World Trade Center Exposure, DNA Methylation Changes, and Cancer: A Review of Current Evidence
Abstract
:1. Introduction
2. Methods
2.1. Previous EWAS Studies of WTC Exposure and Cancer
2.1.1. Participants
Studies of Cancer-Free Participants
2.1.2. Studies of Cancer Cases
2.2. Sample Collection and Processing
2.3. Methylation Analysis
2.4. Gene Set Enrichment Analysis (GSEA)
2.5. Analysis of Emerging Themes Regarding WTC-Associated DNA Methylation
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Claudio, L. Environmental Aftermath. Environ. Health Perspect. 2001, 109, A528–A536. [Google Scholar] [CrossRef] [PubMed]
- Lioy, P.J.; Weisel, C.P.; Millette, J.R.; Eisenreich, S.; Vallero, D.; Offenberg, J.; Buckley, B.; Turpin, B.; Zhong, M.; Cohen, M.D.; et al. Characterization of the dust/smoke aerosol that settled east of the World Trade Center (WTC) in lower Manhattan after the collapse of the WTC 11 September 2001. Environ. Health Perspect. 2002, 110, 703–714. [Google Scholar] [CrossRef] [PubMed]
- Lioy, P.J.; Georgopoulos, P. The anatomy of the exposures that occurred around the World Trade Center site: 9/11 and beyond. Ann. N. Y. Acad. Sci. 2006, 1076, 54–79. [Google Scholar] [CrossRef]
- Yiin, L.-M.; Millette, J.R.; Vette, A.; Ilacqua, V.; Quan, C.; Gorczynski, J.; Kendall, M.; Chen, L.C.; Weisel, C.P.; Buckley, B.; et al. Comparisons of the dust/smoke particulate that settled inside the surrounding buildings and outside on the streets of southern New York City after the collapse of the World Trade Center, 11 September 2001. J. Air Waste Manag. Assoc. 1995 2004, 54, 515–528. [Google Scholar] [CrossRef] [PubMed]
- Reibman, J.; Levy-Carrick, N.; Miles, T.; Flynn, K.; Hughes, C.; Crane, M.; Lucchini, R.G. Destruction of the World Trade Center Towers. Lessons Learned from an Environmental Health Disaster. Ann. Am. Thorac. Soc. 2016, 13, 577–583. [Google Scholar] [CrossRef]
- Zeig-Owens, R.; Webber, M.P.; Hall, C.B.; Schwartz, T.; Jaber, N.; Weakley, J.; Rohan, T.E.; Cohen, H.W.; Derman, O.; Aldrich, T.K.; et al. Early assessment of cancer outcomes in New York City firefighters after the 9/11 attacks: An observational cohort study. Lancet Lond. Engl. 2011, 378, 898–905. [Google Scholar] [CrossRef]
- Solan, S.; Wallenstein, S.; Shapiro, M.; Teitelbaum, S.L.; Stevenson, L.; Kochman, A.; Kaplan, J.; Dellenbaugh, C.; Kahn, A.; Biro, F.N.; et al. Cancer incidence in world trade center rescue and recovery workers, 2001–2008. Environ. Health Perspect. 2013, 121, 699–704. [Google Scholar] [CrossRef]
- Li, J.; Cone, J.E.; Kahn, A.R.; Brackbill, R.M.; Farfel, M.R.; Greene, C.M.; Hadler, J.L.; Stayner, L.T.; Stellman, S.D. Association between World Trade Center exposure and excess cancer risk. JAMA 2012, 308, 2479–2488. [Google Scholar] [CrossRef]
- Li, J.; Yung, J.; Qiao, B.; Takemoto, E.; Goldfarb, D.G.; Zeig-Owens, R.; Cone, J.E.; Brackbill, R.M.; Farfel, M.R.; Kahn, A.R.; et al. Cancer Incidence in World Trade Center Rescue and Recovery Workers: 14 Years of Follow-Up. JNCI J. Natl. Cancer Inst. 2021, 114, djab165. [Google Scholar] [CrossRef]
