Structural Characteristics of Multilayered Ni-Ti Nanocomposite Fabricated by High Speed High Pressure Torsion (HSHPT)
Abstract
:1. Introduction
2. Experimental Procedure
- -
- one set of samples from mid-radius of the discs,
- -
- another set from the edge and the center of each disc.
3. Results and Discussion
3.1. Optical Microscopy
3.2. SEM/EDX Analysis
3.3. Transmission Electron Microscopy
3.4. DSC
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Ji, X.; Wang, Q.; Yin, F.; Cui, C.; Ji, P.; Hao, G. Fabrication and properties of novel porous CuAlMn shape memory alloys and polymer/CuAlMn composites. Compos. Part A Appl. Sci. Manuf. 2018, 107, 21–30. [Google Scholar] [CrossRef]
- Yi, X.; Sun, K.; Gao, W.; Meng, X.; Cai, W.; Zhao, L. Microstructure design of the excellent shape recovery properties in (Ti,Hf) 2Ni/Ti-Ni-Hf high temperature shape memory alloy composite. J. Alloys Compd. 2017, 729, 758–763. [Google Scholar] [CrossRef]
- Huang, G.Q.; Yan, Y.F.; Wu, J.; Shen, Y.F.; Gerlich, A.P. Microstructure and mechanical properties of fine-grained aluminum matrix composite reinforced with nitinol shape memory alloy particulates produced by underwater friction stir processing. J. Alloys Compd. 2019, 786, 257–271. [Google Scholar] [CrossRef]
- Oliveira, J.P.; Duarte, J.F.; Inácio, P.; Schell, N.; Miranda, R.M.; Santos, T.G. Production of Al/NiTi composites by friction stir welding assisted by electrical current. Mater. Des. 2017, 113, 311–318. [Google Scholar] [CrossRef] [Green Version]
- Wang, E.; Tian, Y.; Wang, Z.; Jiao, F.; Guo, C.; Jiang, F. A study of shape memory alloy NiTi fiber/plate reinforced (SMAFR/SMAPR) Ti-Al laminated composites. J. Alloys Compd. 2017, 696, 1059–1066. [Google Scholar] [CrossRef]
- Belyaev, S.; Rubanik, V.; Resnina, N.; Rubanik, V.; Demidova, E.; Lomakin, I. Bimetallic shape memory alloy composites produced by explosion welding: Structure and martensitic transformation. J. Mater. Process. Technol. 2016, 234, 323–331. [Google Scholar] [CrossRef]
- Lohan, N.M.; Pricop, B.; Popa, M.; Matcovschi, E.; Cimpoeşu, N.; Cimpoeşu, R.; Istrate, B.; Bujoreanu, L.G. Hot Rolling Effects on the Microstructure and Chemical Properties of NiTiTa Alloys. J. Mater. Eng. Perform. 2019, 28, 7273–7280. [Google Scholar] [CrossRef]
- Cimpoesu, N.; Mihalache, E.; Lohan, N.M.; Suru, M.G.; Comãneci, R.I.; Özkal, B.; Bujoreanu, L.G.; Pricop, B. Structural-Morphological Fluctuations Induced by Thermomechanical Treatment in a Fe–Mn–Si Shape Memory Alloy. Met. Sci. Heat Treat. 2018, 60, 471–477. [Google Scholar] [CrossRef]
- Oliveira, J.P.; Miranda, R.M.; Fernandes, F.M.B. Welding and Joining of NiTi Shape Memory Alloys: A Review. Prog. Mater. Sci. 2017, 88, 412–466. [Google Scholar] [CrossRef]
- Sun, L.; Huang, W.M.; Ding, Z.; Zhao, Y.; Wang, C.C.; Purnawali, H.; Tang, C. Stimulus-responsive shape memory materials: A review. Mater. Des. 2012, 33, 577–640. [Google Scholar] [CrossRef]
- Soejima, Y.; Motomura, S.; Mitsuhara, M.; Inamura, T.; Nishida, M. In situ scanning electron microscopy study of the thermoelastic martensitic transformation in Ti–Ni shape memory alloy. Acta Mater. 2016, 103, 352–360. [Google Scholar] [CrossRef] [Green Version]
- Tsuchiya, K.; Hada, Y.; Koyano, T.; Nakajima, K.; Ohnuma, M.; Koike, T.; Todaka, Y.; Umemoto, M. Production of TiNi amorphous/nanocrystalline wires with high strength and elastic modulus by severe cold drawing. Scr. Mater. 2009, 60, 749–752. [Google Scholar] [CrossRef]
- Jiang, D.; Jiang, J.; Shi, X.; Jiang, X.; Jiao, S.; Cui, L. Constrained martensitic transformation in nanocrystalline TiNi/NbTi shape memory composites. J. Alloys Compd. 2013, 577, S749–S751. [Google Scholar] [CrossRef]
