Effect of Composition on the Mechanical Properties and Wear Resistance of Low and Medium Carbon Steels with a Biomimetic Non-Smooth Surface Processed by Laser Remelting
Abstract
:1. Introduction
2. Experimentation
2.1. Materials
2.2. Experimental Methods
3. Results and Discussion
3.1. Cross-Section Morphology and Size of the Biomimetic Units with Different Carbon Content
3.2. Microstructure and Phase Composition of Different Carbon Content Matrixes and Bionic Samples
3.2.1. The Microstructure of the Matrix
3.2.2. The microstructure of the unit
3.2.3. Phase Analysis
3.3. Mechanical Properties of Varying the Carbon Content Matrix and Bionic Samples
3.3.1. Microhardness of Matrix and Unit
3.3.2. Tensile Properties of Specimens
3.3.3. Tensile Fracture Morphology of Samples
3.4. Wear Properties of Samples
3.4.1. Analysis of Wear Loss
3.4.2. Analysis of Wear Morphology
4. Conclusions
- The unit characteristics (depth and width) are affected by the laser parameters and the parent material’s composition. When the laser processing parameters are constant, the unit characteristics increase as the carbon content increases. The order of the unit characteristics is LR-A1 < LR-A2 < LR-A3 < LR-A4 < LR-A5.
- Under the same laser processing parameters, the microstructure of the remelting zone with different carbon content is the same—composed of martensite. With an increase of carbon content, the content of lath martensite decreases, and the content of plate martensite increases, which increases the hardness of the biomimetic unit.
- Compared with untreated samples, the tensile strength of the biomimetic sample with the same volume fraction of the unit increases when the carbon content is 0.15–0.45%; when the carbon content is higher than 0.45, the tensile strength is reduced. For laser biomimetic samples, as the carbon content increases, the tensile strength of the biomimetic sample first increases and then decreases, while the plasticity decreases. the degree of improvement in tensile strength is LR-A5 < LRA-4 < LR-A1 < LR-A3 < LR-A2; the degree of plasticity reduction is LR-A1 < LR-A2 < LR-A3 < LR-A4 < LR-A5.
- Compared to the untreated samples, the wear resistance of the bionic specimens with the same volume fraction of the unit shows better improvement. For the laser biomimetic samples, as the carbon content increases, the wear resistance increases.
- This study indicates the application feasibility of laser remelting strengthening for different carbon steel parts in manufacturing industry.
Author Contributions
Funding
Conflicts of Interest
References
- Ruys, A. 10—Alumina in bionic feedthroughs: The bionic eye and the future. In Alumina Ceramics; Ruys, A., Ed.; Woodhead Publishing: Cambridge, UK, 2019; pp. 283–319. [Google Scholar]
- Safyannikov, N.M.; Bureneva, O.I.; Aleksanyan, Z.A. Non-invasive Method of Intelligent Sensory Control of Hands’ Motor Functions for Bionic Systems. Procedia Comput. Sci. 2019, 150, 333–339. [Google Scholar] [CrossRef]
- Wu, J.; Ma, G. Imitation of nature: Bionic design in the study of particle adjuvants. J. Controll. Release 2019, 303, 101–108. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Wang, A.; Wang, Q.; Guan, F. Bending characteristics analysis and lightweight design of a bionic beam inspired by bamboo structures. Thin Walled Struct. 2019, 142, 476–498. [Google Scholar] [CrossRef]
- Wang, J.; Cheng, C.; Zeng, X.; Zheng, J.; Zhou, Z. Bionic-tribology design of tooth surface of grinding head based on the bovine molar. Tribol. Int. 2020, 143, 106066. [Google Scholar] [CrossRef]
