Tourism Getting Back to Life after COVID-19: Can Artificial Intelligence Help?
Abstract
:1. Introduction
2. Literature Review
2.1. Adoption of AI Devices in Tourism
2.2. Safety Protective Measures against Infectious Diseases and AI Robots
2.3. Tourism Recovery after Crisis and Perceptions of Travel Risks
3. Methods
3.1. Study Context
3.2. Questionnaire and Data Collection
3.3. Data Analysis
4. Results
5. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ferreira, C.M.; Sá, M.J.; Martins, J.G.; Serpa, S. The COVID-19 contagion–pandemic dyad: A view from social sciences. Societies 2020, 10, 77. [Google Scholar] [CrossRef]
- Tobin, C.; Mavrommati, G.; Urban-Rich, J. Responding to social distancing in conducting stakeholder workshops in COVID-19 era. Societies 2020, 10, 98. [Google Scholar] [CrossRef]
- Cave, J.; Dredge, D. Regenerative tourism needs diverse economic practices. Tour. Geogr. 2020, 22, 503–513. [Google Scholar] [CrossRef]
- Matiza, T. Post-COVID-19 crisis travel behaviour: Towards mitigating the effects of perceived risk. J. Tour. Futures 2020. [Google Scholar] [CrossRef]
- Gössling, S.; Scott, D.; Hall, C.M. Pandemics, tourism and global change: A rapid assessment of COVID-19. J. Sustain. Tour. 2021, 29, 1–20. [Google Scholar] [CrossRef]
- Lee, C.-K.; Song, H.-J.; Bendle, L.J.; Kim, M.-J.; Han, H. The impact of non-pharmaceutical interventions for 2009 H1N1 influenza on travel intentions: A model of goal-directed behavior. Tour. Manag. 2012, 33, 89–99. [Google Scholar] [CrossRef]
- Xiao, J.; Shiu, E.Y.C.; Gao, H.; Wong, J.Y.; Fong, M.W.; Ryu, S.; Cowling, B.J. Nonpharmaceutical measures for pandemic influenza in nonhealthcare settings—Personal protective and environmental measures. Emerg. Infect. Dis. 2020, 26, 967–975. [Google Scholar] [CrossRef] [PubMed]
- Khan, Z.H.; Siddique, A.; Lee, C.W. Robotics Utilization for Healthcare Digitization in Global COVID-19 Management. Int. J. Environ. Res. Public Health 2020, 17, 3819. [Google Scholar] [CrossRef]
- Seyitoğlu, F.; Ivanov, S. Service robots as a tool for physical distancing in tourism. Curr. Issues Tour. 2021, 24, 1631–1634. [Google Scholar] [CrossRef]
- Yang, G.Z.; Nelson, B.J.; Murphy, R.R.; Choset, H.; Christensen, H.; Collins, S.H.; Dario, P.; Goldberg, K.; Ikuta, K.; Jacobstein, N.; et al. Combating COVID-19—The role of robotics in managing public health and infectious diseases. Sci. Robot. 2020, 5, eabb5589. [Google Scholar] [CrossRef] [Green Version]
- Zeng, Z.; Chen, P.-J.; Lew, A.A. From hightouch to high-tech: COVID-19 drives robotics adoption. Tour. Geogr. 2020, 22, 724–734. [Google Scholar] [CrossRef]
- Zhang, Y. A big-data analysis of public perceptions of service robots amid Covid-19. Adv. Hosp. Tour.Res. 2021, 9, 234–242. [Google Scholar] [CrossRef]
- Li, B.-H.; Hou, B.-C.; Yu, W.; Lu, X.-B.; Yang, C.-W. Applications of artificial intelligence in intelligent manufacturing: A review. Front. Inform. Techn. Electr. Engin. 2017, 18, 86–96. [Google Scholar] [CrossRef]
- Assiouras, I.; Skourtis, G.; Giannopoulos, A.; Buhalis, D.; Koniordos, M. Value co-creation and customer citizenship behaviour. Ann. Tour. Res. 2019, 78, 102742. [Google Scholar] [CrossRef]
