with plasmonic nanosensors. In Nature Materials; World Scientific: Singapore, 2008; pp. 442–453. [Google Scholar]
- Mayer, K.M.; Hafner, J.H. Localized surface plasmon resonance sensors. Chem. Rev. 2011, 111, 3828–3857. [Google Scholar] [CrossRef]
- Li, J.F.; Huang, Y.F.; Ding, Y.; Yang, Z.L.; Li, S.B.; Zhou, X.S.; Fan, F.R.; Zhang, W.; Zhou, Z.Y.; Ren, B. Shell-isolated nanoparticle-enhanced Raman spectroscopy. Nature 2010, 464, 392. [Google Scholar] [CrossRef]
- Pettinger, B.; Schambach, P.; Villagómez, C.J.; Scott, N. Tip-enhanced Raman spectroscopy: Near-fields acting on a few molecules. Annu. Rev. Phys. Chem. 2012, 63, 379–399. [Google Scholar] [CrossRef]
- Schmid, T.; Opilik, L.; Blum, C.; Zenobi, R. Nanoscale chemical imaging using tip-enhanced Raman spectroscopy: A critical review. Angew. Chem. Int. Ed. 2013, 52, 5940–5954. [Google Scholar] [CrossRef]
- Blum, C.; Opilik, L.; Atkin, J.M.; Braun, K.; Kämmer, S.B.; Kravtsov, V.; Kumar, N.; Lemeshko, S.; Li, J.F.; Luszcz, K. Tip-enhanced Raman spectroscopy—An interlaboratory reproducibility and comparison study. J. Raman Spectrosc. 2014, 45, 22–31. [Google Scholar] [CrossRef]
- Zhang, Z.; Sheng, S.; Wang, R.; Sun, M. Tip-Enhanced Raman Spectroscopy. Anal. Chem. 2016, 88, 9328–9346. [Google Scholar]
- Berweger, S.; Atkin, J.M.; Olmon, R.L.; Raschke, M.B. Adiabatic tip-plasmon focusing for nano-Raman spectroscopy. J. Phys. Chem. Lett. 2010, 1, 3427–3432. [Google Scholar] [CrossRef]
- Berweger, S.; Atkin, J.M.; Olmon, R.L.; Raschke, M.B. Light on the Tip of a Needle: Plasmonic Nanofocusing for Spectroscopy on the Nanoscale. J. Phys. Chem. Lett. 2012, 3, 945–952. [Google Scholar] [CrossRef]
- Campion, A.; Kambhampati, P. Surface-enhanced Raman scattering. Chem. Soc. Rev. 1998, 27, 241–250. [Google Scholar] [CrossRef]
- Zhang, K.; Liu, X.; Man, B.; Yang, C.; Zhang, C.; Liu, M.; Zhang, Y.; Liu, L.; Chen, C. Label-free and stable serum analysis based on Ag-NPs/PSi surface-enhanced Raman scattering for noninvasive lung cancer detection. Biomed. Opt. Express 2018, 9, 4345–4358. [Google Scholar] [CrossRef]
- Yang, Y.; Liu, J.; Fu, Z.-W.; Qin, D. Galvanic replacement-free deposition of Au on Ag for core–shell nanocubes with enhanced chemical stability and SERS activity. J. Am. Chem. Soc. 2014, 136, 8153–8156. [Google Scholar] [CrossRef]
- Zhang, C.; Jiang, S.; Huo, Y.; Liu, A.; Xu, S.; Liu, X.; Sun, Z.; Xu, Y.; Li, Z.; Man, B. SERS detection of R6G based on a novel graphene oxide/silver nanoparticles/silicon pyramid arrays structure. Opt. Express 2015, 23, 24811–24821. [Google Scholar] [CrossRef]
- Li, Z.; Wang, M.; Jiao, Y.; Liu, A.; Wang, S.; Zhang, C.; Yang, C.; Xu, Y.; Li, C.; Man, B. Different number of silver nanoparticles layers for Surface enhanced Raman spectroscopy analysis. Sens. Actuators B Chem. 2018, 255, 374–383. [Google Scholar] [CrossRef]
- Hu, X.; Xu, Z.; Li, K.; Fang, F.; Wang, L. Fabrication of a Au–polystyrene sphere substrate with three-dimensional nanofeatures for surface-enhanced Raman spectroscopy. Appl. Surf. Sci. 2015, 355, 1168–1174. [Google Scholar] [CrossRef]
- Xin, W.; Yang, J.-M.; Li, C.; Goorsky, M.S.; Carlson, L.; De Rosa, I.M. Novel strategy for one-pot synthesis of gold nanoplates on carbon nanotube sheet as an effective flexible SERS substrate. ACS Appl. Mater. Interfaces 2017, 9, 6246–6254. [Google Scholar] [CrossRef]
