Features of the High-Temperature Structural Evolution of GeTe Thermoelectric Probed by Neutron and Synchrotron Powder Diffraction
Abstract
:1. Introduction
2. Experimental Section
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Okoye, C.M.I. Electronic and optical properties of SnTe and GeTe. J. Phys. Condens. Matter. 2002, 14, 8625. [Google Scholar] [CrossRef]
- Bauer Pereira, P.; Sergueev, I.; Gorsse, S.; Dadda, J.; Müller, E.; Hermann, R.P. Lattice dynamics and structure of GeTe, SnTe and PbTe. Phys. Status Solidi 2013, 250, 1300–1307. [Google Scholar] [CrossRef]
- Nukala, P.; Ren, M.; Agarwal, R.; Berger, J.; Liu, G.; Johnson, A.T.C.; Agarwal, R. Inverting polar domains via electrical pulsing in metallic germanium telluride. Nat. Commun. 2017, 8, 15033. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nukala, P.; Lin, C.-C.; Composto, R.; Agarwal, R. Ultralow-power switching via defect engineering in germanium telluride phase-change memory devices. Nat. Commun. 2016, 7, 10482. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Zhang, X.; Chen, Z.; Lin, S.; Li, W.; Shen, J.; Witting, I.T.; Faghaninia, A.; Chen, Y.; Jain, A.; et al. Low-Symmetry Rhombohedral GeTe Thermoelectrics. Joule 2018, 2, 976–987. [Google Scholar] [CrossRef]
- Goldsmid, H.J. Introduction to Thermoelectricity; Springer: Berlin, Germany, 2017; ISBN 9783540687573. [Google Scholar]
- Nolas, G.S.; Sharp, J.; Goldsmid, H.J. Thermoelectrics: Basic Principles and New Materials Developments; Springer: New York, NY, USA, 2001; ISBN 9783642074516. [Google Scholar]
- Bell, L.E. Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. Science 2008, 321, 1457–1461. [Google Scholar] [CrossRef] [Green Version]
- Snyder, G.J.; Toberer, E.S. Complex thermoelectric materials. Nat. Mater. 2008, 7, 105–114. [Google Scholar] [CrossRef]
- Kolomoets, N.V.; Lev, E.Y.; Sysoeva, L.M. Electrical properties and valence band structure of germanium telluride. Sov. Phys. Solid State 1964, 6, 551–556. [Google Scholar]
- Akola, J.; Jones, R.O. Binary alloys of Ge and Te: Order, voids, and the eutectic composition. Phys. Rev. Lett. 2008, 100, 21–24. [Google Scholar] [CrossRef] [Green Version]
- Perumal, S.; Samanta, M.; Ghosh, T.; Shenoy, U.S.; Bohra, A.K.; Bhattacharya, S.; Singh, A.; Waghmare, U.V.; Biswas, K. Realization of High Thermoelectric Figure of Merit in GeTe by Complementary Co-doping of Bi and In. Joule 2019, 3, 2565–2580. [Google Scholar] [CrossRef]
- Gelbstein, Y.; Dado, B.; Ben-Yehuda, O.; Sadia, Y.; Dashevsky, Z.; Dariel, M.P. Highly efficient Ge-Rich GexPb1-xTe thermoelectric alloys. J. Electron. Mater. 2010, 39, 2049–2052. [Google Scholar] [CrossRef]
- Gelbstein, Y.; Ben-Yehuda, O.; Pinhas, E.; Edrei, T.; Sadia, Y.; Dashevsky, Z.; Dariel, M.P. Thermoelectric Properties of (Pb,Sn,Ge)Te-Based Alloys. J. Electron. Mater. 2009, 38, 1478–1482. [Google Scholar] [CrossRef]
- Lee, H.S.; Kim, B.-S.; Cho, C.-W.; Oh, M.-W.; Min, B.-K.; Park, S.-D.; Lee, H.-W. Herringbone structure in GeTe-based thermoelectric materials. Acta Mater. 2015, 91, 83–90. [Google Scholar] [CrossRef]