- McLeay, F.; Lichy, J.; Major, B. Co-creation of the ski-chalet community experiencescape. Tour. Manag. 2019, 74, 413–424. [Google Scholar] [CrossRef]
- Soares, A.L.V.; Mendes-Filho, L.; Gretzel, U. Technology adoption in hotels: Applying institutional theory to tourism. Tour. Rev. 2021, 76, 669–680. [Google Scholar] [CrossRef]
- Stienmetz, J.; Kim, J.; Xiang, Z.; Fesenmaier, D.R. Managing the structure of tourism experiences: Foundations for tourism design. J. Dest. Mark. Manag. 2021, 19, 100408. [Google Scholar] [CrossRef]
- Bock, D.E.; Wolter, J.S.; Ferrell, O.C. Artificial intelligence: Disrupting what we know about services. J. Serv. Mark. 2020, 34, 317–334. [Google Scholar] [CrossRef]
- Gursoy, D.; Chia, O.H.; Lu, L.; Nunkoo, R. Consumers acceptance of artificially intelligent (AI) device use in service delivery. Intern. J. Inform. Manag. 2019, 49, 157–169. [Google Scholar] [CrossRef]
- Pillai, R.; Sivathanu, B. Adoption of AI-based chatbots for hospitality and tourism. Int. J. Cont. Hosp. Manag. 2020, 32, 3199–3226. [Google Scholar] [CrossRef]
- Castillo, D.; Canhoto, A.I.; Said, E. The dark side of AI-powered service interactions: Exploring the process of co-destruction from the customer perspective. Serv. Ind. J. 2020. [Google Scholar] [CrossRef]
- Lu, L.; Cai, R.; Gursoy, D. Developing and validating a service robot integration willingness scale. Int. J. Hosp. Manag. 2019, 80, 36–51. [Google Scholar] [CrossRef]
- Tussyadiah, I.P.; Zach, F.J.; Wang, J. Do travelers trust intelligent service robots? Ann. Tour. Res. 2020, 81, 102886. [Google Scholar] [CrossRef]
- Huang, X.; Dai, S.; Xu, H. Predicting tourists’ health risk preventative behaviour and travelling satisfaction in Tibet: Combining the theory of planned behaviour and health belief model. Tour. Manag. Persp. 2020, 33, 100589. [Google Scholar] [CrossRef]
- Novelli, M.; Burgess, L.G.; Jones, A.; Ritchie, B.W. ‘No ebola…still doomed’—The Ebola-induced tourism crisis. Ann. Tour. Res. 2018, 70, 76–87. [Google Scholar] [CrossRef] [PubMed]
- Perić, M.; Đurkin, J.; Vitezić, V. Active event sport tourism experience: The role of the natural environment, safety and security in event business models. Int. J. Sustain. Develop. Plann. 2018, 13, 758–772. [Google Scholar] [CrossRef]
- Cooper, J.A.; Alderman, D.H. Cancelling March Madness exposes opportunities for a more sustainable sports tourism economy. Tour. Geogr. 2020, 22, 525–535. [Google Scholar] [CrossRef]
- Karabulut, G.; Bilgin, M.H.; Demir, E.; Doker, A.C. How pandemics affect tourism: International evidence. Ann. Tour. Res. 2020, 84, 102991. [Google Scholar] [CrossRef]
- Lew, A.A.; Cheer, J.M.; Haywood, M.; Brouder, P.; Salazar, N.B. Visions of travel and tourism after the global COVID-19 transformation of 2020. Tour. Geogr. 2020, 22, 455–466. [Google Scholar] [CrossRef]
- Parnell, D.; Widdop, P.; Bond, A.; Wilson, R. COVID-19, networks and sport. Manag. Sport Leis. 2020. [Google Scholar] [CrossRef] [Green Version]
- Perić, M.; Wise, N.; Heydari, R.; Keshtidar, M.; Mekinc, J. Getting back to the event: COVID-19, attendance and perceived importance of protective measures. Kinesiology 2021, 53, 12–19. [Google Scholar] [CrossRef]
- UNWTO. UNWTO Tourism Data Dashboard. Available online: https://www.unwto.org/unwto-tourism-dashboard (accessed on 14 April 2021).
