Scaling in the Local Strain-Rate Field during Jerky Flow in an Al-3%Mg Alloy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experiment
2.2. Statistical and Fluctuation Scaling Analysis
3. Results
3.1. Spatiotemporal Maps
3.2. Statistics of Stress Serrations
3.3. Statistics of Local Strain-Rate Serrations
3.4. Fluctuation Scaling
4. Discussion and Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Van den Beukel, A. Theory of the effect of dynamic strain aging on mechanical properties. Phys. Status Solidi A 1975, 30, 197–206. [Google Scholar] [CrossRef]
- Penning, P. Mathematics of the Portevin-Le Chatelier effect. Acta Metall. 1972, 20, 1169–1175. [Google Scholar] [CrossRef]
- Estrin, Y.; Kubin, L.P. Collective Dislocation Behaviour in Dilute Alloys and the Portevin-Le Chatelier Effect. J. Mech. Behav. Mater. 1990, 2, 255–292. [Google Scholar] [CrossRef]
- Chihab, K.; Estrin, Y.; Kubin, L.P.; Vergnol, J. The kinetics of the Portevin-Le Chatelier bands in an Al-5at%Mg alloy. Scr. Metall. 1987, 21, 203–208. [Google Scholar] [CrossRef]
- Ziegenbein, A.; Hähner, P.; Neuhäuser, H. Correlation of temporal instabilities and spatial localization during Portevin-Le Chatelier deformation of Cu-10 at.% Al and Cu-15 at.% Al. Comput. Mater. Sci. 2000, 19, 27–34. [Google Scholar] [CrossRef]
- Chmelík, F.; Ziegenbein, A.; Neuhäuser, H.; Lukáč, P. Investigating the Portevin-Le Chatelier effect by the acoustic emission and laser extensometry techniques. Mater. Sci. Eng. A 2002, 324, 200–207. [Google Scholar] [CrossRef]
- Shabadi, R.; Kumar, S.; Roven, H.J.; Dwarakadasa, E.S. Characterisation of PLC band parameters using laser speckle technique. Mater. Sci. Eng. A 2004, 364, 140–150. [Google Scholar] [CrossRef]
- Louche, H.; Vacher, P.; Arrieux, R. Thermal observations associated with the Portevin–Le Châtelier effect in an Al–Mg alloy. Mater. Sci. Eng. A 2005, 404, 188–196. [Google Scholar] [CrossRef]
- Ait-Amokhtar, H.; Vacher, P.; Boudrahem, S. Kinematics fields and spatial activity of Portevin-Le Chatelier bands using the digital image correlation method. Acta Mater. 2006, 54, 4365–4371. [Google Scholar] [CrossRef]
- Jiang, H.; Zhang, Q.; Chen, X.; Chen, Z.; Jiang, Z.; Wu, X.; Fan, J. Three types of Portevin-Le Chatelier effects: Experiment and modeling. Acta Mater. 2007, 55, 2219–2228. [Google Scholar] [CrossRef]
- Ranc, N.; Wagner, D. Experimental study by pyrometry of Portevin–Le Châtelier plastic instabilities—Type A to type B transition. Mater. Sci. Eng. A 2008, 474, 188–196. [Google Scholar] [CrossRef] [Green Version]
- Lebyodkin, M.A.; Zhemchuzhnikova, D.A.; Lebedkina, T.A.; Aifantis, E.C. Kinematics of formation and cessation of type B deformation bands during the Portevin-Le Chatelier effect in an AlMg alloy. Results Phys. 2019, 12, 867–869. [Google Scholar] [CrossRef]
- Tamimi, S.; Andrade-Campos, A.; Pinho-da-Cruz, J. Modelling of the Portevin-Le Chatelier effects in aluminium alloys: A review. J. Mech. Behav. Mater. 2015, 24, 67–78. [Google Scholar] [CrossRef] [Green Version]
- Portevin, A.; Le Chatelier, F. Sur un phénomène observé lors de l’essai de traction d’alliages en cours de transformation, C.R. Acad. Sci. 1923, 176, 507–510. [Google Scholar]
