Effect of Pre-Treatment with Sodium Chloride/Sulfuric Acid on the Bornite Concentrate Leaching in Chloride Medium
Abstract
:1. Introduction
2. Materials and Methods
2.1. Characterization of the Concentrate
2.2. Experimental Techniques
3. Results and Discussion
3.1. Leaching without Pre-Treatment
3.2. Pre-Treatment with NaCl-H2SO4
3.2.1. Effect of the Dose of NaCl on the Dissolution of Copper
3.2.2. Effect of Resting Time on the Dissolution of Copper and Iron
3.3. Analysis of the Changes Occurring in Bornite during the Pre-Treatment
3.4. Phenomenological Analysis of the Pre-Treatment with NaCl-H2SO4
4. Conclusions
- The pre-treatment with NaCl–H2SO4 of base concentrates of bornite generates soluble copper products that can be dissolved in the first hour of the later leaching. Greater resting times and doses of NaCl during the pre-treatment increase the number of soluble compounds formed.
- The formation of hydrochloric acid during the pre-treatment was confirmed, and it would have a direct effect on the increased copper recovery from the concentrate.
- The pre-treatment with NaCl–H2SO4 of the bornite concentrate solubilizes part of the iron, but to a lower extent, due to the difficulty of extracting it from the bornite crystal structure.
- Letting stand for 15 days and using 60 kg NaCl/t, the bornite is converted partially into non-stoichiometric bornite, but after standing for 30 days, the whole mineral was converted into compounds with different crystal structures, such as paratacamite and mooihoekite.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Baba, A.; Ayinla, K.; Adekola, F.; Ghosh, M.; Ayanda, O.; Bale, R.; Sheik, A.; Pradhan, S. A review of novel techniques for chalcopyrite ore processing. Int. J. Min. Eng. Miner. 2012, 1, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Araya, G.; Toro, N.; Castillo, J.; Guzmán, D.; Guzmán, A.; Hernández, P.; Jeldres, R.I.; Sepúlveda, R. Leaching of Oxide Copper Ores by Addition of Weak Acid from Copper Smelters. Metals 2020, 10, 627. [Google Scholar] [CrossRef]
- Moskalyk, R.R.; Alfantazi, A.M. Review of copper pyrometallurgical practice: Today and tomorrow. Min. Eng. 2003, 16, 893–919. [Google Scholar] [CrossRef]
- Lee, J.; Kim, S.; Kim, B.; Lee, J. Effect of Mechanical Activation on the Kinetics of Copper Leaching from Copper Sulfide (CuS). Metals 2018, 8, 150. [Google Scholar] [CrossRef] [Green Version]
- Sokić, M.; Marković, B.; Stanković, S.; Kamberović, Ž.; Štrbac, N.; Manojlović, V.; Petronijević, N. Kinetics of chalcopyrite leaching by hydrogen peroxide in sulfuric acid. Metals 2020, 9, 1173. [Google Scholar] [CrossRef] [Green Version]
- Carranza, F.; Iglesias, N.; Mazuelos, A.; Palencia, I.; Romero, R. Treatment of copper concentrates containing chalcopyrite and non-ferrous sulphides by the BRISA process. Hydrometallurgy 2004, 71, 413–420. [Google Scholar] [CrossRef]
- Hyvarinen, O.; Hamalainen, M. HydroCopper™—A new technology producing copper directly from concentrate. Hydrometallurgy 2005, 77, 61–65. [Google Scholar] [CrossRef]
- Wang, S. Copper leaching from chalcopyrite concentrates. JOM 2005, 57, 48–51. [Google Scholar] [CrossRef]
- Dreisinger, D. Copper leaching from primary sulfides: Options for biological and chemical extraction of copper. Hydrometallurgy 2006, 83, 10–20. [Google Scholar] [CrossRef]
- Dixon, D.G.; Mayne, D.D.; Baxter, K.G. Galvanox™—A novel galvanically-assisted atmospheric leaching technology for copper concentrates. Can. Metall. Q. 2008, 47, 327–336. [Google Scholar] [CrossRef]
- Lu, J.; Dreisinger, D.; West-Sells, P. Acid curing and agglomeration for heap leaching. Hydrometallurgy 2017, 167, 30–35. [Google Scholar] [CrossRef]
- Herreros, O.; Viñals, J. Leaching of sulfide copper ore in a NaCl–H2SO4–O2 media with acid pre-treatment. Hydrometallurgy 2007, 89, 260–268. [Google Scholar] [CrossRef]
- Cerda, C.P.; Taboada, M.E.; Jamett, N.E.; Ghorbani, Y.; Hernández, P.C. Effect of pretreatment on leaching primary copper sulfide in acid-chloride media. Minerals 2017, 8, 1. [Google Scholar] [CrossRef] [Green Version]
- Bahamonde, F.; Gómez, M.; Navarro, P. Pre-treatment with sodium chloride and sulfuric acid of a bornitic concentrate and later leaching in chloride solution. In Proceedings of the Leaching and Bioleaching of Sulfide Concentrates and Minerals Hydroprocess-ICMSE 2017, Santiago, Chile, 21–23 June 2017. [Google Scholar]