- Seyitoğlu, F.; Ivanov, S. A conceptual framework of the service delivery system design for hospitality firms in the (post-)viral world: The role of service robots. Int. J. Hosp. Manag. 2020, 91, 102661. [Google Scholar] [CrossRef]
- Ivanov, S.; Gretzel, U.; Berezina, K.; Sigala, M.; Webster, C. Progress on robotics in hospitality and tourism: A review of the literature. J. Hosp. Tour. Techn. 2019, 10, 489–521. [Google Scholar] [CrossRef]
- Jeong, M.; Shin, H.H. Tourists’ experiences with smart tourism technology at smart destinations and their behavior intentions. J. Travel Res. 2019, 59, 1464–1477. [Google Scholar] [CrossRef]
- Lau, A. New technologies used in COVID-19 for business survival: Insights from the hotel sector in China. Inform. Techn. Tour. 2020, 22, 497–504. [Google Scholar] [CrossRef]
- Van Doorn, J.; Mende, M.; Noble, S.M.; Hulland, J.; Ostrom, A.L.; Grewal, D.; Petersen, J.A. Domo arigato Mr. Roboto: Emergence of automated social presence in organizational frontlines and customers’ service experiences. J. Serv. Res. 2017, 20, 43–58. [Google Scholar] [CrossRef] [Green Version]
- Chi, O.H.; Denton, G.; Gursoy, D. Artificially intelligent device use in service delivery: A systematic review, synthesis and research agenda. J. Hosp. Mark. Manag. 2020, 29, 757–786. [Google Scholar] [CrossRef]
- Belanche, D.; Casaló, L.V.; Flavián, C. Frontline robots in tourism and hospitality: Service enhancement or cost reduction? Electr. Mark. 2020. [Google Scholar] [CrossRef]
- Ivanov, S.; Webster, C.; Berezina, K. Adoption of robots and service automation by tourism and hospitality companies. Rev. Tur. Desenvolv. 2017, 27–28, 1501–1517. [Google Scholar]
- Samala, N.; Katkam, B.S.; Bellamkonda, R.S.; Rodriguez, R.V. Impact of AI and robotics in the tourism sector: A critical insight. J. Tour. Fut. 2020. [Google Scholar] [CrossRef]
- Luo, X.; Tong, S.; Fang, Z.; Qu, Z. Frontiers: Machines vs. humans: The impact of artificial intelligence Chabot disclosure on customer purchases. Mark. Sci. 2019, 38, 937–947. [Google Scholar] [CrossRef]
- Park, S. Multifaceted trust in tourism service robots. Ann. Tour. Res. 2020, 81, 102888. [Google Scholar] [CrossRef]
- Belanche, D.; Casaló, L.V.; Flavián, C.; Schepers, J. Service robot implementation: A theoretical framework and research agenda. Serv. Ind. J. 2019, 40, 203–225. [Google Scholar] [CrossRef] [Green Version]
- De Kervenoael, R.; Hasan, R.; Schwob, A.; Goh, E. Leveraging human-robot interaction in hospitality services: Incorporating the role of perceived value, empathy, and information sharing into visitors’ intentions to use social robots. Tour. Manag. 2020, 78, 104042. [Google Scholar] [CrossRef]
- Go, H.; Kang, M.; Suh, S.C. Machine learning of robots in tourism and hospitality: Interactive technology acceptance model (iTAM)–cutting edge. Tour. Rev. 2020, 75, 625–636. [Google Scholar] [CrossRef]
- Lin, H.; Chi, O.H.; Gursoy, D. Antecedents of customers’ acceptance of artificially intelligent robotic device use in hospitality services. J. Hosp. Mark. Manag. 2020, 29, 530–549. [Google Scholar] [CrossRef]
- Venkatesh, V.; Thong, J.; Xu, X. Consumer acceptance and user of information technology: Extending the unified theory of acceptance and use of technology. MIS Q. 2012, 36, 157–178. [Google Scholar] [CrossRef] [Green Version]