- Tohidi, A.A.; Ketabchi, M.; Hasannia, A. Nanograined Ti–Nb microalloy steel achieved by Accumulative Roll Bonding (ARB) process. Mater. Sci. Eng. A 2013, 577, 43–47. [Google Scholar] [CrossRef]
- Ana, S.V.A.; Reihanian, M.; Lotfi, B. Accumulative roll bonding (ARB) of the composite coated strips to fabricate multi-component Al-based metal matrix composites. Mater. Sci. Eng. A 2015, 647, 303–312. [Google Scholar] [CrossRef]
- Belyaev, S.; Rubanik, V.; Resnina, N.; Lomakin, I.; Demidova, E. Reversible strain in bimetallic TiNi-based shape memory composites produced by explosion welding. Mater. Today Proc. 2017, 4, 4696–4701. [Google Scholar] [CrossRef]
- Oliveira, J.P.; Zeng, Z.; Andrei, C.; Braz Fernandes, F.M.; Miranda, R.M.; Ramirez, A.J.; Omori, T.; Zhou, N. Dissimilar laser welding of superelastic NiTi and CuAlMn shape memory alloys. Mater. Des. 2017, 128, 166–175. [Google Scholar] [CrossRef]
- Qiao, X.; Li, X.; Zhang, X.; Chen, Y.; Zheng, M.; Golovin, I.S.; Gao, N.; Starink, M.J. Intermetallics formed at interface of ultrafine grained Al/Mg bi-layered disks processed by high pressure torsion at room temperature. Mater. Lett. 2016, 181, 187–190. [Google Scholar] [CrossRef] [Green Version]
- Gurau, G.; Gurau, C.; Bujoreanu, L.G.; Sampath, V. A Versatile Method for Nanostructuring Metals, Alloys and Metal Based Composites. In Proceedings of the IOP Conference Series: Materials Science and Engineering, Iasi, Romania, 25–26 May 2017; pp. 24–27. [Google Scholar]
- Gurau, G.; Gurau, C.; Sampath, V.; Bujoreanu, L.G. Investigations of a nanostructured FeMnSi shape memory alloy produced via severe plastic deformation. Int. J. Miner. Metall. Mater. 2016, 23, 1315–1322. [Google Scholar] [CrossRef]
- Gurǎu, G.; Gurǎu, C.; Potecaşu, O.; Alexandru, P.; Bujoreanu, L.-G. Novel high-speed high pressure torsion technology for obtaining Fe-Mn-Si-Cr shape memory alloy active elements. J. Mater. Eng. Perform. 2014, 23, 2396–2402. [Google Scholar] [CrossRef]
- Fernandes, F.M.B.; Mahesh, K.K.; Silva, R.J.C.; Gurau, C.; Gurau, G. XRD study of the transformation characteristics of severely plastic deformed Ni-Ti SMAs. Phys. Status Solidi C 2010, 7, 1348–1350. [Google Scholar] [CrossRef]
- Ghat, M.; Mehtedi, M.E.; Ciccarelli, D.; Paoletti, C.; Spigarelli, S.; Mehtedi, M.E.; Ciccarelli, D.; Paoletti, C.; High, S.S. Materials at High Temperatures High temperature deformation of IN718 superalloy: Use of basic creep modelling in the study of Nickel and single-phase Ni-based superalloys. Mater. High Temp. 2019, 3409, 1–10. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gurau, G.; Gurau, C.; Fernandes, F.M.B.; Alexandru, P.; Sampath, V.; Marin, M.; Galbinasu, B.M. Structural Characteristics of Multilayered Ni-Ti Nanocomposite Fabricated by High Speed High Pressure Torsion (HSHPT). Metals 2020, 10, 1629. https://doi.org/10.3390/met10121629
Gurau G, Gurau C, Fernandes FMB, Alexandru P, Sampath V, Marin M, Galbinasu BM. Structural Characteristics of Multilayered Ni-Ti Nanocomposite Fabricated by High Speed High Pressure Torsion (HSHPT). Metals. 2020; 10(12):1629. https://doi.org/10.3390/met10121629
Chicago/Turabian StyleGurau, Gheorghe, Carmela Gurau, Francisco Manuel Braz Fernandes, Petrica Alexandru, Vedamanickam Sampath, Mihaela Marin, and Bogdan Mihai Galbinasu. 2020. "Structural Characteristics of Multilayered Ni-Ti Nanocomposite Fabricated by High Speed High Pressure Torsion (HSHPT)" Metals 10, no. 12: 1629. https://doi.org/10.3390/met10121629
APA StyleGurau, G., Gurau, C., Fernandes, F. M. B., Alexandru, P., Sampath, V., Marin, M., & Galbinasu, B. M. (2020). Structural Characteristics of Multilayered Ni-Ti Nanocomposite Fabricated by High Speed High Pressure Torsion (HSHPT). Metals, 10(12), 1629. https://doi.org/10.3390/met10121629