- Wang, X.; Ma, G.; Li, A.; Yu, J.; Yang, Z.; Lin, J.; Li, A.; Han, X.; Guo, L. Composition-adjustable Ag–Au substitutional alloy microcages enabling tunable plasmon resonance for ultrasensitive SERS. Chem. Sci. 2018, 9, 4009–4015. [Google Scholar] [CrossRef]
- Hernández-Arteaga, A.; Nava, J.d.J.Z.; Kolosovas-Machuca, E.S.; Velázquez-Salazar, J.J.; Vinogradova, E.; José-Yacamán, M.; Navarro-Contreras, H.R. Diagnosis of breast cancer by analysis of sialic acid concentrations in human saliva by surface-enhanced Raman spectroscopy of silver nanoparticles. Nano Res. 2017, 10, 3662–3670. [Google Scholar] [CrossRef]
- Li, Z.; Jiang, S.; Huo, Y.; Ning, T.; Liu, A.; Zhang, C.; He, Y.; Wang, M.; Li, C.; Man, B. 3D silver nanoparticles with multilayer graphene oxide as a spacer for surface enhanced Raman spectroscopy analysis. Nanoscale 2018, 10, 5897–5905. [Google Scholar] [CrossRef]
- Nie, S.; Emory, S.R. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 1997, 275, 1102–1106. [Google Scholar] [CrossRef]
- Xu, H.; Aizpurua, J.; Käll, M.; Apell, P. Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering. Phys. Rev. E 2000, 62, 4318. [Google Scholar] [CrossRef]
- Gardiner, D.J.; Gorvin, A.C.; Gutteridge, C.; Jackson, A.R.; Raper, E.S. In situ characterization of corrosion inhibition complexes on copper surfaces using raman microscopy. Corros. Sci. 1985, 25, 1019–1027. [Google Scholar] [CrossRef]
- Jeziorowski, H.; Knözinger, H.; Grange, P.; Gajardo, P. Raman spectra of cobalt molybdenum oxide supported on silica. J. Phys. Chem. 1980, 84, 1825–1829. [Google Scholar] [CrossRef]
- Jeziorowski, H.; Moser, B. Raman spectroscopic studies of the interaction of oxalic acid and sodium oxalate used as corrosion inhibitors with copper. Chem. Phys. Lett. 1985, 120, 41–44. [Google Scholar] [CrossRef]
- Sandroff, C.; Herschbach, D. Surface-enhanced Raman study of organic sulfides adsorbed on silver: Facile cleavage of sulfur-sulfur and carbon-sulfur bonds. J. Phys. Chem. 1982, 86, 3277–3279. [Google Scholar] [CrossRef]
- Honda, F.; Goto, M.; Masuda, H.; Yamamoto, T. The tribological role of surface atoms: Ultra-thin carbon and silver layers on the Si (111). Tribol. Int. 2003, 36, 371–377. [Google Scholar] [CrossRef]
- Hashiguchi, H.; Takei, M.; Kosemura, D.; Ogura, A. Stress evaluation in thin strained-Si film by polarized Raman spectroscopy using localized surface plasmon resonance. Appl. Phys. Lett. 2012, 101, 172101. [Google Scholar] [CrossRef]
- Chua, W.; Chapman, P.; Stachowiak, G.W. Surface-Enhanced Raman Spectroscopy of Tribochemically Formed Boundary Films of Refined and Unrefined Canola Oils. J. Am. Oil Chem. Soc. 2012, 89, 1793–1800. [Google Scholar] [CrossRef]
- Poling, G. Infrared reflection studies of the oxidation of copper and iron. J. Electrochem. Soc. 1969, 116, 958–963. [Google Scholar] [CrossRef]
- Miragliotta, J.; Benson, R.C.; Phillips, T.E. Vibrational analysis of a stearic acid adlayer adsorbed on a silver flake substrate. MRS Online Proc. Libr. Arch. 1996, 445, 217. [Google Scholar] [CrossRef]
- Krick, B.A.; Hahn, D.W.; Sawyer, W.G. Plasmonic diagnostics for tribology: In situ observations using surface plasmon resonance in combination with surface-enhanced Raman spectroscopy. Tribol. Lett. 2013, 49, 95–102. [Google Scholar] [CrossRef]