- Boffetta, P.; Hall, C.B.; Todd, A.C.; Goldfarb, D.G.; Schymura, M.J.; Li, J.; Cone, J.E.; Zeig-Owens, R. Cancer risk among World Trade Center rescue and recovery workers: A review. CA. Cancer J. Clin. 2022, 72, 308–314. [Google Scholar] [CrossRef]
- Hashim, D.; Boffetta, P.; Galsky, M.; Oh, W.; Lucchini, R.; Crane, M.; Luft, B.; Moline, J.; Udasin, I.; Harrison, D.; et al. Prostate cancer characteristics in the World Trade Center cohort, 2002–2013. Eur. J. Cancer Prev. Off. J. Eur. Cancer Prev. Organ. ECP 2018, 27, 347–354. [Google Scholar] [CrossRef] [PubMed]
- Gong, Y.; Wang, L.; Yu, H.; Alpert, N.; Cohen, M.D.; Prophete, C.; Horton, L.; Sisco, M.; Park, S.-H.; Lee, H.-W.; et al. Prostate Cancer in World Trade Center Responders Demonstrates Evidence of an Inflammatory Cascade. Mol. Cancer Res. MCR 2019, 17, 1605–1612. [Google Scholar] [CrossRef]
- van Gerwen, M.; Cerutti, J.M.; Rapp, J.; Genden, E.; Riggins, G.J.; Taioli, E. Post-9/11 excess risk of thyroid cancer: Surveillance or exposure? Am. J. Ind. Med. 2021, 64, 881–884. [Google Scholar] [CrossRef] [PubMed]
- Marmor, M.; Burcham, J.L.; Chen, L.-C.; Chillrud, S.N.; Graham, J.K.; Jordan, H.T.; Zhong, M.; Halzack, E.; Cone, J.E.; Shao, Y. Trace and Major Element Concentrations in Cadaveric Lung Tissues from World Trade Center Health Registry Decedents and Community Controls. Int. J. Environ. Res. Public. Health 2023, 20, 6923. [Google Scholar] [CrossRef] [PubMed]
- Durmus, N.; Shao, Y.; Arslan, A.A.; Zhang, Y.; Pehlivan, S.; Fernandez-Beros, M.-E.; Umana, L.; Corona, R.; Smyth-Giambanco, S.; Abbott, S.A.; et al. Characteristics of Cancer Patients in the World Trade Center Environmental Health Center. Int. J. Environ. Res. Public. Health 2020, 17, 7190. [Google Scholar] [CrossRef]
- Arslan, A.; Zhang, Y.; Durmus, N.; Pehlivan, S.; Addessi, A.; Schnabel, F.; Shao, Y.; Reibman, J. Breast Cancer Characteristics in the Population of Survivors Participating in the World Trade Center Environmental Health Center Program 2002–2019. Int. J. Environ. Res. Public. Health 2021, 18, 7555. [Google Scholar] [CrossRef]
- Arita, A.; Costa, M. Epigenetics in metal carcinogenesis: Nickel, arsenic, chromium and cadmium. Met. Integr. Biometal Sci. 2009, 1, 222–228. [Google Scholar] [CrossRef]
- Martinez-Zamudio, R.; Ha, H.C. Environmental epigenetics in metal exposure. Epigenetics 2011, 6, 820–827. [Google Scholar] [CrossRef]
- Brocato, J.; Costa, M. Basic mechanics of DNA methylation and the unique landscape of the DNA methylome in metal-induced carcinogenesis. Crit. Rev. Toxicol. 2013, 43, 493–514. [Google Scholar] [CrossRef]
- Ravegnini, G.; Sammarini, G.; Hrelia, P.; Angelini, S. Key Genetic and Epigenetic Mechanisms in Chemical Carcinogenesis. Toxicol. Sci. 2015, 148, 2–13. [Google Scholar] [CrossRef]
- Ruiz-Hernandez, A.; Kuo, C.-C.; Rentero-Garrido, P.; Tang, W.-Y.; Redon, J.; Ordovas, J.M.; Navas-Acien, A.; Tellez-Plaza, M. Environmental chemicals and DNA methylation in adults: A systematic review of the epidemiologic evidence. Clin. Epigenetics 2015, 7, 55. [Google Scholar] [CrossRef] [PubMed]
