UV-Visible Spectrophotometer for Distinguishing Oxidation Time of Engine Oil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Thermal Oxidation
2.2. UV-Vis Analysis
2.3. Data Preprocessing and Analysis
3. Results and Discussion
3.1. Selection of Wavelengths and Wavelength Ranges
3.2. Comparison with Infrared Spectra
3.3. Predicting Oxidation Time
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Macián, V.; Tormos, B.; Gómez, Y.A.; Salavert, J.M. Proposal of an FTIR Methodology to Monitor Oxidation Level in Used Engine Oils: Effects of Thermal Degradation and Fuel Dilution. Tribol. Trans. 2012, 55, 872–882. [Google Scholar] [CrossRef]
- Soleimani, M.; Sophocleous, M.; Glanc, M.; Atkinson, J.; Wang, L.; Wood, R.; Taylor, R. Engine oil acidity detection using solid state ion selective electrodes. Tribol. Int. 2013, 65, 48–56. [Google Scholar] [CrossRef] [Green Version]
- Faure, D.; Hipeaux, J.C.; Guevellou, Y.; Legros, A. Oxidation stability of gasoline engine lubricants: Effect of base-oil chemistry in laboratory and engine tests. Tribotest 1999, 5, 337–360. [Google Scholar] [CrossRef]
- Lansdown, A.R. Lubrication and Lubricant Selection: A Practical Guide, 3rd ed.; New York, NY, USA, 2004. [Google Scholar]
- Aikawa, K.; Maruyama, M. Development of an Oil Deterioration Monitoring System by Estimating Base Number. SAE Tech. Pap. Ser. 2007, 116, 1057–1063. [Google Scholar] [CrossRef]
- Soleimani, M.; Sophocleous, M.; Wang, L.; Atkinson, J.; Hosier, I.L.; Vaughan, A.S.; Taylor, R.I.; Wood, R.J. Base oil oxidation detection using novel chemical sensors and impedance spectroscopy measurements. Sensors Actuators B: Chem. 2014, 199, 247–258. [Google Scholar] [CrossRef] [Green Version]
- Fitch, J. Understanding How Engines Consume Oil; Machinery Lubircation, NORIA. Available online: https://www.machinerylubrication.com/Read/30384/engines-consume-oil (accessed on 27 March 2021).
- Carney, D. The Truth Behind Carbon Buildup; Team Valvoline. Available online: https://team.valvoline.com/diy/truth-behind-carbon-buildup (accessed on 27 March 2021).
- Tung, S.C.; McMillan, M.L. Automotive tribology overview of current advances and challenges for the future. Tribol. Int. 2004, 37, 517–536. [Google Scholar] [CrossRef]
- Khayal, O.M.E.S. ESSENTIALS OF VEHICLE TRIBOLOGY. 2019. [Google Scholar] [CrossRef]
- Zavos, A.; Nikolakopoulos, P.; Pantelis, G. Tribology of Piston Rings: From the Design to Applications.; TriboUK, Loughborough University: Loughborough, UK, 2015; Available online: https://www.researchgate.net/publication/273457250_Tribology_of_Piston_Rings_From_the_Design_to_Applications (accessed on 27 March 2021).
- Alverson, F.C.; Balfe, S.L.; Skrobul, A.P.; Matulewicz, W.; Dean, S.W. Accelerated Oxidation and Corrosion Testing of Engine Coolants Using a Rotary Pressure Vessel Oxidation Test. J. ASTM Int. 2007, 4, 100366. [Google Scholar] [CrossRef]
- Coultas, D.R. The Role of NOx in Engine Lubricant Oxidation. SAE Technical Paper Series 2020, 2, 3009–3016. [Google Scholar] [CrossRef]
- Amat, S.; Braham, Z.; Le Dréau, Y.; Kister, J.; Dupuy, N. Simulated aging of lubricant oils by chemometric treatment of infrared spectra: Potential antioxidant properties of sulfur structures. Talanta 2013, 107, 219–224. [Google Scholar] [CrossRef]
- Canter, N. Use of Antioxidants in Automotive Lubricants - ProQuest. Tribol. Lubr. Technolgy. 2008, 64, 12–19. [Google Scholar]
- Basu, A.; Berndorfer, A.; Buelna, C.; Campbell, J.; Ismail, K.; Lin, Y.; Rodriguez, L.; Wang, S.S. “Smart Sensing” of Oil Degradation and Oil Level Measurements in Gasoline Engines.; SAE Transactions 2000; pp. 2000-01–1366, doi.org/10.4271/2000-01-1366. SAE Transactions 2000, 857–863. [Google Scholar]
- D02 Committee Standard Test Method for Base Number of Petroleum Products by Potentiometric Perchloric Acid Titration. ASTM Int. 2015.