- Gensini, G.F.; Yacoub, M.H.; Conti, A.A. The concept of quarantine in history: From plague to SARS. J. Infect. 2004, 49, 257–261. [Google Scholar] [CrossRef]
- Nussbaumer-Streit, B.; Mayr, V.; Dobrescu, A.I.; Chapman, A.; Persad, E.; Klerings, I.; Wagner, G.; Siebert, U.; Ledinger, D.; Zachariah, C.; et al. Quarantine alone or in combination with other public health measures to control COVID-19: A rapid review. Cochrane Database Syst. Rev. 2020, 9, CD013574. [Google Scholar] [CrossRef]
- Mizrachi, I.; Gretzel, U. Collaborating against COVID-19: Bridging travel and travel tech. Inform. Techn. Tour. 2020, 22, 489–496. [Google Scholar] [CrossRef]
- Ma, H.; Chiu, Y.-H.; Tian, X.; Zhang, J.; Guo, Q. Safety or travel: Which is more important? The impact of disaster events on tourism. Sustainability 2020, 12, 3038. [Google Scholar] [CrossRef] [Green Version]
- Zou, Y.; Meng, F. Chinese tourists’ sense of safety: Perceptions of expected and experienced destination safety. Curr. Issues Tour. 2020, 23, 1886–1899. [Google Scholar] [CrossRef] [Green Version]
- Ghaderi, Z.; Saboori, B.; Khoshkam, M. Does security matter in tourism demand? Curr. Issues Tour. 2017, 20, 552–565. [Google Scholar] [CrossRef]
- Bassil, C.; Saleh, A.S.; Anwar, S. Terrorism and tourism demand: A case study of Lebanon, Turkey and Israel. Curr. Issues Tour. 2019, 22, 50–70. [Google Scholar] [CrossRef]
- Cahyanto, I.; Wiblishauser, M.; Pennington-Gray, L.; Schroeder, A. The dynamics of travel avoidance: The case of Ebola in the U.S. Tour. Manag. Persp. 2016, 20, 195–203. [Google Scholar] [CrossRef]
- Hall, C.M.; Amore, A. The 2015 Cricket World Cup in Christchurch: Using an event for post-disaster reimagine and regeneration. J. Place Manag. Develop. 2020, 13, 4–17. [Google Scholar] [CrossRef]
- Orchiston, C.; Higham, J.E.S. Knowledge management and tourism recovery (de)marketing: The Christchurch earthquakes 2010–2011. Curr. Issues Tour. 2016, 19, 64–84. [Google Scholar] [CrossRef]
- Benjamin, S.; Dillete, A.; Alderman, D.H. “We can’t return to normal”: Committing to tourism equity in the post-pandemic age. Tour. Geogr. 2020, 22, 476–483. [Google Scholar] [CrossRef]
- Prayag, G. Time for reset? COVID-19 and tourism resilience. Tour. Rev. Int. 2020, 24, 179–184. [Google Scholar] [CrossRef]
- Qiu, R.T.R.; Park, J.; Li, S.; Song, H. Social costs of tourism during the COVID-19 pandemic. Ann. Tour. Res. 2020, 84, 102994. [Google Scholar] [CrossRef]
- Singh, S. ‘Quixotic’ tourism? Safety, ease, and heritage in post-COVID world tourism. J. Herit. Tour. 2020. [Google Scholar] [CrossRef]
- Turnšek, M.; Brumen, B.; Rangus, M.; Gorenak, M.; Mekinc, J.; Lešnik Štuhec, T. Perceived threat of COVID-19 and future travel avoidance: Results from an early convenient sample in Slovenia. Acad. Tur. 2020, 13, 3–19. [Google Scholar] [CrossRef]
- Zhang, K.; Hou, Y.; Li, G. Threat of infectious disease during an outbreak: Influence on tourists’ emotional responses to disadvantaged price inequality. Ann. Tour. Res. 2020, 84, 102993. [Google Scholar] [CrossRef]
- Gretzel, U.; Fuchs, M.; Baggio, R.; Hoepken, W.; Law, R.; Neidhardt, J.; Pesonen, J.; Zanker, M.; Xiang, Z. e-Tourism beyond COVID-19: A call for transformative research. Inform. Technol. Tour. 2020, 22, 187–203. [Google Scholar] [CrossRef]
- Nepal, S.K. Adventure travel and tourism after COVID-19—Business as usual or opportunity to reset? Tour. Geogr. 2020, 22, 646–650. [Google Scholar] [CrossRef]