- Vermeulen, P.A.; Kumar, A.; ten Brink, G.H.; Blake, G.R.; Kooi, B.J. Unravelling the Domain Structures in GeTe and LaAlO 3. Cryst. Growth Des. 2016, 16, 5915–5922. [Google Scholar] [CrossRef]
- Matsunaga, T.; Fons, P.; Kolobov, A.V.; Tominaga, J.; Yamada, N. The order-disorder transition in GeTe: Views from different length-scales. Appl. Phys. Lett. 2011, 99, 231907. [Google Scholar] [CrossRef]
- Chattopadhyay, T.; Boucherle, J.X.; VonSchnering, H.G. Neutron diffraction study on the structural phase transition in GeTe. J. Phys. C Solid State Phys. 1987, 20, 1431–1440. [Google Scholar] [CrossRef]
- Wdowik, U.D.; Parlinski, K.; Rols, S.; Chatterji, T. Soft-phonon mediated structural phase transition in GeTe. Phys. Rev. B 2014, 89, 1–7. [Google Scholar] [CrossRef]
- Fons, P.; Kolobov, A.V.; Krbal, M.; Tominaga, J.; Andrikopoulos, K.S.; Yannopoulos, S.N.; Voyiatzis, G.A.; Uruga, T. Phase transition in crystalline GeTe: Pitfalls of averaging effects. Phys. Rev. B 2010, 82, 155209. [Google Scholar] [CrossRef]
- Tran, X.Q.; Hong, M.; Maeno, H.; Kawami, Y.; Toriyama, T.; Jack, K.; Chen, Z.-G.; Zou, J.; Matsumura, S.; Dargusch, M.S. Real-time observation of the thermally-induced phase transformation in GeTe and its thermal expansion properties. Acta Mater. 2019, 165, 327–335. [Google Scholar] [CrossRef]
- Xu, M.; Lei, Z.; Yuan, J.; Xue, K.; Guo, Y.; Wang, S.; Miao, X.; Mazzarello, R. Structural disorder in the high-temperature cubic phase of GeTe. RSC Adv. 2018, 8, 17435–17442. [Google Scholar] [CrossRef] [Green Version]
- Sist, M.; Kasai, H.; Hedegaard, E.M.J.; Iversen, B.B. Role of vacancies in the high-temperature pseudodisplacive phase transition in GeTe. Phys. Rev. B 2018, 97, 94116. [Google Scholar] [CrossRef]
- Shportko, K.; Kremers, S.; Woda, M.; Lencer, D.; Robertson, J.; Wuttig, M. Resonant bonding in crystalline phase-change materials. Nat. Mater. 2008, 7, 653. [Google Scholar] [CrossRef] [PubMed]
- Boschker, J.E.; Wang, R.; Calarco, R. GeTe: A simple compound blessed with a plethora of properties. CrystEngComm 2017, 19, 5324–5335. [Google Scholar] [CrossRef]
- Fauth, F.; Boer, R.; Gil-Ortiz, F.; Popescu, C.; Vallcorba, O.; Peral, I.; Fullà, D.; Benach, J.; Juanhuix, J. The crystallography stations at the Alba synchrotron. Eur. Phys. J. Plus 2015, 130, 160. [Google Scholar] [CrossRef]
- Rietveld, H.M. A profile refinement method for nuclear and magnetic structures. J. Appl. Crystallogr. 1969, 2, 65–71. [Google Scholar] [CrossRef]
- Rodríguez-Carvajal, J. Recent advances in magnetic structure determination by neutron powder diffraction. Phys. B Phys. Condens. Matter. 1993, 192, 55–69. [Google Scholar] [CrossRef]
- Iwanaga, S.; Toberer, E.S.; LaLonde, A.; Snyder, G.J. A high temperature apparatus for measurement of the Seebeck coefficient. Rev. Sci. Instrum. 2011, 82, 063905. [Google Scholar] [CrossRef] [Green Version]
- Perumal, S.; Roychowdhury, S.; Negi, D.S.; Datta, R.; Biswas, K. High Thermoelectric Performance and Enhanced Mechanical Stability of p-type Ge1-xSbxTe. Chem. Mater. 2015, 27, 7171–7178. [Google Scholar] [CrossRef]
- Gainza, J.; Serrano-Sánchez, F.; Nemes, N.M.; Dura, O.J.; Martínez, J.L.; Alonso, J.A. Lower temperature of the structural transition, and thermoelectric properties in Sn-substituted GeTe. Mater. Today. Proc. 2019. submitted for publication. [Google Scholar]