- Salemi, R.; Marconi, A.; Di Salvatore, V.; Franco, S.; Rapisarda, V.; Libra, M. Epigenetic alterations and occupational exposure to benzene, fibers, and heavy metals associated with tumor development (Review). Mol. Med. Rep. 2017, 15, 3366–3371. [Google Scholar] [CrossRef] [PubMed]
- Martin, E.M.; Fry, R.C. Environmental Influences on the Epigenome: Exposure- Associated DNA Methylation in Human Populations. Annu. Rev. Public Health 2018, 39, 309–333. [Google Scholar] [CrossRef]
- Das, D.N.; Ravi, N. Influences of polycyclic aromatic hydrocarbon on the epigenome toxicity and its applicability in human health risk assessment. Environ. Res. 2022, 213, 113677. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Costa, M. Metals and molecular carcinogenesis. Carcinogenesis 2020, 41, 1161–1172. [Google Scholar] [CrossRef]
- Kuzmina, N.S.; Luong, T.M.; Rubanovich, A.V. Changes in DNA Methylation Induced by Dioxins and Dioxin-Like Compounds as Potential Predictor of Disease Risk. Russ. J. Genet. 2020, 56, 1180–1192. [Google Scholar] [CrossRef]
- Chanda, S.; Dasgupta, U.B.; Guhamazumder, D.; Gupta, M.; Chaudhuri, U.; Lahiri, S.; Das, S.; Ghosh, N.; Chatterjee, D. DNA hypermethylation of promoter of gene p53 and p16 in arsenic-exposed people with and without malignancy. Toxicol. Sci. Off. J. Soc. Toxicol. 2006, 89, 431–437. [Google Scholar] [CrossRef] [PubMed]
- Manić, L.; Wallace, D.; Onganer, P.U.; Taalab, Y.M.; Farooqi, A.A.; Antonijević, B.; Buha Djordjevic, A. Epigenetic mechanisms in metal carcinogenesis. Toxicol. Rep. 2022, 9, 778–787. [Google Scholar] [CrossRef]
- Georgiadis, P.; Gavriil, M.; Rantakokko, P.; Ladoukakis, E.; Botsivali, M.; Kelly, R.S.; Bergdahl, I.A.; Kiviranta, H.; Vermeulen, R.C.H.; Spaeth, F.; et al. DNA methylation profiling implicates exposure to PCBs in the pathogenesis of B-cell chronic lymphocytic leukemia. Environ. Int. 2019, 126, 24–36. [Google Scholar] [CrossRef] [PubMed]
- Curtis, S.W.; Cobb, D.O.; Kilaru, V.; Terrell, M.L.; Kennedy, E.M.; Marder, M.E.; Barr, D.B.; Marsit, C.J.; Marcus, M.; Conneely, K.N.; et al. Exposure to polybrominated biphenyl (PBB) associates with genome-wide DNA methylation differences in peripheral blood. Epigenetics 2019, 14, 52–66. [Google Scholar] [CrossRef]
- Dolinoy, D.C.; Jirtle, R.L. Environmental epigenomics in human health and disease. Environ. Mol. Mutagen. 2008, 49, 4–8. [Google Scholar] [CrossRef]
- Fenga, C.; Gangemi, S.; Costa, C. Benzene exposure is associated with epigenetic changes (Review). Mol. Med. Rep. 2016, 13, 3401–3405. [Google Scholar] [CrossRef] [PubMed]
- Simpkin, A.J.; Hemani, G.; Suderman, M.; Gaunt, T.R.; Lyttleton, O.; Mcardle, W.L.; Ring, S.M.; Sharp, G.C.; Tilling, K.; Horvath, S.; et al. Prenatal and early life influences on epigenetic age in children: A study of mother-offspring pairs from two cohort studies. Hum. Mol. Genet. 2016, 25, 191–201. [Google Scholar] [CrossRef]
- Lu, Y.; Chan, Y.-T.; Tan, H.-Y.; Li, S.; Wang, N.; Feng, Y. Epigenetic regulation in human cancer: The potential role of epi-drug in cancer therapy. Mol. Cancer 2020, 19, 79. [Google Scholar] [CrossRef] [PubMed]
