Review on the Effect of Deep Cryogenic Treatment of Metallic Materials in Automotive Applications
Abstract
:1. Introduction
2. Cryogenic Treatment and Metallic Materials for Automotive Applications
2.1. Cryogenic Treatment
2.2. Types of Cryogenic Treatment
2.3. Deep Cryogenic Treatment
3. Metallic Materials Used for Automotive Applications
3.1. Ferrous Materials for Automotive Applications
3.2. Nonferrous Materials for Automotive Applications
4. Effect of Deep Cryogenic Treatment on Metallic Materials for Automotive Applications
5. Contradictory Existing Researches for Application of DCT for Automotive Applications
6. Conclusions
- Hardness and wear resistance improvements have been confirmed by a wide range of published papers. Improvement of dimensional stability, increased electro-chemical corrosion resistance, toughness, ductility and other properties have been reported to improve after DCT.
- Available explanations for mechanism of DCT on the metallic material are grain refinement, precipitation of very fine carbides, refinement of retained austenite, transformation of austenite into martensite and amount of martensite in the matrix. The affecting mechanisms vary depending on the material type, grade and composition.
- Optimal parameters (soaking temperature, soaking time, cooling/warming rate, and tempering time) for each type of ferrous/non-ferrous alloys still have to be determined for easier and cost efficient applications in the industry.
- In future, the effectiveness of DCT must be explored more in depth and more systematically with experiments and modeling for ferrous and non-ferrous alloys to be procured and combined with detailed microstructural examination to clearly identify mechanisms responsible for change in material properties.
Author Contributions
Funding
Conflicts of Interest
References
- Barron, R.F. Do treatment at temperature below-120 F help increase the wear resistance of tool steels? Here are some research findings that indicate they do. Heat Treat. 1974, 5, 14–17. [Google Scholar]
- Iacopi, F.; Choi, J.H.; Terashima, K.; Rice, P.M.; Dubois, G. Cryogenic plasmas for controlled processing of nanoporous materials. Phys. Chem. Chem. Phys. 2011, 13, 3634–3637. [Google Scholar] [CrossRef] [PubMed]
- Prudhvi, K.; Lakshmi, V.V. Cryogenic tool treatment. Imp. J. Interdiscip. Res. 2016, 2, 1204–1211. [Google Scholar]
- Rush, H.F. Cryogenic Material Selection, Availability, and Cost Considerations; NASA: Washington, WA, USA, 1983.
- Orłowicz, A.W.; Mróz, M.; Tupaj, M.; Trytek, A. Materials used in the automotive industry. Arch. Foundry Eng. 2015, 15, 75–78. [Google Scholar] [CrossRef]
- Singh, M. Application of steel in automotive industry. Int. J. Emerg. Technol. Adv. Eng. 2016, 6, 246–253. [Google Scholar]
- Barron, R.F. Cryogenic treatment of metals to improve wear resistance. Cryogenics 1982, 22, 409–413. [Google Scholar] [CrossRef]
- Baldissera, P.; Delprete, C. Deep cryogenic treatment: A bibliographic review. Open Mech. Eng. J. 2008, 2, 1–11. [Google Scholar] [CrossRef]
- Dumasia, C.A.; Kulkarni, V.A.; Sonar, K. A Review on the effect of cryogenic treatment on metals. Int. Res. J. Eng. Technol. 2017, 4, 2402–2406. [Google Scholar]
