Mechanical Performance and Microstructural Evolution of (NiCo)75Cr17Fe8Cx (x = 0~0.83) Medium Entropy Alloys at Room and Cryogenic Temperatures
Abstract
:1. Introduction
2. Materials and Methods
3. Result and Discussion
3.1. Effect of Carbon on the Microstructural Evolution
3.2. Effect of Carbon Addition on the Mechanical Properties
3.3. Effect of Carbon on the Deformation Microstructure
3.4. Estimation of Carbon Partitioning into Carbides and Interstitial Carbon
3.5. Strengthening Contribution to Carbon-Free and Carbon Containing Alloys
4. Conclusions
- Increasing the entropy of the matrix of conventional alloys by adding new elements with high solubility to conventional alloys is proved to be a convenient new design strategy of developing new HEAs or MEAs with the enhanced performance.
- The concurrent recrystallization and precipitation of submicron carbides at twin and grain boundaries during annealing effectively prohibited the grain growth, resulting in a fine-grained structure and a significant increase in strength in carbon-doped alloys.
- In carbon containing (NiCo)75Cr17Fe8C0.34 (b) and (NiCo)75Cr17Fe8C0.83 MEAs, deformation twins developed in addition to homogeneously distributed dislocations. The nanoscale carbides were observed to be formed both in grain interiors and at grain boundaries. Their volume fraction and size increased with increase of carbon content.
- Strength/ductility combination of carbon-free (NiCo)75Cr17Fe8 MEA was found to be 729 MPa/81% at 298 K and it increased to remarkable 1212MPa/106% at cryogenic temperature. The excellent strength and ductility of (NiCo)75Cr17Fe8 at cryogenic temperature is attributed to the increased strain hardening rate caused by the interaction between dislocation slip and deformation twins.
- Carbon-doped (NiCo)75Cr17Fe8C0.34 (1321 MPa/96%) and (NiCo)75Cr17Fe8C0.83 (1398 MPa/66%) MEAs also exhibited excellent strength/ductility combinations, both of which are superior to those of other HEAs found in the literature.
- Strengthening components contributing to the yield strength of the annealed alloy in the present study consist of the friction stress, grain size strengthening, carbide strengthening and interstitial strengthening (). Excellent agreement between the predictions and the experiments were obtained.
- Strength/ductility combinations (NiCo)75Cr17Fe8, (NiCo)75Cr17Fe8C0.34 and (NiCo)75Cr17Fe8C0.83 at room and cryogenic temperatures are superior to those of other HEAs and MEAs because of the strengthening contributions by grain refinement, carbide formation, interstitial solution strengthening and the friction stress by intrinsic stress and substitutional solid solution strengthening.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Tsai, M.-H.; Yeh, J.-W. High-entropy alloys: A critical review. Mater. Res. Lett. 2014, 2, 107–123. [Google Scholar] [CrossRef]
- Canter, B. Multicomponent high-entropy cantor alloys. Prog. Mater. Sci. 2020, 100754. [Google Scholar] [CrossRef]
- Zhang, Y.; Zuo, T.T.; Tang, Z.; Gao, M.C.; Dahmen, K.A.; Liaw, P.K.; Lu, Z.P. Microstructures and properties of high-entropy alloys. Prog. Mater. Sci. 2014, 61, 1–93. [Google Scholar] [CrossRef]
- Li, Z.; Zhao, S.; Ritchie, R.O.; Meyers, M.A. Mechanical properties of high-entropy alloys with emphasis on face-centered cubic alloys. Prog. Mater. Sci. 2019, 102, 296–345. [Google Scholar] [CrossRef]