- Hu, T.; Teng, H.; Luo, X.; Chen, B. Impact of Fuel Injection on Dilution of Engine Crankcase Oil for Turbocharged Gasoline Direct-Injection Engines. SAE Int. J. Engines 2015, 8, 1107–1116. [Google Scholar] [CrossRef]
- Agoston, A.; Ötsch, C.; Jakoby, B. Viscosity sensors for engine oil condition monitoring—Application and interpretation of results. Sensors Actuators A: Phys. 2005, 121, 327–332. [Google Scholar] [CrossRef]
- Cheek, G.T.; Mowery, R. Determination of antioxidants in lubricating oils using ultramicroelectrodes. Anal. Chem. 1989, 61, 1467–1469. [Google Scholar] [CrossRef]
- Dickert, F.L.; Forth, P.; Lieberzeit, P.A.; Voigt, G. Quality control of automotive engine oils with mass-sensitive chemical sensors - QCMs and molecularly imprinted polymers. Anal. Bioanal. Chem. 2000, 366, 802–806. [Google Scholar] [CrossRef]
- Duchowski, J.K.; Mannebach, H. A Novel Approach to Predictive Maintenance: A Portable, Multi-Component MEMS Sensor for On-Line Monitoring of Fluid Condition in Hydraulic and Lubricating Systems. Tribol. Trans. 2006, 49, 545–553. [Google Scholar] [CrossRef]
- Kauffman, R.E. Development of a Remaining Useful Life of a Lubricant Evaluation Technique. III: Cyclic Voltammetric Methods. Lubir. Eng. 1989, 45, 709–716. [Google Scholar]
- Lieberzeit, P.; Glanznig, G.; Leidl, A.; Voigt, N.; Dickert, F. Nanostructured polymers for detecting chemical changes during engine oil degradation. IEEE Sens. J. 2006, 6, 529–535. [Google Scholar] [CrossRef]
- Moon, S.-I.; Paek, K.-K.; Lee, Y.-H.; Kim, J.-K.; Kim, S.-W.; Ju, B.-K. Multiwall Carbon Nanotube Sensor for Monitoring Engine Oil Degradation. Electrochem. Solid-State Lett. 2006, 9, H78. [Google Scholar] [CrossRef]
- Price, R.J.; Clarke, L.J. Chemical sensing of amine antioxidants in turbine lubricants. Analyst 1991, 116, 1121–1123. [Google Scholar] [CrossRef]
- Frassa, K.A.; Siegfriedt, R.K.; Houston, C.A. Modern Analytical Techniques to Establish Realistic Crankcase Drains. SAE Tech. Pap. Ser. 1965, 1, 650139. [Google Scholar] [CrossRef]
- Foster, N.; Amonette, J.; Autrey, T.; Ho, J. Detection of trace levels of water in oil by photoacoustic spectroscopy. Sensors Actuators B Chem. 2001, 77, 620–624. [Google Scholar] [CrossRef]
- Borin, A.; Poppi, R.J. Application of mid infrared spectroscopy and iPLS for the quantification of contaminants in lubricating oil. Vib. Spectrosc. 2005, 37, 27–32. [Google Scholar] [CrossRef]
- Ahmad, I.; Ullah, J.; Ishaq, M.; Khan, H.; Gul, K.; Siddiqui, S.; Ahmad, W. Monitoring of oxidation behavior in mineral base oil additized with biomass derived antioxidants using FT-IR spectroscopy. RSC Adv. 2015, 5, 101089–101100. [Google Scholar] [CrossRef]
- Guan, L.; Feng, X.; Xiong, G.; Xie, J. Application of dielectric spectroscopy for engine lubricating oil degradation monitoring. Sens. Actuators A Phys. 2011, 168, 22–29. [Google Scholar] [CrossRef]
- Rahimi, B.; Semnani, A.; Nezamzadeh-Ejhieh, A.; Langeroodi, H.S.; Davood, M.H. Monitoring of the Physical and Chemical Properties of a Gasoline Engine Oil during Its Usage. J. Anal. Methods Chem. 2012, 2012, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van De Voort, F.R.; Sedman, J.; Cocciardi, R.A.; Pinchuk, D. FTIR Condition Monitoring of In-Service Lubricants: Ongoing Developments and Future Perspectives. Tribol. Trans. 2006, 49, 410–418. [Google Scholar] [CrossRef]
- Holland, T.; Abdul-Munaim, A.M.; Watson, D.G.; Sivakumar, P. Importance of Emulsification in Calibrating Infrared Spectroscopes for Analyzing Water Contamination in Used or In-Service Engine Oil. Lubricants 2018, 6, 35. [Google Scholar] [CrossRef] [Green Version]
- Guide to Measuring Oil Chemistry: Nitration, Oxidation, and Sulfation, Spectro Scientific, White Paper. Available online: https://www.spectrosci.com/resource-center/lubrication-analysis/literature/e-guides/guide-to-measuring-oxidation-nitration-and-sulfation-in-oil/ (accessed on 2 April 2021).