- Podgornik, B.; Paulin, I.; Zajec, B.; Jacobson, S.; Leskovšek, V. Deep cryogenic treatment of tool steels. J. Mater. Process. Technol. 2016, 229, 398–406. [Google Scholar] [CrossRef]
- Gogte, C.L.; Likhite, A.; Peshwe, D.; Bhokarikar, A.; Shetty, R. Effect of cryogenic processing on surface roughness of age hardenable AA6061 alloy. Mater. Manuf. Process. 2014, 29, 710–714. [Google Scholar] [CrossRef]
- Indumathi, J.; Bijwe, J.; Ghosh, A.K.; Fahim, M.; Krishnaraj, N. Wear of Cryo-treated engineering polymers and composites. Wear 1999, 225–229, 343–353. [Google Scholar] [CrossRef]
- Bensely, A.; Prabhakaran, A.; Mohan Lal, D.; Nagarajan, G. Enhancing the wear resistance of case carburized steel (En 353) by cryogenic treatment. Cryogenics 2006, 45, 747–754. [Google Scholar] [CrossRef]
- Reitz, W.; Pendray, J. Cryoprocessing of materials: A review of current status. Mater. Manuf. Process. 2001, 16, 829–840. [Google Scholar] [CrossRef]
- Gill, S.S.; Singh, H.; Singh, R.; Singh, J. Cryoprocessing of cutting tool materials—A review. Int. J. Adv. Manuf. Technol. 2010, 48, 175–192. [Google Scholar] [CrossRef]
- Cicek, A.; KIvak, T.; Uygur, I.; Ekici, E.; Turgut, Y. Performance of cryogenically treated M35 HSS drills in drilling of austenitic stainless steels. Int. J. Adv. Manuf. Technol. 2012, 60, 65–73. [Google Scholar] [CrossRef]
- Leskovšek, V.; Podgornik, B. Vacuum heat treatment, deep cryogenic treatment and simultaneous pulse plasma nitriding and tempering of P/M S390MC steel. Mater. Sci. Eng. A 2012, 531, 119–129. [Google Scholar] [CrossRef]
- Gobbi, S.J.; Gobbi, V.J.; Reinke, G. Ultra low temperature process effects on micro-scale abrasion of tool steel AISI D2. Mater. Sci. Technol. 2019, 35, 1355–1364. [Google Scholar] [CrossRef]
- Bartolomé, E.; Bozzo, B.; Sevilla, P.; Martínez-Pasarell, O.; Puig, T.; Granados, X. ABS 3D printed solutions for cryogenic applications. Cryogenics 2017, 82, 30–37. [Google Scholar] [CrossRef] [Green Version]
- Zhisheng, W.; Ping, S.; Jinrui, L.; Shengsun, H. Effect of deep cryogenic treatment on electrode life and microstructure for spot welding hot dip galvanized steel. Mater. Des. 2003, 24, 687–692. [Google Scholar] [CrossRef]
- Lin, Y.T.; Wang, M.C.; Zhang, Y.; He, Y.Z.; Wang, D.P. Investigation of microstructure evolution after post-weld Heat Treat. ment and cryogenic fracture toughness of the weld metal of AA2219 VPTIG joints. Mater. Des. 2017, 113, 54–59. [Google Scholar] [CrossRef]
- Paul, S.; Chattopadhyay, A.B. Environmentally conscious machining and grinding with cryogenic cooling. Mach. Sci. Technol. 2007, 10, 87–131. [Google Scholar] [CrossRef]
- Govindaraju, N.; Shakeel, A.L.; Pradeep Kumar, M. Experimental investigations on cryogenic cooling in the drilling of AISI 1045 Steel. Mater. Manuf. Process. 2014, 29, 1417–1421. [Google Scholar] [CrossRef]
- Su, Y.; He, N.; Li, L.; Zhao, W. Effects of cryogenic nitrogen gas jet on machinability of Ti-alloy in high speed milling. China Mech. Eng. 2006, 17, 1183–1187. [Google Scholar]
- Pérez, M.; Rodríguez, C.; Belzunce, F.J. The use of cryogenic thermal treatments to increase the fracture toughness of a hot work tool steel used to make forging dies. Procedia Mater. Sci. 2014, 3, 604–609. [Google Scholar] [CrossRef] [Green Version]