- Lebyodkin, M.A.; Brechet, Y.; Estrin, Y.; Kubin, L.P. Statistics of the catastrophic slip events in the Portevin-Le Chatelier effect. Phys. Rev. Lett. 1995, 74, 4758–4761. [Google Scholar] [CrossRef]
- Ananthakrishna, G.; Noronha, S.J.; Fressengeas, C.; Kubin, L.P. Crossover from chaotic to self-organized critical dynamics in jerky flow of single crystals. Phys. Rev. E 1999, 60, 5455–5462. [Google Scholar] [CrossRef]
- Bharathi, M.S.; Lebyodkin, M.; Ananthakrishna, G.; Fressengeas, C.; Kubin, L.P. Multifractal Burst in the Spatiotemporal Dynamics of Jerky Flow. Phys. Rev. Lett. 2001, 87, 165508. [Google Scholar] [CrossRef] [Green Version]
- Kugiumtzis, D.; Kehagias, A.; Aifantis, E.C.; Neuhäuser, H. Statistical analysis of the extreme values of stress time series from the Portevin–Le Châtelier effect. Phys. Rev. E 2004, 70, 036110. [Google Scholar] [CrossRef] [Green Version]
- Sarkar, A.; Webber, C.L., Jr.; Barat, P.; Mukherjee, P. Recurrence analysis of the Portevin–Le Chatelier effect. Phys. Lett. A 2008, 372, 1101–1105. [Google Scholar] [CrossRef] [Green Version]
- Iliopoulos, A.C.; Nikolaidis, N.S.; Aifantis, E.C. Portevin Le Chatelier effect and Tsallis nonextensive statistics. Phys. A 2015, 438, 509–518. [Google Scholar] [CrossRef]
- Lebyodkin, M.A.; Lebedkina, T.A. Multifractal analysis of evolving noise associated with unstable plastic flow. Phys. Rev. E 2006, 73, 036114. [Google Scholar] [CrossRef] [PubMed]
- Dimiduk, D.M.; Woodward, C.; LeSar, R.; Uchic, M.D. Scale-free intermittent flow in crystal plasticity. Science 2006, 312, 1188–1190. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Csikor, F.F.; Motz, C.; Weygand, D.; Zaiser, M.; Zapperi, S. Dislocation Avalanches, Strain Bursts, and the Problem of Plastic Forming at the Micrometer Scale. Science 2007, 318, 251–254. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maaß, R.; Wraith, M.; Uhl, J.T.; Greer, J.R.; Dahmen, K.A. Slip statistics of dislocation avalanches under different loading modes. Phys. Rev. E 2015, 91, 042403. [Google Scholar] [CrossRef] [Green Version]
- Weiss, J.; Grasso, J.-R. Acoustic Emission in Single Crystals of Ice. J. Phys. Chem. B 1997, 101, 6113–6117. [Google Scholar] [CrossRef]
- Weiss, J.; Grasso, J.-R.; Miguel, M.-C.; Vespignani, A.; Zapperi, S. Complexity in dislocation dynamics: Experiments. Mater. Sci. Eng. A 2001, 309, 360–364. [Google Scholar] [CrossRef]
- Weiss, J.; Rhouma, W.B.; Richeton, T.; Dechanel, S.; Louchet, F.; Truskinovsky, L. From Mild to Wild Fluctuations in Crystal Plasticity. Phys. Rev. Lett. 2015, 114, 105504. [Google Scholar] [CrossRef]
- Lebyodkin, M.A.; Kobelev, N.P.; Bougherira, Y.; Entemeyer, D.; Fressengeas, C.; Lebedkina, T.A.; Shashkov, I.V. On the similarity of plastic flow processes during smooth and jerky flow in dilute alloys. Acta Mater. 2012, 60, 844–850. [Google Scholar] [CrossRef]
- Lebyodkin, M.A.; Kobelev, N.P.; Bougherira, Y.; Entemeyer, D.; Fressengeas, C.; Gornakov, V.S.; Lebedkina, T.A.; Shashkov, I.V. On the similarity of plastic flow processes during smooth and jerky flow: Statistical analysis. Acta Mater. 2012, 60, 3729–3740. [Google Scholar] [CrossRef]
- Zaiser, M. Scale invariance in plastic flow of crystalline solids. Adv. Phys. 2007, 55, 185–245. [Google Scholar] [CrossRef]