- Gludovatz, B.; Hohenwarter, A.; Catoor, D.; Chang, E.H.; George, E.P.; Ritchie, R.O. A fracture-resistant high-entropy alloy for cryogenic applications. Science 2014, 345, 1153–1158. [Google Scholar] [CrossRef] [Green Version]
- George, E.P.; Curtin, W.A.; Tasan, C.C. High-entropy alloys: A focused review of mechanical properties and deformation mechanism. Acta Mater. 2019, 188, 435–474. [Google Scholar] [CrossRef]
- Zhang, Z.; Mao, M.; Wang, J.; Gludovatz, B.; Zhang, Z.; Mao, S.X.; George, E.P.; Yu, Q.; Ritchie, R.O. Nanoscale origins of the damage tolerance of the high-entropy alloy CrMnFeCoNi. Nat. Commun. 2015, 6, 10143. [Google Scholar] [CrossRef] [Green Version]
- George, E.P.; Raabe, D.; Ritchie, R.O. High-entropy alloys. Nat. Rev. Mater. 2019, 4, 515–534. [Google Scholar] [CrossRef]
- Laplanche, G.; Kostka, A.; Horst, O.; Eggeler, G.; George, E. Microstructure evolution and critical stress for twinning in the CrMnFeCoNi high-entropy alloy. Acta Mater. 2016, 118, 152–163. [Google Scholar] [CrossRef] [Green Version]
- Wu, Z.; Bei, H.; Pharr, G.M.; George, E.P. Temperature dependence of the mechanical properties of equiatomic solid solution alloys with face-centered cubic crystal structures. Acta Mater. 2014, 81, 428–441. [Google Scholar] [CrossRef]
- Yoshida, S.; Ikeuchi, T.; Bhattacharjee, T.; Bai, Y.; Shibata, A.; Tsuji, N. Effect of elemental combination on friction stress and Hall-Petch relationship in face-centered cubic high/medium entropy alloys. Acta Mater. 2019, 171, 201–215. [Google Scholar] [CrossRef]
- Varvenne, C.; Luque, A.; Curtin, W.A. Theory of strengthening in fcc high entropy alloys. Acta Mater. 2016, 118, 992–998. [Google Scholar] [CrossRef] [Green Version]
- Okamoto, N.L.; Yuge, K.; Tanaka, K.; Inui, H.; George, E.P. Atomic displacement in the CrMnFeCoNi high entropy alloy-A scaling factor to predict solid solution strengthening. AIP Adv. 2016, 6, 125008. [Google Scholar] [CrossRef]
- Toda-Caraballo, I. A general formulation for solid solution hardening effect in multicomponent alloys. Scr. Mater. 2017, 127, 113–117. [Google Scholar] [CrossRef]
- Laplanche, G.; Bonneville, J.; Varvenne, C.; Curtin, W.A. Thermal activation parameters of plastic flow reveal deformation mechanisms in the CrMnFeCoNi high entropy alloy. Acta Mater. 2018, 143, 257–264. [Google Scholar] [CrossRef]
- Kawamura, B.M.; Asakura, M.; Okamoto, N.L.; Kishida, K.; Inui, H.; George, E.P. Plastic deformation of single crystals of the equiatomic Cr-Mn-Fe-Co-Ni high entropy alloy in tension and compression from 10K to 1273K. Acta Mater. 2020, 203, 116454. [Google Scholar] [CrossRef]
- Seol, J.B.; Bea, J.W.; Kim, J.G.; Sung, H.K.; Li, Z.; Lee, H.H.; Shim, S.H.; Jang, J.H.; Ko, W.S.; Hong, S.I.; et al. Short-range order strengthening in boron-doped high-entropy alloys for cryogenic applications. Acta Mater. 2020, 194, 366–377. [Google Scholar] [CrossRef]
- Hong, S.I.; Moon, J.; Hong, S.K.; Kim, H.S. Thermally activated deformation and the rate controlling mechanism in CoCrFeMnNi high entropy alloy. Mater. Sci. Eng. A 2017, 682, 569–576. [Google Scholar] [CrossRef]
- Shim, S.H.; Oh, S.M.; Lee, J.; Hong, S.-K.; Hong, S.I. Nanoscale modulated structures by balanced distribution of atoms and mechanical/structural stabilities in CoCuFeMnNi high entropy alloys. Mater. Sci. Eng. A 2019, 762, 138120. [Google Scholar] [CrossRef]