- La Rocca, A.; Di Liberto, G.; Shayler, P.J.; Fay, M.W. The nanostructure of soot-in-oil particles and agglomerates from an automotive diesel engine. Tribol. Int. 2013, 61, 80–87. [Google Scholar] [CrossRef]
- Senthilkumar, D. Thermophysical behavior of cryogenically treated silicon carbide for nanofluids. Mater. Manuf. Process. 2014, 29, 819–825. [Google Scholar] [CrossRef]
- Mohan Lal, D.; Renganarayanan, S.; Kalanidhi, A. Cryogenic treatment to augment wear resistance of tool and die steels. Cryogenics 2001, 41, 149–155. [Google Scholar] [CrossRef]
- Timmerhaus, K.D. Superconductivity. In Advances in Cryogenic Engineering; Springer: Berlin/Heidelberg, Germany, 1960; pp. 145–148. ISBN 9781461292999. [Google Scholar]
- Timmerhaus, K.D.; Flynn, T.M. Properties of cryogenic fluids. In Cryogenic Process Engineering; Springer: Berlin/Heidelberg, Germany, 1989; pp. 13–38. ISBN 978-1-4684-8758-9. [Google Scholar]
- Brown, W.L. The Development of Lubricants for Automotive A/C Systems; Purdue University: West Lafayette, IN, USA, 1998. [Google Scholar]
- Podgornik, B.; Borovšak, U.; Megušar, F.; Košir, K. Performance of low-friction coatings in helium environments. Surf. Coat. Technol. 2012, 206, 4651–4658. [Google Scholar] [CrossRef]
- Pušavec, F.; Stoić, A.; Kopač, J. The role of cryogenics in machining processes. Teh. Vjesn. 2009, 16, 3–10. [Google Scholar]
- Molinari, A.; Pellizzari, M.; Gialanella, S.; Straffelini, G.; Stiasny, K.H. Effect of deep cryogenic treatment on the mechanical properties of tool steels. J. Mater. Process. Technol. 2001, 118, 350–355. [Google Scholar] [CrossRef]
- Behera, A.; Mishra, S.C. Comparative study of cryo -treated steel. Int. J. Sci. Technol. Res. 2012, 1, 46–49. [Google Scholar]
- Barron, R.F.; Burt, W.; Byrns, R.; Clapp, M.; Clark, A.; Daniels, A.; Frederking, T.; Hassenzahll, W.; Kittell, P.; Klipping, C.; et al. Cryogenic engineering conference/international cryogenic materials conference. Boston, MA, USA. Cryogenics 1986, 26, 49–51. [Google Scholar] [CrossRef]
- Wilkins, C. Cryogenic Processing: The Big Chill; EDM Today: Essex, CT, USA, 1999; pp. 36–44. [Google Scholar]
- Timmerhaus, K.D.; Flynn, T.M. Cryogenic process engineering. In Encyclopedia of Physical Science and Technology; Academic Press: Cambridge, MA, USA, 2003; pp. 13–36. ISBN 9780122274107. [Google Scholar]
- Barron, R.F.; Thompson, R.H. Effect of cryogenic treatment of corrosion resistance. In Proceedings of the International Cryogenics Materials Conference, Garmisch-Partenkirchen, Germany, 9–11 May 1990; Volume 17, pp. 1–6. [Google Scholar]
- Thornton, R.; Slatter, T.; Jones, A.H.; Lewis, R. The effects of cryogenic processing on the wear resistance of grey cast iron brake discs. Wear 2011, 271, 2386–2395. [Google Scholar] [CrossRef]
- Ming, C.J.E.R. Cryogenic Treatment of Music Wire. Master’s Thesis, Department of Mechanical Engineering, National University of Singapore, Singapore, 2004. [Google Scholar]
- Jurči, P.; Ptačinová, J.; Sahul, M.; Dománková, M.; Dlouhy, I. Metallurgical principles of microstructure formation in sub-zero treated cold-work tool steels—A review. Matér. Tech. 2018, 106, 104–113. [Google Scholar] [CrossRef] [Green Version]