- Ghaednia, H.; Hossain, M.S.; Jackson, R.L. Tribological Performance of Silver Nanoparticle–Enhanced Polyethylene Glycol Lubricants. Tribol. Trans. 2016, 59, 585–592. [Google Scholar] [CrossRef]
- Tu, X.; Li, Z.; Lu, J.; Zhang, Y.; Yin, G.; Wang, W.; He, D. In situ preparation of Ag nanoparticles on silicon wafer as highly sensitive SERS substrate. RSC Adv. 2018, 8, 2887–2891. [Google Scholar] [CrossRef]
- Xu, W.; Mao, N.; Zhang, J. Graphene: A platform for surface-enhanced Raman spectroscopy. Small 2013, 9, 1206–1224. [Google Scholar] [CrossRef]
- Zhang, L. Self-assembly Ag nanoparticle monolayer film as SERS Substrate for pesticide detection. Appl. Surf. Sci. 2013, 270, 292–294. [Google Scholar] [CrossRef]
- Liu, C.S.; Li, B.H.; Chen, C.H.; Peng, J.W.; Lee, S. Enhancement in SERS intensities of azo dyes adsorbed on ZnO by plasma treatment. J. Raman Spectrosc. 2014, 45, 332–337. [Google Scholar] [CrossRef]
- Bhattacharya, A.; Singh, T.; Verma, V.; Prasad, N. 1, 3, 4-Thiadiazoles as potential EP additives—A tribological evaluation using a four-ball test. Tribol. Int. 1995, 28, 189–194. [Google Scholar] [CrossRef]
- Huang, L.; Shen, J.; Ren, J.; Meng, Q.; Yu, T. The adsorption of 2, 5-dimer-capto-1, 3, 4-thiadiazole (DMTD) on copper surface and its binding behavior. Chin. Sci. Bull. 2001, 46, 387–389. [Google Scholar] [CrossRef]
- Yanagisawa, M.; Kunimoto, M.; Homma, T. Depth Profile Analysis of Chemical Structures Around Lubricant/Overcoat Interface Using Plasmonic Sensor. In Proceedings of the ASME 2016 Conference on Information Storage and Processing Systems, Santa Clara, CA, USA, 20–21 June 2016; American Society of Mechanical Engineers: New York, NY, USA, 2016. [Google Scholar]
- Yanagisawa, M.; Shimamoto, N.; Nakanishi, T.; Saito, M.; Osaka, T. Organic Molecular Sensor with Plasmon Antenna. ECS Trans. 2008, 16, 397–409. [Google Scholar]
- Yanagisawa, M.; Kunimoto, M.; Homma, T. Chemical Analysis of Ultra-Thin DLC Films and Lubricant/DLC Interface Using Plasmonic Sensors. In Proceedings of the ASME 2014 Conference on Information Storage and Processing Systems, Santa Clara, CA, USA, 23–24 June 2014; American Society of Mechanical Engineers Digital Collection: New York, NY, USA, 2014. [Google Scholar]
- Pathem, B.; Guo, X.-C.; Rose, F.; Wang, N.; Komvopoulos, K.; Schreck, E.; Marchon, B. Carbon overcoat oxidation in heat-assisted magnetic recording. IEEE Trans. Magn. 2013, 49, 3721–3724. [Google Scholar] [CrossRef]
- Li, L.; Suen, B.; Talke, F.E. Investigation of Temperature Dependence of Raman Shift of Diamond-Like Carbon Coatings Used in Heat-Assisted Magnetic Recording. IEEE Trans. Magn. 2015, 51, 1–4. [Google Scholar] [CrossRef]
- Yanagisawa, M.; Kunimoto, M.; Saito, M.; Homma, T. HAMR Emulation Using Plasmonic SERS Sensor As Near Field Transducer. In Proceedings of the ASME-JSME 2018 Joint International Conference on Information Storage and Processing Systems and Micromechatronics for Information and Precision Equipment, San Francisco, CA, USA, 29–30 August 2018; American Society of Mechanical Engineers: New York, NY, USA, 2018. [Google Scholar]