- Rajabi, H.; Moghadami, M.; Darvizeh, A. Investigation of microstructure, natural frequencies and vibration modes of dragonfly wing. J. Bionic Eng. 2011, 8, 165–173. [Google Scholar] [CrossRef]
- Ren, L.; Li, X. Functional characteristics of dragonfly wings and its bionic investigation progress. Sci. China Technol. Sci. 2013, 56, 884–897. [Google Scholar] [CrossRef]
- Huang, H.; Zhang, Y.; Ren, L. Particle Erosion Resistance of Bionic Samples Inspired from Skin Structure of Desert Lizard, Laudakin stoliczkana. J. Bionic Eng. 2012, 9, 465–469. [Google Scholar] [CrossRef]
- Jagota, A.; Hui, C.Y. Adhesion, friction, and compliance of bio-mimetic and bio-inspired structured interfaces. Mater. Sci. Eng. R Rep. 2011, 72, 253–292. [Google Scholar] [CrossRef]
- Kamat, S.; Su, X.; Ballarini, R.; Heuer, A.H. Structural basis for the fracture toughness of the shell of the conch Strombus gigas. Nature 2000, 405, 1036–1040. [Google Scholar] [CrossRef]
- Meldrum, F.C.; Cölfen, H. Controlling mineral morphologies and structures in biological and synthetic systems. Chem. Rev. 2008, 108, 4332–4432. [Google Scholar] [CrossRef]
- Etsion, I. State of the art in laser surface texturing. J. Tribol. 2005, 127, 248–253. [Google Scholar] [CrossRef]
- Kannatey-Asibu, E. Principles of Laser Materials Processing; John Wiley & Sons: Hoboken, NJ, USA, 2008; pp. 1–819. [Google Scholar]
- Mazumder, J.; Steen, W.M. Heat transfer model for cw laser material processing. J. Appl. Phys. 1980, 51, 941–947. [Google Scholar] [CrossRef]
- Meijer, J. Laser beam machining (LBM), state of the art and new opportunities. J. Mater. Proc. Technol. 2004, 149, 2–17. [Google Scholar] [CrossRef]
- Shi, W.; Wang, P.; Liu, Y.; Han, G. Experiment of Process Strategy of Selective Laser Melting Forming Metal Nonhorizontal Overhanging Structure. Metals 2019, 9, 385. [Google Scholar] [CrossRef] [Green Version]
- Yu, Y.; Zhang, M.; Guan, Y.; Wu, P.; Chong, X.; Li, Y.; Tan, Z. The Effects of Laser Remelting on the Microstructure and Performance of Bainitic Steel. Metals 2019, 9, 912. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Guo, Y.; Chen, Y.; Kang, L.; Cao, Y.; Qi, H.; Yang, S. Ultrasonic-Assisted Laser Metal Deposition of the Al 4047Alloy. Metals 2019, 9, 1111. [Google Scholar] [CrossRef] [Green Version]
- Kurella, A.; Dahotre, N.B. Review paper: Surface modification for bioimplants: The role of laser surface engineering. J. Biomater. Appl. 2005, 20, 5–50. [Google Scholar] [CrossRef]
- Li, C.; Yang, L.J.; Yan, C.C.; Chen, W.; Cheng, G.H. Biomimetic anti-adhesive surface micro-structures of electrosurgical knife fabricated by fibre laser. J. Laser Micro Nanoeng. 2018, 13, 309–313. [Google Scholar]
- Yu, D.; Zhou, T.; Zhou, H.; Bo, H.; Lu, H. Non-single bionic coupling model for thermal fatigue and wear resistance of gray cast iron drum brake. Opt. Laser Technol. 2019, 111, 781–788. [Google Scholar] [CrossRef]
- Yuan, Y.; Zhao, G.; Zhang, P.; Zhou, H. Effects of shapes of biomimetic coupling units on wear resistance of 7075 aluminum alloy. Opt. Laser Technol. 2020, 121, 105786. [Google Scholar] [CrossRef]
- Ji, M.; Xu, J.; Chen, M.; El Mansori, M. Enhanced hydrophilicity and tribological behavior of dental zirconia ceramics based on picosecond laser surface texturing. Ceram. Int. 2019, 30, 106–116. [Google Scholar] [CrossRef]
- Meng, C.; Zhou, H.; Tong, X.; Cong, D.L.; Wang, C.W.; Ren, L.Q. Comparison of thermal fatigue behaviour and microstructure of different hot work tool steels processed by biomimetic couple laser remelting process. Mater. Sci. Technol. 2013, 29, 496–503. [Google Scholar] [CrossRef]