- Yeh, S.-S. Tourism recovery strategy against COVID-19 pandemic. Tour. Recr. Res. 2021, 46, 188–194. [Google Scholar] [CrossRef]
- Aiello, F.; Bonanno, G.; Foglia, F. On the choice of accommodation type at the time of Covid-19. Some evidence from the Italian tourism sector. Curr. Issues Tour. 2020. [Google Scholar] [CrossRef]
- Bae, S.Y.; Chang, P.-J. The effect of coronavirus disease-19 (COVID-19) risk perception on behavioural intention towards ‘untact’ tourism in South Korea during the first wave of the pandemic (March 2020). Curr. Issues Tour. 2021, 24, 1017–1035. [Google Scholar] [CrossRef]
- Sánchez-Cañizares, S.M.; Cabeza-Ramírez, L.J.; Muñoz-Fernández, G.; Fuentes-García, F.J. Impact of the perceived risk from Covid-19 on intention to travel. Curr. Issues Tour. 2021, 24, 970–984. [Google Scholar] [CrossRef]
- Kock, F.; Nørfelt, A.; Josiassen, A.; Assaf, G.A.; Tsionas, M.G. Understanding the COVID-19 tourist psyche: The Evolutionary Tourism Paradigm. Ann. Tour. Res. 2020, 85, 103053. [Google Scholar] [CrossRef] [PubMed]
- Chien, P.M.; Sharifpour, M.; Ritchie, B.W.; Watson, B. Travelers’ health risk perceptions and protective behavior: A psychological approach. J. Travel Res. 2017, 56, 744–759. [Google Scholar] [CrossRef]
- Dryhurst, S.; Schneider, C.R.; Kerr, J.; Freeman, A.L.J.; Recchia, G.; van der Bles, A.M.; Spiegelhalter, D.; van der Linden, S. Risk perceptions of COVID-19 around the world. J. Risk Res. 2020, 23, 994–1006. [Google Scholar] [CrossRef]
- Wang, J.; Liu-Lastres, B.; Ritchie, B.W.; Pan, D.-Z. Risk reduction and adventure tourism safety: An extension of the risk perception attitude framework (RPAF). Tour. Manag. 2019, 74, 247–257. [Google Scholar] [CrossRef]
- Wolff, K.; Larsen, S.; Øgaard, T. How to define and measure risk perceptions. Ann. Tour. Res. 2019, 79, 102759. [Google Scholar] [CrossRef]
- Chen, C.C.; Wang, Y.C. Perceptions of travel importance, benefits, and constraints in predicting travel behavior: A cross-cultural comparison of leisure travel. Tour. Rev. Int. 2019, 23, 1–12. [Google Scholar] [CrossRef]
- Floyd, D.L.; Prentice-Dunn, S.; Rogers, R.W. A meta-analysis of research on protection motivation theory. J. Appl. Social Psych. 2000, 30, 407–429. [Google Scholar] [CrossRef]
- Chuo, H.-Y. Restaurant diners’ self-protective behavior in response to an epidemic crisis. Int. J. Hosp. Manag. 2014, 38, 74–83. [Google Scholar] [CrossRef] [PubMed]
- Karl, M. Risk and Uncertainty in Travel Decision-Making: Tourist and Destination Perspective. J. Travel Res. 2018, 57, 129–146. [Google Scholar] [CrossRef]
- Yang, E.C.L.; Khoo-Lattimore, C.; Arcodia, C. A systematic literature review of risk and gender research in tourism. Tour. Manag. 2017, 58, 89–100. [Google Scholar] [CrossRef] [Green Version]
- Kovačić, S.; Mărgărint, M.C.; Ionce, R.; Miljković, Đ. What are the factors affecting tourist behavior based on the perception of risk? Romanian and Serbian tourists’ perspective in the aftermath of the recent floods and wildfires in Greece. Sustainability 2020, 12, 6310. [Google Scholar] [CrossRef]
- Ministry of Tourism and Sport. Turizam u Brojkama 2020 (eng. Tourism in Numbers 2020). Available online: https://mint.gov.hr/UserDocsImages/2021_dokumenti/210708_Turizamubrojkama2020.pdf (accessed on 9 September 2021).