- Hur, D.H.; Lee, D.H. Effect of solid solution carbon on stress corrosion cracking of Alloy 600 in a primary water at 360 °C. Mater. Sci. Eng. A 2014, 603, 129–133. [Google Scholar] [CrossRef]
- Wei, D.; Li, X.; Heng, W.; Koizumi, Y.; He, F.; Choi, W.-M.; Lee, B.-J.; Kim, H.S.; Kato, H.; Chiba, A. Novel Co-rich high entropy alloys with superior tensile properties. Mater. Res. Lett. 2019, 7, 82–88. [Google Scholar] [CrossRef] [Green Version]
- Yoshida, S.; Ikeuchi, T.; Bai, Y.; Tsuji, N. Effect of Cobalt-Content on Mechanical Properties of Non-Equiatomic Co–Cr–Ni Medium Entropy Alloys. Mater. Trans. 2020, 61, MT-MK2019004. [Google Scholar] [CrossRef]
- Wu, Z.; Bei, H.; Otto, F.; Pharr, G.M.; George, E.P. Recovery, recrystallization, grain growth and phase stability of a family of FCC-structured multi-component equiatomic solid solution alloys. Intermetallics 2014, 46, 131–140. [Google Scholar] [CrossRef]
- Bracq, G.; Laurent-Brocq, M.; Perrière, L.; Pirès, R.; Joubert, J.-M.; Guillot, I. The fcc solid solution stability in the Co-Cr-Fe-Mn-Ni multi-component system. Acta Mater. 2017, 128, 327–336. [Google Scholar] [CrossRef]
- Klimova, M.; Semenyuk, A.; Shaysultanov, D.; Salishchev, G.; Zherebtsov, S.; Stepanov, N. Effect of carbon on cryogenic tensile behavior of CoCrFeMnNi-type high entropy alloys. J. Alloys Compd. 2019, 811, 152000. [Google Scholar] [CrossRef]
- Lee, B.J.; Song, J.S.; Hong, S.I. High-temperature deformability of a Fe-Cr-Mn-Ni austenite stainless steel with high nitrogen and high carbon contents. Metals 2018, 8, 608. [Google Scholar] [CrossRef] [Green Version]
- Ko, J.Y.; Hong, S.I. Microstructural evolution and mechanical performance of carbon-containing CoCrFeMnNi-C high entropy alloys. J. Alloys Compd. 2018, 743, 115–125. [Google Scholar] [CrossRef]
- Guan, D.; Nutter, J.; Sharp, J.; Gao, J.; Rainforth, W.M. Direct observation of precipitation along twin boundaries and dissolution in a magnesium alloy annealing at high temperature. Scr. Mater. 2017, 138, 39–43. [Google Scholar] [CrossRef]
- Vaughan, D. Precipitation of M23C6 at first and second-order twin boundaries in austenitic stainless steels. (precipitation at twin boundaries). Philos. Mag. 1972, 25, 281–290. [Google Scholar] [CrossRef]
- Nie, J.F.; Zhu, Y.; Liu, J.; Fang, X.-Y. Periodic segregation of solute atoms in fully coherent twin boundaries. Science 2013, 340, 957–960. [Google Scholar] [CrossRef]
- Special Metals. INCONEL (Nickel-Chromium-Iron) Alloy 600; Special Metals: New Hartford, NY, USA, 2008; Available online: https://www.specialmetals.com/assets/smc/documents/alloys/inconel/inconel-alloy-600.pdf (accessed on 5 October 2020).
- Haupt, M.; Müller, M.; Haase, C.; Sevsek, S.; Brasche, F.; Schwedt, A.; Hirt, G. The Influence of Warm Rolling on Microstructure and Deformation Behavior of High Manganese Steels. Metals 2019, 9, 797. [Google Scholar] [CrossRef] [Green Version]
- Fang, W.; Chang, R.; Ji, P.; Zhang, X.; Liu, B.; Qu, X.; Yin, F. Transformation Induced Plasticity Effects of a Non-Equal Molar Co-Cr-Fe-Ni High Entropy Alloy System. Metals 2018, 8, 369. [Google Scholar] [CrossRef] [Green Version]
- Zherebtsov, S.; Stepanov, N.; Ivanisenko, Y.; Shaysultanov, D.; Yurchenko, N.; Klimova, M.; Salishchev, G. Evolution of Microstructure and Mechanical Properties of a CoCrFeMnNi High-Entropy Alloy during High-Pressure Torsion at Room and Cryogenic Temperatures. Metals 2018, 8, 123. [Google Scholar] [CrossRef] [Green Version]