- Ge, J.J.; Li, C.Y.; Xue, G.; Mann, I.K.; Zhang, D.; Wang, S.-Y.; Harris, F.W.; Cheng, S.Z.; Hong, S.-C.; Zhuang, X. Rubbing-induced molecular reorientation on an alignment surface of an aromatic polyimide containing cyanobiphenyl side chains. J. Am. Chem. Soc. 2001, 123, 5768–5776. [Google Scholar] [CrossRef]
- Hayazawa, N.; Yano, T.; Watanabe, H.; Inouye, Y.; Kawata, S. Detection of an individual single-wall carbon nanotube by tip-enhanced near-field Raman spectroscopy. Chem. Phys. Lett. 2003, 376, 174–180. [Google Scholar] [CrossRef]
- Chen, C.; Hayazawa, N.; Kawata, S. A 1.7 nm resolution chemical analysis of carbon nanotubes by tip-enhanced Raman imaging in the ambient. Nat. Commun. 2014, 5, 3312. [Google Scholar] [CrossRef]
- Chaunchaiyakul, S.; Yano, T.; Khoklang, K.; Krukowski, P.; Akai-Kasaya, M.; Saito, A.; Kuwahara, Y. Nanoscale analysis of multiwalled carbon nanotube by tip-enhanced Raman spectroscopy. Carbon 2016, 99, 642–648. [Google Scholar] [CrossRef]
- Liao, M.; Jiang, S.; Hu, C.; Zhang, R.; Kuang, Y.; Zhu, J.; Zhang, Y.; Dong, Z. Tip-enhanced Raman spectroscopic imaging of individual carbon nanotubes with subnanometer resolution. Nano Lett. 2016, 16, 4040–4046. [Google Scholar] [CrossRef]
- Saito, Y.; Hayazawa, N.; Kataura, H.; Murakami, T.; Tsukagoshi, K.; Inouye, Y.; Kawata, S. Polarization measurements in tip-enhanced Raman spectroscopy applied to single-walled carbon nanotubes. Chem. Phys. Lett. 2005, 410, 136–141. [Google Scholar] [CrossRef]
- Rosenkranz, A.; Freeman, L.; Fleischmann, S.; Lasserre, F.; Fainman, Y.; Talke, F.E. Tip-enhanced Raman spectroscopy studies of nanodiamonds and carbon onions. Carbon 2018, 132, 495–502. [Google Scholar] [CrossRef]
- Rosenkranz, A.; Freeman, L.; Suen, B.; Fainman, Y.; Talke, F.E. Tip-Enhanced Raman Spectroscopy Studies on Amorphous Carbon Films and Carbon Overcoats in Commercial Hard Disk Drives. Tribol. Lett. 2018, 66, 54. [Google Scholar] [CrossRef]
Vibrational Band Assignment | Peak Position (cm−1) | |
---|---|---|
Refined Canola Oil | Unrefined Canola Oil | |
ν(Ag–O) | 235 | 215 |
CH3 rock, τ(C–H) | 760 | 760 |
ν(C–C) | 892 | |
ν(C–COO-) | 930 | 930 |
955 | ||
δ(C–H), ν(C–O) | 1030 | |
ν(C–C)G, ν(PO3-4) | 1090 | |
δ(C–H), ν(C–C) | 1167 | |
τ(CH2) | 1300 | 1295 |
ν(COO-) | 1377 | 1395 |
δ(CH2) | 1439 | |
ν(C=C) aromatic ring | 1560 | |
ν(C=C) olefinic chain | 1630 | 1630 |
ν(C=O) | 1700 | |
ν(CH2)S | 2855 | |
ν(CH2)A | 2875 | |
ν(CH3) | 2930 | 2930 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, K.; Xu, Z.; Rosenkranz, A.; Song, Y.; Xue, T.; Fang, F. Surface- and Tip-Enhanced Raman Scattering in Tribology and Lubricant Detection—A Prospective. Lubricants 2019, 7, 81. https://doi.org/10.3390/lubricants7090081
Zhang K, Xu Z, Rosenkranz A, Song Y, Xue T, Fang F. Surface- and Tip-Enhanced Raman Scattering in Tribology and Lubricant Detection—A Prospective. Lubricants. 2019; 7(9):81. https://doi.org/10.3390/lubricants7090081
Chicago/Turabian StyleZhang, Kun, Zongwei Xu, Andreas Rosenkranz, Ying Song, Tao Xue, and Fengzhou Fang. 2019. "Surface- and Tip-Enhanced Raman Scattering in Tribology and Lubricant Detection—A Prospective" Lubricants 7, no. 9: 81. https://doi.org/10.3390/lubricants7090081
APA StyleZhang, K., Xu, Z., Rosenkranz, A., Song, Y., Xue, T., & Fang, F. (2019). Surface- and Tip-Enhanced Raman Scattering in Tribology and Lubricant Detection—A Prospective. Lubricants, 7(9), 81. https://doi.org/10.3390/lubricants7090081