- Hernández, P.; Dupont, J.; Herreros, O.; Jiménez, Y.; Torres, C. Accelerating Copper Leaching from Sulfide Ores in Acid-Nitrate-Chloride Media Using Agglomeration and Curing as Pretreatment. Minerals 2019, 9, 250. [Google Scholar] [CrossRef] [Green Version]
- Quezada, V.; Roca, A.; Benavente, O.; Cruells, M.; Keith, B.; Melo, E. Effect of pretreatment prior to leaching on a chalcopyrite mineral in acid media using NaCl and KNO3. J. Mater. Res. Technol. 2020, 9, 10316–10324. [Google Scholar] [CrossRef]
- Velásquez-Yévenes, L.; Torres, D.; Toro, N. Leaching of chalcopyrite ore agglomerated with high chloride concentration and high curing periods. Hydrometallurgy 2018, 181, 215–220. [Google Scholar] [CrossRef]
- Dutrizac, J.E.; Macdonald, R.J.C.; Ingraham, T.R. The kinetics of dissolution of bornite in acidified ferric sulfate solutions. Metall. Trans. 1970, 1, 225–231. [Google Scholar] [CrossRef]
- Dutrizac, J.E.; MacDonald, R.J.C.; Ingraham, T.R. Effect of pyrite, chalcopyrite and digenite on rate of bornite dissolution in acidic ferric sulphate solutions. Can. Metall. Q. 1971, 10, 3–7. [Google Scholar] [CrossRef]
- Pesic, B.; Olson, F.A. Leaching of bornite in acidified ferric chloride solutions. Metall. Trans. B 1983, 14, 577–588. [Google Scholar] [CrossRef]
- Buckley, A.N.; Hamilton, I.C.; Woods, R. Investigation of the surface oxidation of bornite by linear potential sweep voltammetry and X-ray photoelectron spectroscopy. J. Appl. Electrochem. 1984, 14, 63–74. [Google Scholar] [CrossRef]
- Pesic, B.; Olson, F.A. Dissolution of bornite in sulfuric acid using oxygen as oxidant. Hydrometallurgy 1984, 12, 195–215. [Google Scholar] [CrossRef]
- Mikhlin, Y.; Tomashevich, Y.; Tauson, V.; Vyalikh, D.; Molodtsov, S.; Szargan, R. A comparative X-ray absorption near-edge structure study of bornite, Cu5FeS4, and chalcopyrite, CuFeS2. J. Electron. Spectrosc. Relat. Phenom. 2005, 142, 83–88. [Google Scholar] [CrossRef]
- Veloso, T.; Paiva, P.; Silva, C.; Leao, V. Leaching of Bornite Produced from the Sulfurization of Chalcopyrite. Metall. Mater. Trans. B 2016, 47, 2005–2014. [Google Scholar] [CrossRef]
- Fu, K.; Ning, Y.; Chen, S.; Wang, Z. Bioleaching of different copper sulphide minerals and their physicochemical properties dependence. Miner. Process. Extr. Metall. 2016, 125, 1–4. [Google Scholar] [CrossRef]
- George, L.; Cook, N.; Crowe, B.; Ciobanu, C. Trace elements in hydrothermal chalcopyrite. Mineral. Mag. 2018, 82, 59–88. [Google Scholar] [CrossRef]
- Yang, C.-R.; Jiao, F.; Qin, W.-Q. Cu-state evolution during leaching of bornite at 50 degrees C. Trans. Nonferr. Metals Soc. China 2018, 28, 1632–1639. [Google Scholar] [CrossRef]
- Hong, M.; Wang, X.; Wu, L. Intermediates Transformation of Bornite Bioleaching by Leptospirillum ferriphilum and Acidithiobacillus caldus. Minerals 2019, 9, 159. [Google Scholar] [CrossRef] [Green Version]
- Hernández, P.; Dorador, A.; Martínez, M.; Toro, N.; Castillo, J.; Ghorbani, Y. Use of Seawater/Brine and Caliche’s Salts as Clean and Environmentally Friendly Sources of Chloride and Nitrate Ions for Chalcopyrite Concentrate Leaching. Minerals 2020, 10, 477. [Google Scholar] [CrossRef]
- Beiza, L.; Quezada, V.; Melo, E.; Valenzuela, G. Electrochemical Behaviour of Chalcopyrite in Chloride Solutions. Metals 2019, 9, 67. [Google Scholar] [CrossRef] [Green Version]
- Lu, J.; Dreisinger, D. Copper chloride leaching from chalcopyrite and bornite concentrates containing high levels of impurities and minor elements. Hydrometallurgy 2013, 138, 40–47. [Google Scholar] [CrossRef]
- Watling, H.R.; Shiers, D.W.; Li, J.; Chapman, N.M.; Douglas, G.B. Effect of water quality on the leaching of a low-grade copper sulfide ore. Min. Eng. 2014, 58, 39–51. [Google Scholar] [CrossRef]
- Hidalgo, T.; Kuhar, L.; Beinlich, A.; Putnis, A. Kinetics and mineralogical analysis of copper dissolution from a bornite/chalcopyrite composite sample in ferric-chloride and methanesulfonic-acid solutions. Hydrometallurgy 2019, 188, 140–156. [Google Scholar] [CrossRef]
- Sullivan, J.D. Chemistry of Leaching Bornite; USA Government Printing Office: Washington, DC, USA, 1931.