- Abdul-Munaim, A.M.; Holland, T.; Sivakumar, P.; Watson, D.G. Absorption Wavebands for Discriminating Oxidation Time of Engine Oil as Detected by FT-IR Spectroscopy. Lubricants 2019, 7, 24. [Google Scholar] [CrossRef] [Green Version]
- Holland, T.; Abdul-Munaim, A.M.; Watson, D.G.; Sivakumar, P. Influence of Sample Mixing Techniques on Engine Oil Contamination Analysis by Infrared Spectroscopy. Lubricants 2019, 7, 4. [Google Scholar] [CrossRef] [Green Version]
- Aller, M.M.; Abdul-Munaim, A.M.; Watson, D.G.; Preu, S. Error Sources and Distinctness of Materials Parameters Obtained by THz-Time Domain Spectroscopy Using an Example of Oxidized Engine Oil. Sensors 2018, 18, 2087. [Google Scholar] [CrossRef] [Green Version]
- Abdul-Munaim, A.M.; Reuter, M.; Abdulmunem, O.M.; Balzer, J.C.; Koch, M.; Watson, D.G. Using Terahertz Time-Domain Spectroscopy to Discriminate among Water Contamination Levels in Diesel Engine Oil. Trans. ASABE 2016, 59, 795–801. [Google Scholar] [CrossRef] [Green Version]
- Conceição, J.N.; Marangoni, B.S.; Michels, F.S.; Oliveira, I.P.; Passos, W.E.; Trindade, M.A.; Oliveira, S.L.; Caires, A.R. Evaluation of molecular spectroscopy for predicting oxidative degradation of biodiesel and vegetable oil: Correlation analysis between acid value and UV–Vis absorbance and fluorescence. Fuel Process. Technol. 2019, 183, 1–7. [Google Scholar] [CrossRef]
- Ricca, M.; Foderà, V.; Vetri, V.; Buscarino, G.; Montalbano, M.; Leone, M. Oxidation Processes in Sicilian Olive Oils Investigated by a Combination of Optical and EPR Spectroscopy. J. Food Sci. 2012, 77, C1084–C1089. [Google Scholar] [CrossRef]
- Zhou, J.; Xiong, Y.; Gong, Y.; Liu, X. Analysis of the oxidative degradation of biodiesel blends using FTIR, UV–Vis, TGA and TD-DES methods. Fuel 2017, 202, 23–28. [Google Scholar] [CrossRef]
- Vasconcelos, M.D.S.; Passos, W.E.; Lescanos, C.H.; De Oliveira, I.P.; Trindade, M.A.G.; Caires, A.R.L.; Muzzi, R.M. Fluorescence Spectroscopy Applied to Monitoring Biodiesel Degradation: Correlation with Acid Value and UV Absorption Analyses. J. Anal. Methods Chem. 2018, 2018, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Leong, Y.S.; Ker, P.J.; Jamaludin, M.Z.; Nomanbhay, S.M.; Ismail, A.; Abdullah, F.; Looe, H.M.; Lo, C.K. UV-Vis Spectroscopy: A New Approach for Assessing the Color Index of Transformer Insulating Oil. Sensors 2018, 18, 2175. [Google Scholar] [CrossRef] [Green Version]
- Macián, V.; Tormos, B.; Ruiz, S.; García-Barberá, A. An Alternative Procedure to Quantify Soot in Engine Oil by Ultraviolet-Visible Spectroscopy. Tribol. Trans. 2019, 62, 1063–1071. [Google Scholar] [CrossRef]
- Kramer, D.C.; Ziemer, J.N.; Cheng, M.T.; Fry, C.E.; Reynolds, R.N.; Lok, B.K.; Sztenderowicz, M.L.; Krug, R.R. INFLUENCE OF GROUP II & III BASE OIL COMPOSITION ON VI AND OXIDATION STABILITY; Tucson, AZ, USA, 1999. [Google Scholar]
- Wolak, A.; Krasodomski, W.; Zając, G. FTIR analysis and monitoring of used synthetic oils operated under similar driving conditions. Frict. 2020, 8, 995–1006. [Google Scholar] [CrossRef]
- Offunne, G.; Maduako, A.; Ojinnaka, C. Studies on the ageing characteristics of automotive crankcase oils. Tribol. Int. 1989, 22, 401–404. [Google Scholar] [CrossRef]
- Ofunne, G.; Maduako, A.; Ojinnaka, C. High temperature oxidation stability of automotive crankcase oils and their base oils. Tribol. Int. 1990, 23, 407–412. [Google Scholar] [CrossRef]
- Egharevba, F.; Maduako, A.U.C. Assessment of Oxidation in Automotive Crankcase Lube Oil: Effects of Metal and Water Activity. Ind. Eng. Chem. Res. 2002, 41, 3473–3481. [Google Scholar] [CrossRef]
- D02 Committee Standard Practice for Condition Monitoring of In-Service Lubricants by Trend Analysis Using Fourier Transform Infrared (FT-IR) Spectrometry; ASTM International: West Conshohocken, PA, USA, 2018.