- Arslan, A.A.; Tuminello, S.; Yang, L.; Zhang, Y.; Durmus, N.; Snuderl, M.; Heguy, A.; Zeleniuch-Jacquotte, A.; Shao, Y.; Reibman, J. Genome-Wide DNA Methylation Profiles in Community Members Exposed to the World Trade Center Disaster. Int. J. Environ. Res. Public. Health 2020, 17, 5493. [Google Scholar] [CrossRef] [PubMed]
- Tuminello, S.; Zhang, Y.; Yang, L.; Durmus, N.; Snuderl, M.; Heguy, A.; Zeleniuch-Jacquotte, A.; Chen, Y.; Shao, Y.; Reibman, J.; et al. Global DNA Methylation Profiles in Peripheral Blood of WTC-Exposed Community Members with Breast Cancer. Int. J. Environ. Res. Public. Health 2022, 19, 5104. [Google Scholar] [CrossRef]
- Yu, H.; Tuminello, S.; Alpert, N.; van Gerwen, M.; Yoo, S.; Mulholland, D.J.; Aaronson, S.A.; Donovan, M.; Oh, W.K.; Gong, Y.; et al. Global DNA methylation of WTC prostate cancer tissues show signature differences compared to non-exposed cases. Carcinogenesis 2022, 43, bgac025. [Google Scholar] [CrossRef]
- Kuan, P.-F.; Mi, Z.; Georgopoulos, P.; Hashim, D.; Luft, B.J.; Boffetta, P. Enhanced exposure assessment and genome-wide DNA methylation in World Trade Center disaster responders. Eur. J. Cancer Prev. Off. J. Eur. Cancer Prev. Organ. ECP 2019, 28, 225–233. [Google Scholar] [CrossRef]
- Shao, Y.; Durmus, N.; Zhang, Y.; Pehlivan, S.; Fernandez-Beros, M.-E.; Umana, L.; Corona, R.; Addessi, A.; Abbott, S.A.; Smyth-Giambanco, S.; et al. The Development of a WTC Environmental Health Center Pan-Cancer Database. Int. J. Environ. Res. Public. Health 2021, 18, 1646. [Google Scholar] [CrossRef]
- Azofeifa, A. World Trade Center Health Program—United States, 2012−2020. MMWR Surveill. Summ. 2021, 70, PMC8480994. [Google Scholar] [CrossRef]
- Reibman, J.; Liu, M.; Cheng, Q.; Liautaud, S.; Rogers, L.; Lau, S.; Berger, K.I.; Goldring, R.M.; Marmor, M.; Fernandez-Beros, M.E.; et al. Characteristics of a residential and working community with diverse exposure to World Trade Center dust, gas, and fumes. J. Occup. Environ. Med. 2009, 51, 534–541. [Google Scholar] [CrossRef] [PubMed]
- Kato, I.; Akhmedkhanov, A.; Koenig, K.; Toniolo, P.G.; Shore, R.E.; Riboli, E. Prospective study of diet and female colorectal cancer: The New York university women’s health study. Nutr. Cancer 1997, 28, 276–281. [Google Scholar] [CrossRef]
- Toniolo, P.G.; Levitz, M.; Zeleniuch-Jacquotte, A.; Banerjee, S.; Koenig, K.L.; Shore, R.E.; Strax, P.; Pasternack, B.S. A prospective study of endogenous estrogens and breast cancer in postmenopausal women. J. Natl. Cancer Inst. 1995, 87, 190–197. [Google Scholar] [CrossRef]
- Herbert, R.; Moline, J.; Skloot, G.; Metzger, K.; Baron, S.; Luft, B.; Markowitz, S.; Udasin, I.; Harrison, D.; Stein, D.; et al. The World Trade Center Disaster and the Health of Workers: Five-Year Assessment of a Unique Medical Screening Program. Environ. Health Perspect. 2006, 114, 1853–1858. [Google Scholar] [CrossRef] [PubMed]
- Lieberman-Cribbin, W.; Tuminello, S.; Gillezeau, C.; van Gerwen, M.; Brody, R.; Donovan, M.; Taioli, E. The development of a Biobank of cancer tissue samples from World Trade Center responders. J. Transl. Med. 2018, 16, 280. [Google Scholar] [CrossRef] [PubMed]