- Das, D.; Dutta, A.K.; Ray, K.K. Influence of varied cryotreatment on the wear behavior of AISI D2 steel. Wear 2009, 266, 297–309. [Google Scholar] [CrossRef]
- Das, D.; Dutta, A.K.; Ray, K.K. Sub-zero treatments of AISI D2 steel: Part I. Microstructure and hardness. Mater. Sci. Eng. A 2010, 527, 2182–2193. [Google Scholar] [CrossRef]
- Das, D.; Dutta, A.K.; Ray, K.K. Sub-zero treatments of AISI D2 steel: Part II. Wear behavior. Mater. Sci. Eng. A 2010, 527, 2194–2206. [Google Scholar] [CrossRef]
- Senthilkumar, D. Cryogenic treatment: Shallow and deep. In Encyclopedia of Iron, Steel, and Their Alloys; CRC: Boca Raton, FL, USA, 2016; pp. 995–1007. [Google Scholar]
- Niessen, F.; Villa, M.; Somers, M.A.J. Martensite formation from reverted austenite at sub-zero celsius temperature. Metall. Mater. Transact. A 2018, 49, 5241–5245. [Google Scholar] [CrossRef] [Green Version]
- Surberg, C.H.; Stratton, P.; Lingenhöle, K. Effect of deep cold treatment on two case hardening steels. Acta Metall. Sin. Engl. Lett. 2008, 21, 1–7. [Google Scholar] [CrossRef]
- Collins, D.N. Deep cryogenic treatment of tool steels: A review. Heat Treat. Met. 2010, 23, 40–42. [Google Scholar]
- Diekman, F. Cold and cryogenic treatment of steel. In Steel Heat Treating Fundamentals and Processes-ASM Handbook; ASM International: Cleveland, OH, USA, 2013; pp. 382–386. [Google Scholar]
- Jones, J.N.; Rogers, C.B. The acoustic effect of cryogenically treating. J. Acoust. Soc. Am. 2013, 114, 2349. [Google Scholar]
- Sonar, T.; Lomte, S.; Gogte, C. Cryogenic treatment of metal—A review. In Materials Today; Elsevier Ltd.: Amsterdam, The Netherlands, 2018; Volume 5, pp. 25219–25228. [Google Scholar]
- Dhokey, N.B.; Hake, A.R.; Thavale, V.T.; Gite, R.; Batheja, R. Microstructure and mechanical properties of cryotreated SAE8620 and D3 steels. Curr. Adv. Mater. Sci. Res. CAMSR Microstruct. 2014, 1, 23–27. [Google Scholar]
- Dhokey, N.B.; Dandawate, J.V.; Rawat, R.; Dhokey, N.B.; Dandawate, J.V.; Rawat, R. Effect of cryosoaking time on transition in wear mechanism of M2 tool steel. ISRN Tribol. 2013, 2013, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Kalia, S. Cryogenic processing: A study of materials at low temperatures. J. Low Temp. Phys. 2010, 158, 934–945. [Google Scholar] [CrossRef]
- Joshi, P.; Singh, J.; Dhiman, P.; Shekhar, H.; Kumar, V. Effect of cryogenic treatment on various materials: A review. Open Int. J. Technol. Innov. Res. 2015, 14, 1–11. [Google Scholar]
- Darwin, J.D.; Mohan Lal, D.; Nagarajan, G. Optimization of cryogenic treatment to maximize the wear resistance of 18% Cr martensitic stainless steel by Taguchi method. J. Mater. Process. Technol. 2008, 195, 241–247. [Google Scholar] [CrossRef]
- Kumar, T.V.; Thirumurugan, R.; Viswanath, B. Influence of cryogenic treatment on the metallurgy of ferrous alloys: A review. Mater. Manuf. Process. 2017, 32, 1789–1805. [Google Scholar] [CrossRef]
- Jovičević-Klug, P.; Podgornik, B. Deep cryogenic treatment of metallic materials in automotive applications: A review. In Proceedings of the ECHT 2019, Bardolino, Italy, 5–7 June 2019; pp. 1–10. [Google Scholar]
- Surberg, C.H.; Stratton, P.F.; Lingenhöle, K. The effect of cryogenic treatment on the properties of AISI D2. Mater. Manuf. Process. 2009, 24, 863–867. [Google Scholar] [CrossRef]