- Zang, C.; Zhou, T.; Zhou, H.; Yuan, Y.; Zhang, P.; Meng, C.; Zhang, Z. Effects of substrate microstructure on biomimetic unit properties and wear resistance of H13 steel processed by laser remelting. Opt. Laser Technol. 2018, 106, 299–310. [Google Scholar] [CrossRef]
- Wang, W.; Kodur, V. Chapter 2—Thermal properties of steel at elevated temperature. In Material Properties of Steel in Fire Conditions; Wang, W., Kodur, V., Eds.; Academic Press: Cambridge, MA, USA, 2020; pp. 29–41. [Google Scholar]
- Epp, J. 4—X-ray diffraction (XRD) techniques for materials characterization. In Materials Characterization Using Nondestructive Evaluation (NDE) Methods; Hübschen, G., Altpeter, I., Tschuncky, R., Herrmann, H.-G., Eds.; Woodhead Publishing: Cambridge, UK, 2016; pp. 81–124. [Google Scholar]
- Wang, C.; Zhou, H.; Liang, N.; Wang, C.; Cong, D.; Meng, C.; Ren, L. Mechanical properties of several laser remelting processed steels with different unit spacings. Appl. Surf. Sci. 2014, 313, 333–340. [Google Scholar] [CrossRef]
- Su, W.; Zhou, T.; Zhang, P.; Zhou, H.; Li, H. Effect of distribution of striated laser hardening tracks on dry sliding wear resistance of biomimetic surface. Opt. Laser Technol. 2018, 98, 281–290. [Google Scholar] [CrossRef]
Groups | C | Si | Mn | S | P | Fe |
---|---|---|---|---|---|---|
A1 | 0.15 | 0.11 | 0.28 | <0.01 | <0.01 | Bal |
A2 | 0.25 | 0.21 | 0.53 | <0.01 | <0.01 | Bal |
A3 | 0.37 | 0.18 | 0.61 | <0.01 | <0.01 | Bal |
A4 | 0.45 | 0.20 | 0.55 | <0.01 | <0.01 | Bal |
A5 | 0.58 | 0.25 | 0.75 | <0.01 | <0.01 | Bal |
Energy (J) | Pulse Duration (ms) | Frequency (Hz) | Scanning Speed (mm/s) | Beam Diameter (mm) |
---|---|---|---|---|
16.88 | 8 | 5 | 1 | 1.59 |
Groups | Unit Width (μm) | Unit Depth (μm) |
---|---|---|
LR-A1 | 947.30 | 543.32 |
LR-A2 | 1116.43.84 | 579.24 |
LR-A3 | 1241.64 | 607.29 |
LR-A4 | 1265.4 | 663.37 |
LR-A5 | 1346.02 | 726.47 |
Groups | YS (MPa) | YSC (%) | TS (MPa) | TSC (%) | EL (%) | ELC (%) | |||
---|---|---|---|---|---|---|---|---|---|
Untreated | Treated | Untreated | Treated | Untreated | Treated | ||||
A1 | 275 | 342 | 24.36 | 428 | 440 | 2.80 | 39 | 19 | −34.48 |
A2 | 285 | 387 | 35.79 | 440 | 532 | 20.91 | 24 | 14 | −41.67 |
A3 | 295 | 390 | 32.20 | 636 | 656 | 3.14 | 21 | 10 | −52.38 |
A4 | 268 | 631 | 639 | 1.26 | 18 | 3 | −83.33 | ||
A5 | 414 | 652 | 618 | −5.21 | 15 | 2 | −86.67 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chang, G.; Zhou, T.; Zhou, H.; Zhang, P.; Ma, S.; Zhi, B.; Wang, S. Effect of Composition on the Mechanical Properties and Wear Resistance of Low and Medium Carbon Steels with a Biomimetic Non-Smooth Surface Processed by Laser Remelting. Metals 2020, 10, 37. https://doi.org/10.3390/met10010037
Chang G, Zhou T, Zhou H, Zhang P, Ma S, Zhi B, Wang S. Effect of Composition on the Mechanical Properties and Wear Resistance of Low and Medium Carbon Steels with a Biomimetic Non-Smooth Surface Processed by Laser Remelting. Metals. 2020; 10(1):37. https://doi.org/10.3390/met10010037
Chicago/Turabian StyleChang, Geng, Ti Zhou, Hong Zhou, Peng Zhang, Siyuan Ma, Benfeng Zhi, and Siyang Wang. 2020. "Effect of Composition on the Mechanical Properties and Wear Resistance of Low and Medium Carbon Steels with a Biomimetic Non-Smooth Surface Processed by Laser Remelting" Metals 10, no. 1: 37. https://doi.org/10.3390/met10010037
APA StyleChang, G., Zhou, T., Zhou, H., Zhang, P., Ma, S., Zhi, B., & Wang, S. (2020). Effect of Composition on the Mechanical Properties and Wear Resistance of Low and Medium Carbon Steels with a Biomimetic Non-Smooth Surface Processed by Laser Remelting. Metals, 10(1), 37. https://doi.org/10.3390/met10010037