- Pidsley, R.; Zotenko, E.; Peters, T.J.; Lawrence, M.G.; Risbridger, G.P.; Molloy, P.; Van Djik, S.; Muhlhausler, B.; Stirzaker, C.; Clark, S.J. Critical evaluation of the Illumina MethylationEPIC BeadChip microarray for whole-genome DNA methylation profiling. Genome Biol. 2016, 17, 208. [Google Scholar] [CrossRef]
- Pruitt, K.D.; Tatusova, T.; Maglott, D.R. NCBI Reference Sequence (RefSeq): A curated non-redundant sequence database of genomes, transcripts and proteins. Nucleic Acids Res. 2005, 33, D501–D504. [Google Scholar] [CrossRef]
- Pruitt, K.D.; Brown, G.R.; Hiatt, S.M.; Thibaud-Nissen, F.; Astashyn, A.; Ermolaeva, O.; Farrell, C.M.; Hart, J.; Landrum, M.J.; McGarvey, K.M.; et al. RefSeq: An update on mammalian reference sequences. Nucleic Acids Res. 2014, 42, D756–D763. [Google Scholar] [CrossRef]
- Walker, E.J.; Zhang, C.; Castelo-Branco, P.; Hawkins, C.; Wilson, W.; Zhukova, N.; Alon, N.; Novokmet, A.; Baskin, B.; Ray, P.; et al. Monoallelic expression determines oncogenic progression and outcome in benign and malignant brain tumors. Cancer Res. 2012, 72, 636–644. [Google Scholar] [CrossRef]
- Cicala, C.; Arthos, J.; Selig, S.M.; Dennis, G.; Hosack, D.A.; Van Ryk, D.; Spangler, M.L.; Steenbeke, T.D.; Khazanie, P.; Gupta, N.; et al. HIV envelope induces a cascade of cell signals in non-proliferating target cells that favor virus replication. Proc. Natl. Acad. Sci. USA 2002, 99, 9380–9385. [Google Scholar] [CrossRef]
- Ntais, C.; Polycarpou, A.; Tsatsoulis, A. Molecular epidemiology of prostate cancer: Androgens and polymorphisms in androgen-related genes. Eur. J. Endocrinol. 2003, 149, 469–477. [Google Scholar] [CrossRef] [PubMed]
- Eriksson, A.L.; Lorentzon, M.; Vandenput, L.; Labrie, F.; Lindersson, M.; Syvänen, A.-C.; Orwoll, E.S.; Cummings, S.R.; Zmuda, J.M.; Ljunggren, Ö.; et al. Genetic Variations in Sex Steroid-Related Genes as Predictors of Serum Estrogen Levels in Men. J. Clin. Endocrinol. Metab. 2009, 94, 1033–1041. [Google Scholar] [CrossRef]
- Basu, A.; Rowan, B.G. Genes related to estrogen action in reproduction and breast cancer. Front. Biosci.-Landmark 2005, 10, 2346–2372. [Google Scholar] [CrossRef]
- Spitzweg, C.; Joba, W.; Heufelder, A.E. Expression of Thyroid-Related Genes in Human Thymus. Thyroid 1999, 9, 133–141. [Google Scholar] [CrossRef]
- van der Plaat, D.A.; Vonk, J.M.; Terzikhan, N.; de Jong, K.; de Vries, M.; La Bastide-van Gemert, S.; van Diemen, C.C.; Lahousse, L.; Brusselle, G.G.; Nedeljkovic, I.; et al. Occupational exposure to gases/fumes and mineral dust affect DNA methylation levels of genes regulating expression. Hum. Mol. Genet. 2019, 28, 2477–2485. [Google Scholar] [CrossRef]
- Baccarelli, A.; Wright, R.O.; Bollati, V.; Tarantini, L.; Litonjua, A.A.; Suh, H.H.; Zanobetti, A.; Sparrow, D.; Vokonas, P.S.; Schwartz, J. Rapid DNA methylation changes after exposure to traffic particles. Am. J. Respir. Crit. Care Med. 2009, 179, 572–578. [Google Scholar] [CrossRef] [PubMed]