- Villa, M.; Somers, M.A.J. Cryogenic treatment of steel: From concept to metallurgical understanding. In Proceedings of the 24th International Feration for Heat Treatment and Surface Engineering Congress, Nice, France, 26–29 June 2017. [Google Scholar]
- Zurecki, Z. Cryogenic Quenching of Steel Revisited; Air Products and Chemicals, Inc.: Allentown, PA, USA, 2005; pp. 1–9. [Google Scholar]
- Pellizzari, M. Influence of deep cryogenic treatment on the properties of conventional and PM high speed steels. Metall. Ital. 2008, 100, 17–22. [Google Scholar]
- Collins, D.N.; Dormer, J. Deep cryogenic treatment of a D2 cold-work tool steel. Heat Treat. Met. 1997, 3, 71–74. [Google Scholar]
- Yan, X.G.; Li, D.Y. Effects of the sub-zero treatment condition on microstructure, mechanical behavior and wear resistance of W9Mo3Cr4V high speed steel. Wear 2013, 302, 854–862. [Google Scholar] [CrossRef]
- Chaudhari, S.N.; Vikhe, G.J. Deep cryogenic processing after heat treatment: A new approach. IJES 2013, 2, 246–249. [Google Scholar]
- Ciski, A.; Nawrocki, P.; Babul, T.; Hradil, D. Multistage cryogenic treatment of X153CrMoV12 cold work steel. In Proceedings of the International Conference Recent Trends in Structural Materials IOP, Pilsen, Czech Republic, 14–16 November 2018; Volume 461, pp. 1–6. [Google Scholar]
- Alava, L.A.; Artola, G.; Guinea, I.; Muro, M. On the influence of cryogenic steps on heat treatment processes. Mater. Perform. Charact. 2017, 6, 837–849. [Google Scholar] [CrossRef]
- DeCicco, J.M. Steel and Iron Technologies for Automotive Lightweighting, Environmental Defense; University of Michigan: Ann Arbor, MI, USA, 2005. [Google Scholar]
- Available online: www.worldsteel.org (accessed on 25 March 2020).
- Berladir, K.V.; Rudenko, S.G.; Pererva, V.I.; Hovorun, T.P.; Martynov, A.I. Modern materials for automotive industry. J. Eng. Sci. 2018, 4, f8–f18. [Google Scholar]
- Jaswin, A.; Dhasan, M.L. Effect of cryogenic treatment on corrosion resistance and thermal expansion of valve steels. Int. J. Eng. Technol. Manag. Appl. Sci. 2015, 3, 2349–4476. [Google Scholar]
- Hu, F.; Wu, K.; Hodgson, P.D.; Shirzadi, A.A. Refinement of retained austenite in super-bainitic steel by a deep cryogenic treatment. ISIJ Int. 2014, 54, 222–226. [Google Scholar] [CrossRef] [Green Version]
- Zhirafar, S.; Rezaeian, A.; Pugh, M. Effect of cryogenic treatment on the mechanical properties of 4340 steel. J. Mater. Process. Technol. 2007, 186, 298–303. [Google Scholar] [CrossRef]
- Senthilkumar, D.; Rajendran, I.; Pellizzari, M.; Siiriainen, J. Influence of shallow and deep cryogenic treatment on the residual state of stress of 4140 steel. J. Mater. Process. Technol. 2011, 211, 396–401. [Google Scholar] [CrossRef]
- Bensely, A.; Senthilkumar, D.; Mohan Lal, D.; Nagarajan, G.; Rajadurai, A. Effect of cryogenic treatment on tensile behavior of case carburized steel-815M17. Mater. Charact. 2007, 58, 485–491. [Google Scholar] [CrossRef]
- Surberg, C.H.; Stratton, P.; Lingenhöle, E. The influence of cold treatment on case-hardened steel. Heat Treat. Prog. 2008, 8, 45–48. [Google Scholar]
- Bilmes, P.D.; Solari, M.; Llorente, C.L. Characteristics and effects of austenite resulting from tempering of 13Cr-NiMo martensitic steel weld metals. Mater. Charact. 2001, 46, 285–296. [Google Scholar] [CrossRef]