- Wu, D.; Zhao, L.D.; Hao, S.; Jiang, Q.; Zheng, F.; Doak, J.W.; Wu, H.; Chi, H.; Gelbstein, Y.; Uher, C.; et al. Origin of the high performance in GeTe-based thermoelectric materials upon Bi2Te3 doping. J. Am. Chem. Soc. 2014, 136, 11412–11419. [Google Scholar] [CrossRef]
- Chatterji, T.; Kumar, C.M.N.; Wdowik, U.D. Anomalous temperature-induced volume contraction in GeTe. Phys. Rev. B 2015, 91, 054110. [Google Scholar] [CrossRef] [Green Version]
- Gainza, J.; Serrano-Sánchez, F.; Biskup, N.; Nemes, N.M.; Martínez, J.L.; Fernández-Díaz, M.T.; Alonso, J.A. Influence of Nanostructuration on PbTe Alloys Synthesized by Arc-Melting. Materials 2019, 12, 3783. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mi, J.-L.; Christensen, M.; Nishibori, E.; Iversen, B.B. Multitemperature crystal structures and physical properties of the partially filled thermoelectric skutterudites M0.1Co4Sb12 (M = La,Ce,Nd,Sm,Yb and Eu). Phys. Rev. B 2011, 84, 064114. [Google Scholar] [CrossRef]
- Serrano-Sánchez, F.; Funes, M.; Nemes, N.M.; Dura, O.J.; Martínez, J.L.; Prado-Gonjal, J.; Fernández-Díaz, M.T.; Alonso, J.A. Low lattice thermal conductivity in arc-melted GeTe with Ge-deficient crystal structure. Appl. Phys. Lett. 2018, 113, 1–5. [Google Scholar] [CrossRef]
- Gascoin, F.; Ottensmann, S.; Stark, D.; Haïle, S.M.; Snyder, G.J. Zintl phases as thermoelectric materials: Tuned transport properties of the compounds CaxYb1-xZn2Sb2. Adv. Funct. Mater. 2005, 15, 1860–1864. [Google Scholar] [CrossRef]
- Peng, K.; Lu, X.; Zhan, H.; Hui, S.; Tang, X.; Wang, G.; Dai, J.; Uher, C.; Wang, G.; Zhou, X. Broad temperature plateau for high ZTs in heavily doped p-type SnSe single crystals. Energy Environ. Sci. 2016, 9, 454–460. [Google Scholar] [CrossRef]
- Li, Y.; Qiu, P.; Xiong, Z.; Chen, J.; Nunna, R.; Shi, X.; Chen, L. Electrical and thermal transport properties of YbxCo4Sb12 filled skutterudites with ultrahigh carrier concentrations. AIP Adv. 2015, 5, 117239. [Google Scholar] [CrossRef] [Green Version]
- Levin, E.M.; Besser, M.F.; Hanus, R. Electronic and thermal transport in GeTe: A versatile base for thermoelectric materials. J. Appl. Phys. 2013, 114, 083713. [Google Scholar] [CrossRef]
- May, A.F.; Toberer, E.S.; Saramat, A.; Snyder, G.J. Characterization and analysis of thermoelectric transport in n -type Ba8 Ga16-x Ge30+x. Phys. Rev. B 2009, 80, 1–12. [Google Scholar] [CrossRef]
- Lee, J.K.; Oh, M.W.; Kim, B.S.; Min, B.K.; Lee, H.W.; Park, S.D. Influence of Mn on crystal structure and thermoelectric properties of GeTe compounds. Electron. Mater. Lett. 2014, 10, 813–817. [Google Scholar] [CrossRef]
- Dong, J.; Sun, F.; Tang, H.; Pei, J.; Zhuang, H.; Hu, H.; Zhang, B.; Pan, Y.; Li, J. Medium-temperature thermoelectric GeTe: Vacancy suppression and band structure engineering leading to high performance. Energy Environ. Sci. 2019, 12, 1396–1403. [Google Scholar] [CrossRef]
- Perumal, S.; Roychowdhury, S.; Biswas, K. High performance thermoelectric materials and devices based on GeTe. J. Mater. Chem. C 2016, 4, 7520–7536. [Google Scholar] [CrossRef]