- Gursoy, D.; Chi, C.G. Effects of COVID-19 pandemic on hospitality industry: Review of the current situations and a research agenda. J. Hosp. Mark. Manag. 2020, 29, 527–529. [Google Scholar] [CrossRef]
- Zheng, D.; Luo, Q.; Ritchie, B.W. Afraid to travel after COVID-19? Self-protection, coping and resilience against pandemic ‘travel fear’. Tour. Manag. 2021, 83, 104261. [Google Scholar] [CrossRef]
- Boto-García, D.; Leoni, V. Exposure to COVID-19 and travel intentions: Evidence from Spain. Tour. Econ. 2021. [Google Scholar] [CrossRef]
- Park, S.; Kim, B.; Lee, J. Social Distancing and Outdoor Physical Activity During the COVID-19 Outbreak in South Korea: Implications for Physical Distancing Strategies. Asia Pac. J. Publ. Health 2020, 32, 360–362. [Google Scholar] [CrossRef]
- Hilsenrath, J. Global viral outbreaks like coronavirus, once rare, will become more common. Wall Str. J. Available online: https://www.wsj.com/articles/viral-outbreaks-once-rare-become-part-of-the-global-landscape-11583455309 (accessed on 11 October 2020).
- Wolff, K.; Larsen, S. Flux and permanence of risk perceptions: Tourists’ perception of the relative and absolute risk for various destinations. Scand. J. Psych. 2016, 57, 584–590. [Google Scholar] [CrossRef]
- Isaac, R.K.; Keijzer, J. Leisure Travel Intention following a period of Covid 19 crisis: A case study of the Dutch market. Int. J. Tour. Cities 2021. [Google Scholar] [CrossRef]
- Fourie, J.; Rosselló-Nadal, J.; Santana-Gallego, M. Fatal attraction: How security threats hurt tourism. J. Travel Res. 2020, 59, 209–219. [Google Scholar] [CrossRef]
- Rastegar, R.; Seyfi, S.; Rasoolimanesh, S.M. How COVID-19 case fatality rates have shaped perceptions and travel intention? J. Hosp. Tour. Manag. 2021, 47, 353–364. [Google Scholar] [CrossRef]
- Das, S.S.; Tiwari, A.K. Understanding international and domestic travel intention of Indian travellers during COVID-19 using a Bayesian approach. Tour. Recr. Res. 2021, 46, 228–244. [Google Scholar] [CrossRef]
- Hogg, P. Artificial intelligence: HR friend or foe? Strat. HR Rev. 2019, 18, 47–51. [Google Scholar] [CrossRef]
- Self, T.T.; Gordon, S.; Jolly, P.M. Talent management: A Delphi study of assessing and developing GenZ hospitality leaders. Int. J. Cont. Hosp. Manag. 2019, 31, 4126–4149. [Google Scholar] [CrossRef]
- Almeida, F.; Silva, O. The Impact of COVID-19 on Tourism Sustainability: Evidence from Portugal. Advanc. Hosp. Tour. Res. 2020, 8, 440–446. [Google Scholar] [CrossRef]
- Higgins-Desbiolles, F. Socialising tourism for social and ecological justice after COVID-19. Tour. Geogr. 2020, 22, 610–623. [Google Scholar] [CrossRef] [Green Version]
- Koh, E. The end of over-tourism? Opportunities in a post-Covid-19 world. Int. J. Tour. Cities 2020, 6, 1015–1023. [Google Scholar] [CrossRef]