- Carrouge, D.; Bhadeshia, H.K.D.H.; Woolin, P. Effect of δ-ferrite on impact properties of supermartensitic stainless steel heat affected zones. Sci. Technol. Weld. Join. 2004, 4, 377–389. [Google Scholar] [CrossRef]
- Fentahun, M.A. Materials used in automotive manufacture and material selection using ashby charts. Int. J. Mater. Eng. 2018, 8, 40–54. [Google Scholar]
- Ramdan, R.D.; Jauhari, I.; Izman, S.; Kadir, M.R.A.; Prawara, B.; Hamzah, E.; Nur, H. Shear mechanisms during cryogenic treatment of Ti6Al4V. In Proceedings of the 12th International Conference on QiR (Quality in Research), Bali, Indonesia, 4–7 July 2011; pp. 1390–1396. [Google Scholar]
- Hu, Z.; Zheng, H.; Liu, G.; Wu, H. Effects of cryogenic treatment after annealing of Ti-6Al-4V alloy sheet on its formability at room temperature. Metals 2018, 8, 295. [Google Scholar] [CrossRef] [Green Version]
- Gu, K.X.; Li, Z.Q.; Wang, J.J.; Zhou, Y.; Zhang, H.; Zhao, B.; Ji, W. The effect of cryogenic treatment on the microstructure and properties of Ti-6Al-4V titanium alloy. Mater. Sci. Forum 2013, 747–748, 899–903. [Google Scholar] [CrossRef]
- Park, D.H.; Choi, S.W.; Kim, J.H.; Lee, J.M. Cryogenic mechanical behavior of 5000- and 6000-series aluminum alloys: Issues on application to offshore plants. Cryogenics 2015, 68, 44–58. [Google Scholar] [CrossRef]
- Asl, K.M.; Tari, A.; Khomamizadeh, F. Effect of deep cryogenic treatment on microstructure, creep and wear behaviors of AZ91 magnesium alloy. Mater. Sci. Eng. A 2009, 523, 27–31. [Google Scholar] [CrossRef]
- Anil Kumar, B.K.; Ananthaprasad, M.G.; Gopalakrishna, K. Action of cryogenic chill on mechanical properties of nickel alloy metal matrix composites. In Proceedings of the International Conference on Advances in Materials and Manufacturing Applications, Bangalore, India, 14–16 July 2016; pp. 1–11. [Google Scholar]
- Chen, P.; Malone, T.; Torres, P.; Bond, R. Effects of cryogenic treatment on the residual stress, NASA. In Proceeding of the 4th Conference on Aerospace Materials, Processes and Environmental Technology, Huntsville, AL, USA, 18–20 September 2000; pp. 1–4. [Google Scholar]
- Steier, F.V.; Ashiuchi, E.S.; Reißig, L.; Araújo, J.A. Effect of a deep cryogenic treatment on wear and microstructure of a 6101 aluminum alloy. Adv. Mater. Sci. Eng. 2016, 2016, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Ramdan, R.D.; Jauhari, I.; Izman, S.; Kadir, M.R.A.; Prawara, B.; Hamzah, E.; Nur, H.; Gu, K.X.; Li, Z.Q.; Wang, J.J.; et al. Shear mechanisms during cryogenic treatment of Ti6Al4V. Metals 2011, 8, 1390–1396. [Google Scholar]
- Dellacorte, C. Nickel-titanium alloys: Corrosion proof alloys for space bearing components and mechanism applications. In Proceedings of the 40th Aerospace Mechanism Symposium, NASA, Merritt Island, FL, USA, 12–14 May 2010; pp. 293–300. [Google Scholar]
- Myeong, T.H.; Yamabayashi, Y.; Shimojo, M.; Higo, Y. A new life extension method for high cycle fatigue using micro-martensitic transformation in an austenitic stainless steel 1This work was carried out as a part of the Ph.D. thesis of one of the authors (T.H.M.) 1. Int. J. Fatigue 1997, 19, 69–73. [Google Scholar] [CrossRef]