- Villar, A.; Fernández, S.; Gorritxategi, E.; Ciria, J.I.; Fernández, L.A. Optimization of the multivariate calibration of a Vis–NIR sensor for the on-line monitoring of marine diesel engine lubricating oil by variable selection methods. Chemom. Intell. Lab. Syst. 2014, 130, 68–75. [Google Scholar] [CrossRef]
- Villar, A.; Gorritxategi, E.; Otaduy, D.; Ciria, J.I.; Fernandez, L.A. Chemometric methods applied to the calibration of a Vis–NIR sensor for gas engine’s condition monitoring. Anal. Chim. Acta 2011, 705, 174–181. [Google Scholar] [CrossRef] [PubMed]
- Shinde, H.M.; Bewoor, A.K. Evaluating petrol engine oil deterioration through oxidation and nitration parameters by low-cost IR sensor. Appl. Petrochem. Res. 2020, 10, 83–94. [Google Scholar] [CrossRef]
- Kovac, O.; Sikuljak, D.; Evdic, T.; Vujica, J. The Influence of Biodiesel on Engine Oil Properties When Conducting High-Temperature Engine Test. Gomabn 2015, 54, 20–31. [Google Scholar]
- Agoston, A.; Schneidhofer, C.; Dörr, N.; Jakoby, B. A concept of an infrared sensor system for oil condition monitoring. e i Elektrotech. Inf. Tech. 2008, 125, 71–75. [Google Scholar] [CrossRef]
- Nguele, R.; Al-Salim, H.S.; Sasaki, K. Degradation Mechanisms and Additive Depletion. J. Multi. Eng. Sci. Technol. 2015, 2, 6. [Google Scholar]
- Moehle, W.E.; Cobb, T.W.; Schneller, E.R.; Gatto, V.J. Utilizing the TEOST MHT®to Evaluate Fundamental Oxidation Processes in Low-Phosphorus Engine Oils. Tribol. Trans. 2007, 50, 96–103. [Google Scholar] [CrossRef]
- Soleimani, M.; Dehabadi, L.; Wilson, L.D.; Tabil, L.G. Antioxidants Classification and Applications in Lubricants. In Lubrication - Tribology, Lubricants and Additives; IntechOpen: London, UK, 2018. [Google Scholar]
Oxidation Time (h) | TBN (mg KOH g−1) | Viscosity (mm2 s−1) |
---|---|---|
0 | 7.2 | 44.98 |
24 | 6.4 | 47.67 |
48 | 5.0 | 46.04 |
72 | 4.5 | 49.38 |
96 | 3.9 | 49.68 |
120 | 3.4 | 49.25 |
144 | 1.8 | 53.27 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Holland, T.; Abdul-Munaim, A.M.; Mandrell, C.; Karunanithy, R.; Watson, D.G.; Sivakumar, P. UV-Visible Spectrophotometer for Distinguishing Oxidation Time of Engine Oil. Lubricants 2021, 9, 37. https://doi.org/10.3390/lubricants9040037
Holland T, Abdul-Munaim AM, Mandrell C, Karunanithy R, Watson DG, Sivakumar P. UV-Visible Spectrophotometer for Distinguishing Oxidation Time of Engine Oil. Lubricants. 2021; 9(4):37. https://doi.org/10.3390/lubricants9040037
Chicago/Turabian StyleHolland, Torrey, Ali Mazin Abdul-Munaim, Christopher Mandrell, Robinson Karunanithy, Dennis G. Watson, and Poopalasingam Sivakumar. 2021. "UV-Visible Spectrophotometer for Distinguishing Oxidation Time of Engine Oil" Lubricants 9, no. 4: 37. https://doi.org/10.3390/lubricants9040037
APA StyleHolland, T., Abdul-Munaim, A. M., Mandrell, C., Karunanithy, R., Watson, D. G., & Sivakumar, P. (2021). UV-Visible Spectrophotometer for Distinguishing Oxidation Time of Engine Oil. Lubricants, 9(4), 37. https://doi.org/10.3390/lubricants9040037