- Hong, S.I. Criteria for predicting twin-induced plasticity in solid solution copper alloys. Mater. Sci. Eng. A 2018, 711, 492–497. [Google Scholar] [CrossRef]
- Murr, L. Stacking-fault anomalies and the measurement of stacking-fault free energy in fcc thin films. Thin Solid Film. 1969, 4, 389–412. [Google Scholar] [CrossRef]
- Hong, S.I.; Laird, C. Mechanisms of slip mode modification in FCC solid solutions. Acta Metall. Mater. 1990, 38, 1581–1594. [Google Scholar] [CrossRef]
- Yen, H.-W.; Huang, M.; Scott, C.; Yang, J.-R. Interactions between deformation-induced defects and carbides in a vanadium-containing TWIP steel. Scr. Mater. 2012, 66, 1018–1023. [Google Scholar] [CrossRef]
- Lee, S.-J.; Han, J.; Lee, S.; Kang, S.-H.; Lee, S.-M.; Lee, Y.-K. Design for Fe-high Mn alloy with an improved combination of strength and ductility. Sci. Rep. 2017, 7, 3573. [Google Scholar] [CrossRef] [Green Version]
- Moitra, A.; Dasgupta, A.; Sathyanarayanan, S.; Sasikala, G.; Albert, S.; Saroja, S.; Bhaduri, A.; Kumar, E.R.; Jayakumar, T. A study of fracture mechanisms in RAFM steel in the ductile to brittle transition temperature regime. Procedia Eng. 2014, 86, 258–263. [Google Scholar] [CrossRef] [Green Version]
- Wu, Z.; Parish, C.; Bei, H. Nano-twin mediated plasticity in carbon-containing FeNiCoCrMn high entropy alloys. J. Alloys Compd. 2015, 647, 815–822. [Google Scholar] [CrossRef] [Green Version]
- Stepanov, N.; Shaysultanov, D.; Chernichenko, R.; Yurchenko, N.Y.; Zherebtsov, S.; Tikhonovsky, M.; Salishchev, G. Effect of thermomechanical processing on microstructure and mechanical properties of the carbon-containing CoCrFeNiMn high entropy alloy. J. Alloys Compd. 2017, 693, 394–405. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Baker, I.; Cai, Z.; Chen, S.; Poplawsky, J.D.; Guo, W. The effect of interstitial carbon on the mechanical properties and dislocation substructure evolution in Fe40. 4Ni11. 3Mn34. 8Al7. 5Cr6 high entropy alloys. Acta Mater. 2016, 120, 228–239. [Google Scholar] [CrossRef] [Green Version]
- Brofman, P.J.; Ansell, G.S. On the effect of carbon on the stacking fault energy of austenitic stainless steels. Metall. Trans. A 1978, 9, 879–880. [Google Scholar] [CrossRef]
- Li, Z.; Pradeep, K.G.; Deng, Y.; Raabe, D.; Tasan, C.C. Metastable high-entropy dual-phase alloys overcome the strength–ductility trade-off. Nature 2016, 534, 227–230. [Google Scholar] [CrossRef] [PubMed]
- Ovid’ko, I.; Sheinerman, A. Plastic deformation through de-twinning mediated by incoherent twin boundaries in nanotwinned metallic alloys. Rev. Adv. Mater. Sci. 2016, 47, 1–8. [Google Scholar]
- Kang, J.D.; Shi, L.; Liang, J.; Shalchi-Amirkhiz, B.; Scott, C. The Influence of Specimen Geometry and Strain Rate on the Portevin-Le Chatelier Effect and Fracture in an Austenitic FeMnC TWIP Steel. Metals 2020, 10, 1201. [Google Scholar] [CrossRef]
- Peng, J.; Li, Z.; Fu, L.; Ji, X.; Pang, Z.; Shan, A. Carbide precipitation strengthening in fine-grained carbon-doped FeCoCrNiMn high entropy alloy. J. Alloys Compd. 2019, 803, 491–498. [Google Scholar] [CrossRef]
- Hong, S.I.; Ryu, W.S.; Rim, C.S. Thermally activated deformation of Zircaloy-4. J. Nucl. Mater. 1984, 120, 1–5. [Google Scholar] [CrossRef]