- Papanikolaou, S.; Cui, Y.; Ghoniem, N. Avalanches and plastic flow in crystal plasticity: An overview. Model. Simul. Mater. Sci. Eng. 2018, 26, 013001. [Google Scholar] [CrossRef] [Green Version]
- Maaß, R.; Derlet, P.M. Micro-plasticity and recent insights from intermittent and small-scale. Acta Mater. 2018, 143, 338–363. [Google Scholar] [CrossRef] [Green Version]
- Pérez, C.J.; Corral, Á.; Díaz-Guilera, A.; Christensen, K.; Arenas, A. On self-organized critically and synchronization in lattice models of coupled dynamic systems. Int. J. Mod. Phys. B 1996, 10, 1111–1151. [Google Scholar] [CrossRef] [Green Version]
- Strogatz, S.H. From Kuramoto to Crawford: Exploring the onset of synchronization in populations of coupled oscillators. Phys. D 2000, 143, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Shashkov, I.V.; Lebyodkin, M.A.; Lebedkina, T.A. Multiscale study of acoustic emission during smooth and jerky flow in an AlMg alloy. Acta Mater. 2012, 60, 6842–6850. [Google Scholar] [CrossRef]
- Lebedkina, T.A.; Bougherira, Y.; Entemeyer, D.; Lebyodkin, M.A.; Shashkov, I.V. Crossover in the scale-free statistics of acoustic emission associated with the Portevin-Le Chatelier instability. Scr. Mater. 2018, 148, 47–50. [Google Scholar] [CrossRef]
- Sutton, M.A.; Hild, F. Recent Advances and Perspectives in Digital Image Correlation. Exp. Mech. 2015, 55, 1–8. [Google Scholar] [CrossRef]
- Jacquot, P. Speckle Interferometry: A Review of the Principal Methods in Use for Experimental Mechanics Applications. Strain 2008, 44, 57–69. [Google Scholar] [CrossRef]
- Zuev, L.B.; Danilov, V.I.; Kartashova, N.V.; Barannikova, S.A. The self-excited wave nature of the instability and localization of plastic deformation. Mater. Sci. Eng. A 1997, 234–236, 699–702. [Google Scholar] [CrossRef]
- Sarafanov, G.F. Plastic-strain-softening waves in crystals. Phys. Solid State 2001, 43, 263–269. [Google Scholar] [CrossRef]
- Zuev, L.B. On the way of plastic flow localization in pure metals and alloys. Ann. Phys. 2007, 16, 286–310. [Google Scholar] [CrossRef]
- McDonald, R.J.; Efstathiou, C.; Kurath, P. The wavelike plastic deformation of single crystal copper. J. Eng. Mater. Technol. Trans. ASME 2009, 131, 031013. [Google Scholar] [CrossRef]
- Zuev, L.B.; Barannikova, S.A. Autowave physics of material plasticity. Crystals 2019, 9, 458. [Google Scholar] [CrossRef] [Green Version]
- Fressengeas, C.; Beaudoin, A.J.; Entemeyer, D.; Lebedkina, T.; Lebyodkin, M.; Taupin, V. Dislocation transport and intermittency in the plasticity of crystalline solids. Phys. Rev. B 2009, 79, 014108. [Google Scholar] [CrossRef] [Green Version]
- Mudrock, R.N.; Lebyodkin, M.A.; Kurath, P.; Beaudoin, A.J.; Lebedkina, T.A. Strain-rate fluctuation during macroscopically uniform deformation of a solution-strengthened alloy. Scr. Mater. 2011, 65, 1093–1096. [Google Scholar] [CrossRef]
- Lebyodkin, M.; Amouzou, K.; Lebedkina, T.; Richeton, T.; Roth, A. Complexity and anisotropy of plastic flow of α-Ti probed by acoustic emission and local extensometry. Materials 2018, 11, 1061. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhemchuzhnikova, D.A.; Lebyodkin, M.A.; Lebedkina, T.A.; Kaibyshev, R.O. Unusual behavior of the Portevin-Le Chatelier effect in an AlMg alloy containing precipitates. Mater. Sci. Eng. A 2015, 639, 37–41. [Google Scholar] [CrossRef]