- Li, J.; Zhang, X.; Lin, S.; Chen, Z.; Pei, Y. Realizing the High Thermoelectric Performance of GeTe by Sb-Doping and Se-Alloying. Chem. Mater. 2017, 29, 605–611. [Google Scholar] [CrossRef]
Temperature (K) | 298 | 523 | 573 | 633 | 683 |
---|---|---|---|---|---|
a/Å | 4.15871(9) | 4.18835(16) | 4.20193(15) | 4.21864(12) | 4.23462(10) |
c/Å | 10.6731(3) | 10.6155(6) | 10.5841(5) | 10.5258(4) | 10.4734(3) |
V/Å3 | 159.859(7) | 161.271(12) | 161.839(11) | 162.231(9) | 162.647(8) |
z (Ge)/Å | 0.23760 | 0.23760 | 0.23760 | 0.23760 | 0.23760 |
focc Ge | 0.927(15) | 0.927 | 0.927 | 0.927 | 0.927 |
U11 (Ge)/Å2 | 0.016(2) | 0.029(3) | 0.0277(14) | 0.0338(18) | 0.038(2) |
U33 (Ge)/Å2 | 0.028(4) | 0.067(3) | 0.0256(19) | 0.039(11) | 0.039(10) |
U12 (Ge)/Å2 | 0.008(2) | 0.014(3) | 0.0139(14) | 0.0169(18) | 0.019(2) |
z (Te)/Å | 0.76439(15) | 0.7608(3) | 0.7568(9) | 0.7566(13) | 0.752(2) |
U11 (Te)/Å2 | 0.015(3) | 0.016(3) | 0.0284(17) | 0.031(2) | 0.031(2) |
U33 (Te)/Å2 | 0.005(3) | 0.0098(16) | 0.062(7) | 0.046(18) | 0.044(17) |
U12 (Te)/Å2 | 0.007(3) | 0.008(3) | 0.0142(17) | 0.015(2) | 0.016(2) |
d (Ge-Te)/Å | 2.8273(8) | 2.8578(17) | 2.885(5) | 2.889(7) | 2.919(11) |
d (Ge-Te)/Å | 3.1667(10) | 3.148(2) | 3.123(6) | 3.123(9) | 3.094(13) |
Temperature (K) | 303 | 663 | 703 | 743 | 783 |
---|---|---|---|---|---|
a/Å | 4.16855(3) | 5.98590(6) | 5.99077(4) | 5.99615(5) | 6.00257(6) |
c/Å | 10.66545(9) | ||||
V/Å3 | 160.502(2) | 214.481(4) | 215.004(3) | 215.585(3) | 216.277(4) |
z (Ge)/Å | 0.23760 | ||||
z (Te)/Å | 0.7642(6) | ||||
U11 (Ge)/Å2 | 0.017(3) | 0.0509(19) | 0.0539(16) | 0.0562(18) | 0.0587(19) |
U33 (Ge)/Å2 | 0.015(9) | ||||
U12 (Ge)/Å2 | 0.008(3) | ||||
U11 (Te)/Å2 | 0.0106(14) | 0.0282(9) | 0.0309(8) | 0.0329(8) | 0.0348(9) |
U33 (Te)/Å2 | 0.015(4) | ||||
U12(Te)/Å2 | 0.0053(14) | ||||
d (Ge-Te)/Å | 2.833(3) (x3) | 2.99295(3)(x6) | 2.99539(2) | 2.99808(2) | 3.00129(3) |
d (Ge-Te)/Å | 3.169(4) (x3) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gainza, J.; Serrano-Sánchez, F.; Nemes, N.M.; Martínez, J.L.; Fernández-Díaz, M.T.; Alonso, J.A. Features of the High-Temperature Structural Evolution of GeTe Thermoelectric Probed by Neutron and Synchrotron Powder Diffraction. Metals 2020, 10, 48. https://doi.org/10.3390/met10010048
Gainza J, Serrano-Sánchez F, Nemes NM, Martínez JL, Fernández-Díaz MT, Alonso JA. Features of the High-Temperature Structural Evolution of GeTe Thermoelectric Probed by Neutron and Synchrotron Powder Diffraction. Metals. 2020; 10(1):48. https://doi.org/10.3390/met10010048
Chicago/Turabian StyleGainza, Javier, Federico Serrano-Sánchez, Norbert Marcel Nemes, José Luis Martínez, María Teresa Fernández-Díaz, and José Antonio Alonso. 2020. "Features of the High-Temperature Structural Evolution of GeTe Thermoelectric Probed by Neutron and Synchrotron Powder Diffraction" Metals 10, no. 1: 48. https://doi.org/10.3390/met10010048
APA StyleGainza, J., Serrano-Sánchez, F., Nemes, N. M., Martínez, J. L., Fernández-Díaz, M. T., & Alonso, J. A. (2020). Features of the High-Temperature Structural Evolution of GeTe Thermoelectric Probed by Neutron and Synchrotron Powder Diffraction. Metals, 10(1), 48. https://doi.org/10.3390/met10010048