- Nakada, Y.; Keh, A. Solid-solution strengthening in Ni-C alloys. Metall. Trans. 1971, 2, 441–447. [Google Scholar] [CrossRef]
- Wang, Z.; Baker, I.; Guo, W.; Poplawsky, J.D. The effect of carbon on the microstructures, mechanical properties, and deformation mechanisms of thermo-mechanically treated Fe40. 4Ni11. 3Mn34. 8Al7. 5Cr6 high entropy alloys. Acta Mater. 2017, 126, 346–360. [Google Scholar] [CrossRef] [Green Version]
- Baker, I. Interstitials in f.c.c. High Entropy Alloys. Metals 2020, 10, 695. [Google Scholar] [CrossRef]
- Schneider, M.; George, E.; Manescau, T.; Záležák, T.; Hunfeld, J.; Dlouhý, A.; Eggeler, G.; Laplanche, G. Analysis of strengthening due to grain boundaries and annealing twin boundaries in the CrCoNi medium-entropy alloy. Int. J. Plast. 2020, 124, 155–169. [Google Scholar] [CrossRef]
- Wu, Z.; Gao, Y.; Bei, H. Thermal activation mechanisms and Labusch-type strengthening analysis for a family of high-entropy and equiatomic solid-solution alloys. Acta Mater. 2016, 120, 108–119. [Google Scholar] [CrossRef] [Green Version]
- Gladman, T. Precipitation hardening in metals. Mater. Sci. Technol. 1999, 15, 30–36. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, X.; Cao, T.; Han, J.-K.; Kawasaki, M.; Jang, J.-I.; Han, H.N.; Ramamurty, U.; Wang, L.; Xue, Y. Effect of grain size on the strain rate sensitivity of CoCrFeNi high-entropy alloy. Mater. Sci. Eng. A 2020, 782, 139281. [Google Scholar] [CrossRef]
- Laplanche, G.; Gadaud, P.; Horst, O.; Otto, F.; Eggeler, G.; George, E. Temperature dependencies of the elastic moduli and thermal expansion coefficient of an equiatomic, single-phase CoCrFeMnNi high-entropy alloy. J. Alloys Compd. 2015, 623, 348–353. [Google Scholar] [CrossRef] [Green Version]
- Kang, Y.B.; Shim, S.H.; Lee, K.H.; Hong, S.I. Dislocation creep behavior of CoCrFeMnNi high entropy alloy at intermediate temperatures. Mater. Res. Lett. 2018, 6, 689–695. [Google Scholar] [CrossRef]
- Fleischer, R.L. Substitutional solution hardening. Acta Metall. 1963, 11, 203–209. [Google Scholar] [CrossRef]
- Kim, Y.K.; Lee, B.J.; Hong, S.-K.; Hong, S.I. Strengthening and fracture of deformation-processed dual fcc-phase CoCrFeCuNi and CoCrFeCu1. 71Ni high entropy alloys. Mater. Sci. Eng. A 2020, 781, 139241. [Google Scholar] [CrossRef]
- Stepanov, N.; Yurchenko, N.Y.; Tikhonovsky, M.; Salishchev, G. Effect of carbon content and annealing on structure and hardness of the CoCrFeNiMn-based high entropy alloys. J. Alloys Compd. 2016, 687, 59–71. [Google Scholar] [CrossRef]
- Kratochvíl, P.; Pešička, J.; Král, R.; Švec, M.; Palm, M. Evaluation of solid-solution hardening of Fe-27 at. pct Al by vanadium and comparison to precipitation strengthening by vanadium carbides. Metall. Mater. Trans. A 2015, 46, 5091–5094. [Google Scholar] [CrossRef]
- Moon, J.; Hong, S.I.; Seol, J.B.; Bae, J.W.; Park, J.M.; Kim, H.S. Strain rate sensitivity of high entropy alloys and its significance in deformation. Mater. Res. Lett. 2019, 7, 503–509. [Google Scholar] [CrossRef]
- Lee, J.I.; Tsuchiya, K.; Tasaki, W.; Oh, H.S.; Sawaguchi, T.; Murakami, H.; Hiroto, T.; Matsushita, Y.; Park, E.S. A strategy of designing high-entropy alloys with high-temperature shape memory effect. Sci. Rep. 2019, 9, 13140. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Y.; Gu, Y.; Cui, C.; Osada, T.; Zhong, Z.; Tetsui, T.; Yokokawa, T.; Harada, H. Influence of Co content on stacking fault energy in Ni-Co base disk superalloys. J. Mater. Res. 2011, 26, 2833. [Google Scholar] [CrossRef]