- Jiang, Y.; Wen, J. Effects of COVID-19 on hotel marketing and management: A perspective article. Int. J. Cont. Hosp. Manag. 2020, 32, 2563–2573. [Google Scholar] [CrossRef]
- Leiner, D.J. Too fast, too straight, too weird: Non-reactive indicators for meaningless data in internet survey. Surv. Res. Methods 2019, 13, 229–248. [Google Scholar] [CrossRef]
Variable | Total (N = 594) | Early Goers (N = 219) | Cautious Travelers (N = 375) | Mann–Whitney U | ||||
---|---|---|---|---|---|---|---|---|
M | SD | M | SD | M | SD | M-W | Z | |
Hand sanitizer stations throughout the property *** | 3.63 | 1.19 | 3.33 | 1.21 | 3.81 | 1.15 | 31,443.5 | −4.962 |
More rigorous cleaning techniques *** | 3.78 | 1.19 | 3.42 | 1.21 | 3.99 | 1.12 | 29,096.0 | −6.203 |
Staff wearing masks and gloves | 3.14 | 1.30 | 2.74 | 1.22 | 3.38 | 1.29 | 28,610.5 | −6.351 |
Checking temperature of employees *** | 3.19 | 1.37 | 2.94 | 1.30 | 3.34 | 1.38 | 33,398.5 | −3.904 |
Checking temperature of guests *** | 2.82 | 1.35 | 2.54 | 1.26 | 2.98 | 1.37 | 32,845.0 | −4.172 |
Automated check-in *** | 3.02 | 1.17 | 2.84 | 1.13 | 3.13 | 1.18 | 34,284.5 | −3.505 |
Touchless entering the rooms using mobile devices *** | 2.78 | 1.21 | 2.61 | 1.21 | 2.89 | 1.21 | 34,755.0 | −3.240 |
Touchless payment using mobile devices *** | 2.82 | 1.27 | 2.64 | 1.24 | 2.92 | 1.27 | 34,998.5 | −3.102 |
Additional disinfection of the room immediately before the arrival of the guest *** | 3.68 | 1.24 | 3.41 | 1.22 | 3.83 | 1.22 | 32,152.0 | −4.601 |
Optional daily housekeeping (cleaning and towels left outside your door) *** | 3.23 | 1.15 | 3.01 | 1.18 | 3.37 | 1.12 | 33,662.0 | −3.840 |
Keep rooms vacant for at least a night after a guest checkout *** | 3.10 | 1.32 | 2.87 | 1.34 | 3.23 | 1.28 | 34,032.5 | −3.586 |
Possibility of delivery and consumption of food and drinks in the room (room service) *** | 3.03 | 1.17 | 2.87 | 1.19 | 3.12 | 1.15 | 35,593.0 | −2.832 |
Chairs separated for social distancing in common areas, restaurants, and bars *** | 2.95 | 1.20 | 2.68 | 1.17 | 3.11 | 1.18 | 31,730.0 | −4.795 |
Plexiglas between tables in common areas, restaurants, and bars *** | 2.32 | 1.21 | 2.12 | 1.14 | 2.43 | 1.23 | 33,783.5 | −3.735 |
Plexiglas between chairs in common areas, restaurants, and bars *** | 2.17 | 1.18 | 2.04 | 1.14 | 2.25 | 1.19 | 35,626.5 | −2.805 |
Plexiglas at check-in desk *** | 2.85 | 1.29 | 2.53 | 1.19 | 3.04 | 1.31 | 30,612.0 | −5.332 |
AI robots instead of waiters taking orders from guests | 1.85 | 1.18 | 1.82 | 1.17 | 1.87 | 1.18 | 38,337.0 | −1.457 |
AI robots instead of waiters delivering orders to guests’ tables ** | 1.78 | 1.16 | 1.68 | 1.11 | 1.84 | 1.19 | 36,605.0 | −2.415 |