- Silva, I.R.; Ramos, M.C.A.S.; Arantes, L.M.R.B.; Lengert, A.V.H.; Oliveira, M.A.; Cury, F.P.; Martins Pereira, G.; Santos, A.G.; Barbosa, F.; Vasconcellos, P.C.; et al. Evaluation of DNA Methylation Changes and Micronuclei in Workers Exposed to a Construction Environment. Int. J. Environ. Res. Public. Health 2019, 16, 902. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Wilson, C.M.; Ge, Y.; Nemes, J.; LaValle, C.; Boutté, A.; Carr, W.; Kamimori, G.; Haghighi, F. DNA Methylation Patterns of Chronic Explosive Breaching in U.S. Military Warfighters. Front. Neurol. 2020, 11, 1010. [Google Scholar] [CrossRef]
- Ehrlich, M. DNA hypermethylation in disease: Mechanisms and clinical relevance. Epigenetics 2019, 14, 1141–1163. [Google Scholar] [CrossRef] [PubMed]
- Lakshminarasimhan, R.; Liang, G. The Role of DNA Methylation in Cancer. Adv. Exp. Med. Biol. 2016, 945, 151–172. [Google Scholar] [CrossRef] [PubMed]
- Rotondo, J.C.; Borghi, A.; Selvatici, R.; Magri, E.; Bianchini, E.; Montinari, E.; Corazza, M.; Virgili, A.; Tognon, M.; Martini, F. Hypermethylation-Induced Inactivation of the IRF6 Gene as a Possible Early Event in Progression of Vulvar Squamous Cell Carcinoma Associated With Lichen Sclerosus. JAMA Dermatol. 2016, 152, 928–933. [Google Scholar] [CrossRef] [PubMed]
- Shiovitz, S.; Korde, L.A. Genetics of breast cancer: A topic in evolution. Ann. Oncol. 2015, 26, 1291–1299. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Zhou, J.; Zhang, K.; Chen, H.; Luo, M.; Lu, Y.; Sun, Y.; Chen, Y. Molecular Mechanisms of PALB2 Function and Its Role in Breast Cancer Management. Front. Oncol. 2020, 10, 301. [Google Scholar] [CrossRef] [PubMed]
- Brandão, A.; Paulo, P.; Teixeira, M.R. Hereditary Predisposition to Prostate Cancer: From Genetics to Clinical Implications. Int. J. Mol. Sci. 2020, 21, 5036. [Google Scholar] [CrossRef]
- Singh, N.; Baby, D.; Rajguru, J.P.; Patil, P.B.; Thakkannavar, S.S.; Pujari, V.B. Inflammation and Cancer. Ann. Afr. Med. 2019, 18, 121–126. [Google Scholar] [CrossRef] [PubMed]
- Guerber, L.; Pangou, E.; Sumara, I. Ubiquitin Binding Protein 2-Like (UBAP2L): Is it so NICE After All? Front. Cell Dev. Biol. 2022, 10, 931115. [Google Scholar] [CrossRef]
- Yan, B.-R.; Zhou, L.; Hu, M.-M.; Li, M.; Lin, H.; Yang, Y.; Wang, Y.-Y.; Shu, H.-B. PKACs attenuate innate antiviral response by phosphorylating VISA and priming it for MARCH5-mediated degradation. PLoS Pathog. 2017, 13, e1006648. [Google Scholar] [CrossRef]
- Cohen, M.D.; Vaughan, J.M.; Garrett, B.; Prophete, C.; Horton, L.; Sisco, M.; Kodavanti, U.P.; Ward, W.O.; Peltier, R.E.; Zelikoff, J.; et al. Acute high-level exposure to WTC particles alters expression of genes associated with oxidative stress and immune function in the lung. J. Immunotoxicol. 2015, 12, 140–153. [Google Scholar] [CrossRef]
- Iban-Arias, R.; Trageser, K.J.; Yang, E.-J.; Griggs, E.; Radu, A.; Naughton, S.; Al Rahim, M.; Tatsunori, O.; Raval, U.; Palmieri, J.; et al. Exposure to World Trade Center Dust Exacerbates Cognitive Impairment and Evokes a Central and Peripheral Pro-Inflammatory Transcriptional Profile in an Animal Model of Alzheimer’s Disease. J. Alzheimers Dis. JAD 2023, 91, 779–794. [Google Scholar] [CrossRef]