- Herreros, O.; Bernal, N.; Quiroz, R.; Fuentes, G.; Vinals, J. Leaching of copper concentrates using NaCl and soluble copper contributed by the own concentrate. Rev. Metal. Madrid 2005, 41, 384–392. [Google Scholar] [CrossRef] [Green Version]
- Salinas, K.; Herreros, O.; Torres, C. Leaching of Primary Copper Sulfide Ore in Chloride-Ferrous Media. Minerals 2018, 8, 312. [Google Scholar] [CrossRef] [Green Version]
- Grace, J.; Putnis, A. Thermal decomposition and cation mobility in bornite. Econ. Geol. 1976, 71, 1058–1059. [Google Scholar] [CrossRef]
- Samal, G.I.; Gilevitch, M.P. Self-diffusion of copper in bornite and chalcopyrite. Vestsi Akad. Navuk BSSR Ser. Khim. Navuk 1978, 1, 126–129. [Google Scholar]
- Hiroyoshi, N.; Kuroiwa, S.; Miki, H.; Tsunekawa, M.; Hirajima, T. Synergistic effect of cupric and ferrous ions on active-passive behavior in anodic dissolution of chalcopyrite in sulfuric acid solution. Hydrometallurgy 2004, 74, 103–116. [Google Scholar] [CrossRef]
- Quispe, N. Preliminary Electrochemical Study of the Kinetic Mechanism of Chalcopyrite Leaching in Sulfuric Acid-Sodium Chloride Medium. Bachelor’s Thesis, Santa María Technical University, Valparaíso, Chile, 2015. [Google Scholar]
- Ibañez, T.; Velasquez, L. The dissolution of chalcopyrite in chloride media. Rev. Metall. 2013, 49, 131–144. [Google Scholar] [CrossRef]
Mineral Species | Chemical Formula | Composition (%) |
---|---|---|
Bornite | Cu5FeS4 | 66.69 |
Chalcopyrite | CuFeS2 | 19.80 |
Calcium–magnesium silicate | CaMgSi | 7.18 |
Copper hydroxide–silicate | Cu5(SiO3)4(OH)2 | 5.20 |
Experimental Variables | Levels |
---|---|
NaCl dose (kg/t) | 0, 15, 30, and 60 |
H2SO4 dose (kg/t) | 290 |
Resting time (days) | 15 and 30 |
Test | % Fe Resting for 15 Days | % Iron Resting for 30 Days |
---|---|---|
60 kg NaCl/t of concentrate | 5.84 | 9.09 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Navarro, P.; Vargas, C.; Bahamonde, F.; Gómez, M.; Espinoza, D.; Sepúlveda, R.; Castillo, J. Effect of Pre-Treatment with Sodium Chloride/Sulfuric Acid on the Bornite Concentrate Leaching in Chloride Medium. Metals 2020, 10, 1674. https://doi.org/10.3390/met10121674
Navarro P, Vargas C, Bahamonde F, Gómez M, Espinoza D, Sepúlveda R, Castillo J. Effect of Pre-Treatment with Sodium Chloride/Sulfuric Acid on the Bornite Concentrate Leaching in Chloride Medium. Metals. 2020; 10(12):1674. https://doi.org/10.3390/met10121674
Chicago/Turabian StyleNavarro, Patricio, Cristian Vargas, Fabiana Bahamonde, Matías Gómez, Daniel Espinoza, Rossana Sepúlveda, and Jonathan Castillo. 2020. "Effect of Pre-Treatment with Sodium Chloride/Sulfuric Acid on the Bornite Concentrate Leaching in Chloride Medium" Metals 10, no. 12: 1674. https://doi.org/10.3390/met10121674
APA StyleNavarro, P., Vargas, C., Bahamonde, F., Gómez, M., Espinoza, D., Sepúlveda, R., & Castillo, J. (2020). Effect of Pre-Treatment with Sodium Chloride/Sulfuric Acid on the Bornite Concentrate Leaching in Chloride Medium. Metals, 10(12), 1674. https://doi.org/10.3390/met10121674