AI robots instead of waiters delivering orders to guests’ rooms * | 1.81 | 1.16 | 1.76 | 1.13 | 1.84 | 1.17 | 37,850.0 | −1.735 |
Variable | Total (N = 594) | Early Goers (N = 219) | Cautious Travelers (N = 375) | Mann–Whitney U | ||||
---|---|---|---|---|---|---|---|---|
M | SD | M | SD | M | SD | M-W | Z | |
AI robots are more accurate than human beings *** | 3.40 | 1.79 | 3.16 | 1.84 | 3.55 | 1.75 | 35,579.0 | −2.761 |
Information provided by AI robots is more consistent *** | 3.46 | 1.69 | 3.16 | 1.78 | 3.63 | 1.60 | 34,500.5 | −3.308 |
AI robots provide more consistent service than human beings *** | 3.00 | 1.60 | 2.80 | 1.62 | 3.11 | 1.57 | 35,759.0 | −2.682 |
AI robots are more dependable than human beings ** | 3.09 | 1.66 | 2.93 | 1.68 | 3.18 | 1.64 | 36,774.0 | −2.163 |
Service provided by AI robots is more predictable than human service ** | 3.74 | 1.86 | 3.57 | 1.93 | 3.85 | 1.80 | 37,123.5 | −1.982 |
I am able to avoid unnecessary personal contacts (communication) if I use AI robots *** | 4.23 | 1.83 | 3.83 | 1.89 | 4.46 | 1.76 | 32,706.5 | −4.203 |
I would find the interaction with AI robots enjoyable *** | 3.10 | 1.61 | 2.87 | 1.63 | 3.24 | 1.59 | 35,081.0 | −3.030 |
Interaction with AI robots will be so difficult to understand and use | 3.97 | 1.63 | 3.85 | 1.69 | 4.04 | 1.59 | 38,400.5 | −1.349 |
AI robots will be intimidating to me | 3.45 | 1.84 | 3.32 | 1.81 | 3.53 | 1.86 | 37,901.5 | −1.591 |
If I use AI robots, I will feel happy | 2.90 | 1.54 | 2.82 | 1.58 | 2.94 | 1.52 | 38,917.5 | −1.096 |
If I use AI robots, I will feel relaxed * | 2.99 | 1.56 | 2.88 | 1.59 | 3.06 | 1.53 | 37,615.5 | −1.759 |
If I use AI robots, I will feel optimistic | 3.01 | 1.55 | 2.96 | 1.61 | 3.04 | 1.51 | 39,390.0 | −0.857 |
If I use AI robots, I will feel satisfied | 3.05 | 1.55 | 2.95 | 1.57 | 3.11 | 1.53 | 38,436.5 | −1.348 |
If I use AI robots, I will feel calm | 3.02 | 1.54 | 2.96 | 1.56 | 3.06 | 1.52 | 38,990.5 | −1.061 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Perić, M.; Vitezić, V. Tourism Getting Back to Life after COVID-19: Can Artificial Intelligence Help? Societies 2021, 11, 115. https://doi.org/10.3390/soc11040115
Perić M, Vitezić V. Tourism Getting Back to Life after COVID-19: Can Artificial Intelligence Help? Societies. 2021; 11(4):115. https://doi.org/10.3390/soc11040115
Chicago/Turabian StylePerić, Marko, and Vanja Vitezić. 2021. "Tourism Getting Back to Life after COVID-19: Can Artificial Intelligence Help?" Societies 11, no. 4: 115. https://doi.org/10.3390/soc11040115
APA StylePerić, M., & Vitezić, V. (2021). Tourism Getting Back to Life after COVID-19: Can Artificial Intelligence Help? Societies, 11(4), 115. https://doi.org/10.3390/soc11040115