- Meng, F.; Tagashira, K.; Sohma, H. Wear resistance and microstructure of cryogenic treated Fe-1.4Cr-1C bearing steel. Scr. Metall. Mater. 1994, 31, 865–868. [Google Scholar] [CrossRef]
- Senthilkumar, D. Effect of deep cryogenic treatment on residual stress and mechanical behaviour of induction hardened En 8 steel. Adv. Mater. Process. Technol. 2016, 2, 427–436. [Google Scholar] [CrossRef]
- Demir, E.; Toktas, I. Effects of cryogenic treatment on residual stresses of AISI D2 tool steel. Kov. Mater. 2018, 56, 153–161. [Google Scholar] [CrossRef] [Green Version]
- Caballero, F.G.; Miller, M.K.; Garcia-Mateo, C. Carbon supersaturation of ferrite in a nanocrystalline bainitic steel. Acta Mater. 2010, 58, 2338–2343. [Google Scholar] [CrossRef] [Green Version]
- Koneshlou, M.; Meshinchi, A.K.; Khomamizadeh, F. Effect of cryogenic tratment on microstucture, mechanical and wear behaviors of AISI H13 hot work tool steel. Cryogenics 2011, 51, 55–61. [Google Scholar] [CrossRef]
- Landa, V.A. The secondary martensitic transformation resulting from tempering tool steels. Met. Sci. Heat Treat. 1963, 5, 125–129. [Google Scholar] [CrossRef]
Ferrous Material | Reference | Temperature (°C) | Holding Time (h) | Cooling Rate (°C/min) | Warming Rate (°C/min) |
---|---|---|---|---|---|
EN52 steel | [72] | −188 | 24 | 1 | 0.6 |
21-4N valve steel | [72] | −188 | 24 | 1 | 0.6 |
super-bainitic steel | [73] | −196 | 2 | NP | NP |
1.1189 steel | [3] | −196 | 0.5 | NP | NP |
1.2379 steel | [67] | −180 | 24 | NP | NP |
1.4418 steel | [78,79] | −196 | 1, 20 | 0.7 | 0.25 |
1.611 steel | [74] | −196 | 24 | 1.8 | 1.8 |
1.6523 steel | [53] | −185 | 16 | 3 | 3 |
1.6566 steel | [75] | −196 | 24 | 1.26 | 0.64 |
1.7147 steel | [76] | −196 | 24 | 1.24 | 0.64 |
1.7139 steel | [48] | −150 | 24 | NP | NP |
1.7225 steel | [66] | −196 | 24 | 1.26 | 0.64 |
Nonferrous Material | Reference | Temperature (°C) | Holding Time (h) | Cooling Rate (°C/min) | Warming Rate (°C/min) |
---|---|---|---|---|---|
Ti-6Al-4V alloy | [89] | NP | NP | NP | NP |
Ti-6Al-4V alloy | [82] | −196 | 4, 8, 12, 16, 20, 24 | 20 | 20 |
Ti-6Al-4V alloy | [83] | −180 | 2 | 1.7 | 1.7 |
6061 and 6082 aluminum alloy | [84] | −163 | NP | NP | NP |
6101 aluminum alloy | [88] | −190 | 12 | NP | NP |
AZ91 magnesium alloy | [85] | −196 | 20 | 0.5 | 0.5 |
ASTM A 494 M Ni alloy | [90] | NP | NP | NP | NP |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jovičević-Klug, P.; Podgornik, B. Review on the Effect of Deep Cryogenic Treatment of Metallic Materials in Automotive Applications. Metals 2020, 10, 434. https://doi.org/10.3390/met10040434
Jovičević-Klug P, Podgornik B. Review on the Effect of Deep Cryogenic Treatment of Metallic Materials in Automotive Applications. Metals. 2020; 10(4):434. https://doi.org/10.3390/met10040434
Chicago/Turabian StyleJovičević-Klug, Patricia, and Bojan Podgornik. 2020. "Review on the Effect of Deep Cryogenic Treatment of Metallic Materials in Automotive Applications" Metals 10, no. 4: 434. https://doi.org/10.3390/met10040434
APA StyleJovičević-Klug, P., & Podgornik, B. (2020). Review on the Effect of Deep Cryogenic Treatment of Metallic Materials in Automotive Applications. Metals, 10(4), 434. https://doi.org/10.3390/met10040434