- Zhemchuzhnikova, D.; Lebyodkin, M.; Yuzbekova, D.; Lebedkina, T.; Mogucheva, A.; Kaibyshev, R. Interrelation between the Portevin Le-Chatelier effect and necking in AlMg alloys. Int. J. Plast. 2018, 110, 95–109. [Google Scholar] [CrossRef] [Green Version]
- Laurson, L.; Alava, M.J. Local waiting times in critical systems. Eur. Phys. J. B 2004, 42, 407–414. [Google Scholar] [CrossRef]
- Lebedkina, T.A.; Zhemchuzhnikova, D.A.; Lebyodkin, M.A. Correlation versus randomization of jerky flow in an AlMgScZr alloy using acoustic emission. Phys. Rev. E 2018, 97, 013001. [Google Scholar] [CrossRef] [Green Version]
- Bak, P.; Tang, C.; Wiesenfeld, K. Self-organized criticality. Phys. Rev. A 1988, 38, 364–374. [Google Scholar] [CrossRef] [PubMed]
- Watkins, N.W.; Pruessner, G.; Chapman, S.C.; Crosby, N.B.; Jensen, H.J. 25 Years of Self-organized Criticality: Concepts and Controversies. Space Sci. Rev. 2016, 198, 3–44. [Google Scholar] [CrossRef]
- Bharathi, M.S.; Ananthakrishna, G. Chaotic and power law states in the Portevin-Le Chatelier effect. Europhys. Lett. 2002, 60, 234–240. [Google Scholar] [CrossRef] [Green Version]
- Ananthakrishna, G.; Bharathi, M.S. Dynamical approach to the spatiotemporal aspects of the Portevin–Le Chatelier effect: Chaos, turbulence, and band propagation. Phys. Rev. E 2004, 70, 026111. [Google Scholar] [CrossRef] [Green Version]
- Eisler, Z.; Bartos, I.; Kertész, J. Fluctuation scaling in complex systems: Taylor’s law and beyond. Adv. Phys. 2008, 57, 89–142. [Google Scholar] [CrossRef] [Green Version]
- Kendal, W.S. Self-organized criticality attributed to a central limit-like convergence effect. Phys. A 2015, 421, 141–150. [Google Scholar] [CrossRef]
- Shashkov, I.V. Multiscale Study of the Intermittency of Plastic Deformation by Acoustic Emission Method. Ph.D. Thesis, Université de Lorraine, Metz, France, 2012. [Google Scholar]
- Roth, A.; Lebedkina, T.A.; Lebyodkin, M.A. On the critical strain for the onset of plastic instability in an austenitic FeMnC steel. Mater. Sci. Eng. A 2012, 539, 280–284. [Google Scholar] [CrossRef]
- Landau, L.D.; Lifshitz, E.M. Fluid Mechanics, 2nd ed.; Course of Theoretical Physics; Butterworth-Heinemann: Oxford, UK, 1987; Volume 6. [Google Scholar]
- Pickering, G.; Bull, J.M.; Sanderson, D.J. Sampling power-law distributions. Tectonophysics 1995, 248, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Clauset, A.; Shalizi, C.; Newman, M. Power-law distributions in empirical data. SIAM Rev. 2009, 51, 661–703. [Google Scholar] [CrossRef] [Green Version]
- Deluca, A.; Corral, Á. Fitting and goodness-of-fit test of non-truncated and truncated power-law distributions. Acta Geophys. 2013, 61, 1351–1394. [Google Scholar] [CrossRef] [Green Version]
- Pink, E.; Weinhandl, H. The distribution of stress-drop sizes in serrated flow of an aluminum alloy and a mild steel. Scr. Mater. 1998, 39, 1309–1316. [Google Scholar] [CrossRef]
- Kertész, J.; Kiss, L.B. The noise spectrum in the model of self-organized criticality. J. Phys. A 1990, 23, L433. [Google Scholar] [CrossRef]