- Calaf, G.M.; Ponce-Cusi, R.; Aguayo, F.; Muñoz, J.P.; Bleak, T.C. Endocrine disruptors from the environment affecting breast cancer. Oncol. Lett. 2020, 20, 19–32. [Google Scholar] [CrossRef]
- Ding, X.; Zhang, W.; Li, S.; Yang, H. The role of cholesterol metabolism in cancer. Am. J. Cancer Res. 2019, 9, 219–227. [Google Scholar] [PubMed]
- Sloan, N.L.; Shapiro, M.Z.; Sabra, A.; Dasaro, C.R.; Crane, M.A.; Harrison, D.J.; Luft, B.J.; Moline, J.M.; Udasin, I.G.; Todd, A.C.; et al. Cardiovascular disease in the World Trade Center Health Program General Responder Cohort. Am. J. Ind. Med. 2021, 64, 97–107. [Google Scholar] [CrossRef] [PubMed]
- Michels, K.B.; Binder, A.M. Considerations for Design and Analysis of DNA Methylation Studies. In DNA Methylation Protocols; Tost, J., Ed.; Methods in Molecular Biology; Springer: New York, NY, USA, 2018; pp. 31–46. ISBN 978-1-4939-7481-8. [Google Scholar]
- Li, Y.; Pan, X.; Roberts, M.L.; Liu, P.; Kotchen, T.A.; Cowley, A.W., Jr.; Mattson, D.L.; Liu, Y.; Liang, M.; Kidambi, S. Stability of global methylation profiles of whole blood and extracted DNA under different storage durations and conditions. Epigenomics 2018, 10, 797–811. [Google Scholar] [CrossRef] [PubMed]
- Chatterjee, A.; Saha, D.; Niemann, H.; Gryshkov, O.; Glasmacher, B.; Hofmann, N. Effects of cryopreservation on the epigenetic profile of cells. Cryobiology 2017, 74, 1–7. [Google Scholar] [CrossRef]
EWAS of WTC Exposure and DNA Methylation Changes | EWAS of WTC Exposure and DNA Methylation Changes among Cancer Cases | |||
---|---|---|---|---|
Kuan et al., 2019, Eur. J. Cancer Prev. [38] | Arslan et al., 2020, Int. J. Environ. Res. Public Health [35] | Tuminello et al., 2022, Int. J. Environ. Res. Public Health [36] | Yu et al., 2022, Carcinogenesis [37] | |
WTC Group | Responders | Survivors | Survivors | Responders |
Sample Type | Blood | Blood | Blood | Tumor Tissue |
Sex | Male | Female | Female | Male |
Cases | Male Responders with high WTC exposure ranking index (ERI) (n = 116) | WTC-exposed cancer-free females (n = 18) | WTC-exposed females with breast cancer (n = 28) | WTC-exposed males with prostate cancer (n = 13) |
Controls | Male Responders with low WTC ERI (n = 69) | WTC-unexposed cancer-free females (n = 24) | WTC-unexposed females with pre-diagnostic breast cancer (n = 24) | WTC-unexposed males with prostate cancer (n = 15) |
Matching | Not matched; similar in terms of race and smoking history | Frequency-matched on age | Frequency-matched on age | Frequency-matched on age, race/ethnicity, and Gleason score |
DNA Methylation Platform | Human Methylation 450K BeadChip (Illumina®) 485,557 CpG sites | Infinium Methylation EPIC array (Illumina®) 866,562 CpG sites | Infinium Methylation EPIC array (Illumina®) 866,562 CpG sites | Infinium Methylation EPIC array (Illumina®) 866,562 CpG sites |