- Qiu, Z.; Yao, C.; Feng, K.; Li, Z.; Chu, P.K. Cryogenic deformation mechanism of CrMnFeCoNi high-entropy alloy fabricated by laser additive manufacturing process. Int. J. Lightweight Mater. Manuf. 2018, 1, 33–39. [Google Scholar] [CrossRef]
- Lyu, Z.; Fan, X.; Lee, C.H.; Wang, S.Y.; Feng, R.; Liaw, P.K. Fundamental understanding of mechanical behavior of high-entropy alloys at low temperatures: A review. J. Mater. Res. 2018, 33, 2998–3010. [Google Scholar] [CrossRef] [Green Version]
Alloys | Co | Ni | Cr | Fe | C | |
---|---|---|---|---|---|---|
(NiCo)75Cr17Fe8 | at.% | 36 | 39 | 17 | 8 | - |
wt.% | 36.95 | 39.87 | 15.4 | 7.78 | ||
(NiCo)75Cr17Fe8C0.34 | at.% | 36.16 | 38.39 | 17.01 | 8.1 | 0.34 |
wt.% | 37.25 | 39.35 | 15.43 | 7.9 | 0.07 | |
(NiCo)75Cr17Fe8C0.83 | at.% | 36.12 | 38.2 | 16.87 | 7.98 | 0.83 |
wt.% | 37.29 | 39.3 | 15.4 | 7.84 | 0.17 |
Carbon Content | Testing Temperature (K) | YS (MPa) | UTS (MPa) | EF (%) | Processing Condition |
---|---|---|---|---|---|
(NiCo)75Cr17Fe8 | 77 | 491 | 1212 | 106 | annealed at 850 °C |
298 | 311 | 729 | 81 | ||
(NiCo)74.55Cr17.01Fe8.1C0.34 | 77 | 583 | 1321 | 96 | |
298 | 390 | 831 | 72 | ||
(NiCo)74.32Cr16.87Fe7.98C0.83 | 77 | 865 | 1397 | 66 | |
298 | 650 | 942 | 55 | ||
Alloy 600 (Ni74Cr17.38Fe7.91C0.71) | 298 | 331 | 676 | 41 | annealed at 870 °C [31] |
Alloy 600 (Ni74Cr17.93Fe8.02C0.05) | 298 | 220 | 602 | 52 | annealed at 1070 °C [20] |
Carbide Size (nm) | Volume Fraction (%) | YS (MPa) | Hall-Petch Equation (MPa) | Precipitation Strengthening (MPa) | Interstitial Solution Strengthening (MPa) | Calculated Strength (MPa) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Alloys | RT | 77 K | RT | 77 K | RT | 77 K | RT | 77 K | RT | 77 K | ||||
(NiCo)75Cr17Fe8 | N/A (No carbides) | N/A | 311 | 496 | 90 | 220.0 | 286 | 223.9 | N/A | N/A | N/A | N/A | 310 | 509.9 |
(NiCo)75Cr17Fe8C0.34 | 85.1 | 0.20 | 397 | 596 | 90 | 276.0 | 286 | 280.8 | 39.5 | 41.5 | 4.9 | 7.4 | 410.4 | 615.7 |
(NiCo)75Cr17Fe8C0.83 | 79.5 | 0.32 | 650 | 865 | 90 | 485.6 | 286 | 494.1 | 52.8 | 55.4 | 10.2 | 15.2 | 638.6 | 850.7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, J.S.; Lee, B.J.; Moon, W.J.; Hong, S.I. Mechanical Performance and Microstructural Evolution of (NiCo)75Cr17Fe8Cx (x = 0~0.83) Medium Entropy Alloys at Room and Cryogenic Temperatures. Metals 2020, 10, 1646. https://doi.org/10.3390/met10121646
Song JS, Lee BJ, Moon WJ, Hong SI. Mechanical Performance and Microstructural Evolution of (NiCo)75Cr17Fe8Cx (x = 0~0.83) Medium Entropy Alloys at Room and Cryogenic Temperatures. Metals. 2020; 10(12):1646. https://doi.org/10.3390/met10121646
Chicago/Turabian StyleSong, Jae Sook, Byung Ju Lee, Won Jin Moon, and Sun Ig Hong. 2020. "Mechanical Performance and Microstructural Evolution of (NiCo)75Cr17Fe8Cx (x = 0~0.83) Medium Entropy Alloys at Room and Cryogenic Temperatures" Metals 10, no. 12: 1646. https://doi.org/10.3390/met10121646
APA StyleSong, J. S., Lee, B. J., Moon, W. J., & Hong, S. I. (2020). Mechanical Performance and Microstructural Evolution of (NiCo)75Cr17Fe8Cx (x = 0~0.83) Medium Entropy Alloys at Room and Cryogenic Temperatures. Metals, 10(12), 1646. https://doi.org/10.3390/met10121646