- Lebyodkin, M.A.; Shashkov, I.V.; Lebedkina, T.A.; Mathis, K.; Dobron, P.; Chmelik, F. Role of superposition of dislocation avalanches in the statistics of acoustic emission during plastic deformation. Phys. Rev. E 2013, 88, 042402. [Google Scholar] [CrossRef] [PubMed]
- Dudarev, E.F.; Deryugin, E.E. Microplastic deformation and yield strength of polycrystals. Sov. Phys. J. 1982, 25, 510–519. [Google Scholar] [CrossRef]
- Carlson, J.M.; Langer, J.S.; Shaw, B.E. Dynamics of earthquake faults. Rev. Mod. Phys. 1994, 66, 657–670. [Google Scholar] [CrossRef]
- Abarbanel, H.D.I.; Brown, R.; Kennel, M.B. Local Lyapunov exponents computed from observed data. J. Nonlinear Sci. 1992, 2, 343–365. [Google Scholar] [CrossRef]
- Heslot, F.; Castaing, B.; Libchaber, A. Transitions to turbulence in helium gas. Phys. Rev. A 1987, 36, 5870–5873. [Google Scholar] [CrossRef]
- Yamada, M.; Ohkitani, K. Lyapunov spectrum of a model of two-dimensional turbulence. Phys. Rev. Lett. 1988, 60, 983–986. [Google Scholar] [CrossRef]
- Taylor, L.R. Aggregation, variance and mean. Nature 1961, 189, 732–735. [Google Scholar] [CrossRef]
- Jørgensen, B.; Martinez, J.R.; Tsao, M. Asymptotic-behavior of the variance function. Scand. J. Stat. 1994, 21, 223–243. [Google Scholar]
- Lecomte, J.-B.; Benoît, H.P.; Ancelet, S.; Etienne, M.-P.; Bel, L.; Parent, E. Compound Poisson-gamma vs. delta-gamma to handle zero-inflated continuous data under a variable sampling volume. Methods Ecol. Evol. 2013, 4, 1159–1166. [Google Scholar] [CrossRef]
- Kendal, W.S.; Jørgensen, B. Tweedie convergence: A mathematical basis for Taylor’s power law, 1/ f noise, and multifractality. Phys. Rev. E 2011, 84, 066120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brechtl, J.; Chen, S.Y.; Xie, X.; Ren, Y.; Qiao, J.W.; Liaw, P.K.; Zinkle, S.J. Towards a greater understanding of serrated flow in an Al-containing high-entropy-based alloy. Int. J. Plast. 2019, 115, 71–92. [Google Scholar] [CrossRef]
- Xie, X.; Lo, Y.C.; Tong, Y.; Qiao, J.; Wang, G.; Ogata, S.; Qi, H.; Dahmen, K.A.; Gao, Y.; Liaw, P.K. Origin of serrated flow in bulk metallic glasses. J. Mech. Phys. Solids 2019, 124, 634–642. [Google Scholar] [CrossRef]
- Brechtl, J.; Chen, B.; Xie, X.; Ren, Y.; Venable, J.D.; Liaw, P.K.; Zinkle, S.J. Entropy modeling on serrated flows in carburized steels. Mater. Sci. Eng. A 2019, 753, 135–145. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lebyodkin, M.; Bougherira, Y.; Lebedkina, T.; Entemeyer, D. Scaling in the Local Strain-Rate Field during Jerky Flow in an Al-3%Mg Alloy. Metals 2020, 10, 134. https://doi.org/10.3390/met10010134
Lebyodkin M, Bougherira Y, Lebedkina T, Entemeyer D. Scaling in the Local Strain-Rate Field during Jerky Flow in an Al-3%Mg Alloy. Metals. 2020; 10(1):134. https://doi.org/10.3390/met10010134
Chicago/Turabian StyleLebyodkin, Mikhail, Youcef Bougherira, Tatiana Lebedkina, and Denis Entemeyer. 2020. "Scaling in the Local Strain-Rate Field during Jerky Flow in an Al-3%Mg Alloy" Metals 10, no. 1: 134. https://doi.org/10.3390/met10010134
APA StyleLebyodkin, M., Bougherira, Y., Lebedkina, T., & Entemeyer, D. (2020). Scaling in the Local Strain-Rate Field during Jerky Flow in an Al-3%Mg Alloy. Metals, 10(1), 134. https://doi.org/10.3390/met10010134