Main Study Findings | Several cancer-related pathways were enriched in participants with high WTC ERI | Increased global methylation among WTC-exposed; statistically significant CpG sites linked to DMGs associated with WTC exposure; several pathways were enriched in the WTC-exposed participants | Increased global methylation among WTC-exposed; statistically significant CpG sites linked to DMGs associated with WTC exposure and breast cancer; several pathways were enriched in the WTC-exposed participants | Increased global methylation among WTC-exposed; statistically significant CpG sites linked to DMGs associated with WTC exposure and prostate cancer; several pathways were enriched in the WTC-exposed participants |
Theme | Supporting Evidence |
---|---|
Theme 1—Increased Global DNA Methylation | All EWAS studies (Arslan et al., 2020 (cancer-free WTC Survivors) [35]; Tuminello et al., 2022 (Survivors with breast cancer) [36]; and Yu et al., 2022 (Responders with prostate cancer) [37]) independently observed increased global DNA methylation associated with WTC exposure. |
Theme 2—Dysregulation of Cancer Genes and Pathways | Pathways enrichment showed dysregulation of genes in important cancer-related functional pathways, notably for cell adhesion and mobility, even among WTC cancer-free Survivors.
|
Theme 3—Inflammation and Immune System Dysregulation | Immune-related pathways were enriched among EWAS studies of WTC exposure:
|
Theme 4—Endocrine System Disruption | Preliminary evidence suggests that disruption of endocrine pathways plays a role in WTC-associated carcinogenesis:
|
Theme 5—Disruption of Cholesterol Homeostasis and Lipid Metabolism | Cholesterol is an important precursor for cell membrane creation and maintenance; however, evidence suggests that cholesterol homeostasis is disturbed among WTC-exposed individuals, as is lipid metabolism. WTC-associated DNA methylation changes have been observed to be enriched in relevant pathways, including the following:
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tuminello, S.; Nguyen, E.; Durmus, N.; Alptekin, R.; Yilmaz, M.; Crisanti, M.C.; Snuderl, M.; Chen, Y.; Shao, Y.; Reibman, J.; et al. World Trade Center Exposure, DNA Methylation Changes, and Cancer: A Review of Current Evidence. Epigenomes 2023, 7, 31. https://doi.org/10.3390/epigenomes7040031
Tuminello S, Nguyen E, Durmus N, Alptekin R, Yilmaz M, Crisanti MC, Snuderl M, Chen Y, Shao Y, Reibman J, et al. World Trade Center Exposure, DNA Methylation Changes, and Cancer: A Review of Current Evidence. Epigenomes. 2023; 7(4):31. https://doi.org/10.3390/epigenomes7040031
Chicago/Turabian StyleTuminello, Stephanie, Emelie Nguyen, Nedim Durmus, Ramazan Alptekin, Muhammed Yilmaz, Maria Cecilia Crisanti, Matija Snuderl, Yu Chen, Yongzhao Shao, Joan Reibman, and et al. 2023. "World Trade Center Exposure, DNA Methylation Changes, and Cancer: A Review of Current Evidence" Epigenomes 7, no. 4: 31. https://doi.org/10.3390/epigenomes7040031
APA StyleTuminello, S., Nguyen, E., Durmus, N., Alptekin, R., Yilmaz, M., Crisanti, M. C., Snuderl, M., Chen, Y., Shao, Y., Reibman, J., Taioli, E., & Arslan, A. A. (2023). World Trade Center Exposure, DNA Methylation Changes, and Cancer: A Review of Current Evidence. Epigenomes, 7(4), 31. https://doi.org/10.3390/epigenomes7040031