Characterization of an Extruded Mg-Dy-Nd Alloy during Stress Corrosion with C-Ring Tests
Abstract
:1. Introduction
2. Materials and Methods
2.1. Processing and Mechanical Testing
2.2. Immersion and C-Ring Tests, Fracture Energy and Corrosion Morphology
3. Results and Discussion
3.1. Microstructure and Mechanical Properties
3.2. Corrosion Rate and Morphology of the Stress Corrosion
3.3. Fracture Energy and Crack Propagation
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Witte, F.; Hort, N.; Feyerabend, F.; Vogt, C. Magnesium (Mg) corrosion: A challenging concept for degradable implant. In Corros. Magnes. Alloys, 1st ed.; Song, G.L., Ed.; Woodhead Publishing Limited: Cambridge, UK, 2011; pp. 403–425. ISBN 978-1-84569-708-2. [Google Scholar]
- Zheng, Y.F.; Gu, X.N.; Witte, F. Biodegradable metals. Mat. Sci. Eng. R. 2014, 77, 1–34. [Google Scholar] [CrossRef]
- Li, H.; Zheng, Y.F.; Qin, L. Progress of biodegradable metals. Progress in Nat. Sci. 2014, 24, 414–422. [Google Scholar] [CrossRef] [Green Version]
- Biotronik AG. Available online: www.biotronik.com/de-de/products/coronary/magmaris (accessed on 31 March 2020).
- Seitz, J.M.; Lucas, A.; Kirschner, M. Magnesium-based compression screws: A novelty in the clinical use of implants. JOM 2016, 68, 1177–1182. [Google Scholar] [CrossRef]
- Rahim, M.I.; Ullah, S.; Mueller, P. Advances and Challenges of Biodegradable Implant Materials with a Focus on Magnesium-Alloys and Bacterial Infections. Metals 2018, 8, 532. [Google Scholar] [CrossRef] [Green Version]
- Prasadh, S.; Ratheesh, V.; Manakari, V.; Parande, G.; Gupta, M.; Wong, R. The Potential of Magnesium Based Materials in Mandibular Reconstruction. Metals 2019, 9, 302. [Google Scholar] [CrossRef] [Green Version]
- Willumeit-Römer, R. The Interface between Degradable Mg and Tissue. JOM 2019, 71, 1447–1455. [Google Scholar] [CrossRef] [Green Version]
- Angrisani, N.; Reifenrath, J.; Zimmermann, F.; Eifler, R.; Meyer-Lindenberg, A.; Vano-Herrera, K.; Vogt, C. Biocompatibility and degradation of LAE442-based magnesium alloys after implantation of up to 3.5 years in a rabbit model. Acta Biomater. 2016, 44, 355–365. [Google Scholar] [CrossRef]
- Choudhary, L.; Singh Raman, R.K.; Hofstetter, J.; Uggowitzer, P.J. In-vitro characterization of stress corrosion cracking of aluminium-free magnesium alloys for temporary bio-implant applications. Mater. Sci. Eng. C 2014, 42, 629–636. [Google Scholar] [CrossRef]
- Kang, Y.H.; Wu, D.; Chen, R.S.; Han, E.H. Microstructures and mechanical properties of the age hardened Mge4.2Ye2.5Nde1Gde0.6Zr (WE43) microalloyed with Zn. J. Magnes Alloys 2014, 2, 109–115. [Google Scholar] [CrossRef] [Green Version]
- Dobatkin, S.; Martynenko, N.; Anisimova, N.; Kiselevskiy, M.; Prosvirnin, D.; Terentiev, V.; Yurchenko, N.; Salishchev, G.; Estrin, Y. Mechanical Properties, Biodegradation, and Biocompatibility of Ultrafine Grained Magnesium Alloy WE43. Materials 2019, 12, 3627. [Google Scholar] [CrossRef] [Green Version]
- Stekker, M.; Hort, N.; Feyerabend, F.; Hoffmann, E. Magnesium Alloy and Resorbable Stents Containing the Same. U.S. Patent 9,566,367 B2, 14 February 2017. [Google Scholar]
- Stekker, M.; Hort, N.; Feyerabend, F.; Hoffmann, E.; Hoffmann, M.; Horres, R. Resorbable Stents which Contain a Magnesium Alloy. U.S. Patent 9,522,219 B2, 20 December 2016. [Google Scholar]
- Stekker, M.; Hort, N.; Feyerabend, F.; Hoffmann, E. Magnesiumlegierung Sowie Resorbierbare Stents, Welche Diese Enthalten. EU Patent 2744531, 21 October 2015. [Google Scholar]
- Stekker, M.; Hort, N.; Feyerabend, F.; Hoffmann, E.; Hoffmann, M.; Horres, R. Resorbable Stents Containing a Magnesium Alloy. EU Patent 2744532, 16 September 2015. [Google Scholar]
- Maier, P.; Steinacker, A.; Clausius, C.; Hort, N. Influence of solution heat treatment on microstructure, hardness and stress corrosion behaviour of extruded Resoloy®. JOM 2020, 72, 1870–1879. [Google Scholar] [CrossRef] [Green Version]
- Yang, L.; Huang, Y.; Peng, Q.; Feyerabend, F.; Kainer, K.U.; Willumeit, R. Mechanical and corrosion properties of binary Mg–Dy alloys for medical applications. Mater. Sci. Eng. B 2011, 176, 1827–1834. [Google Scholar] [CrossRef]
- Feyerabend, F.; Fischer, J.; Holtz, J.; Witte, F.; Willumeit, R.; Drücker, H.; Vogt, C.; Hort, N. Evaluation of short-term effects of rare earth and other elements used in magnesium alloys on primary cells and cell lines. Acta Biomater. 2010, 6, 1834–1842. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, L.; Hort, N.; Laipple, D.; Höche, D.; Huang, Y.; Kainer, K.U.; Willumeit, R.; Feyerabend, F. Element distribution in the corrosion layer and cytotoxicity of alloy Mg–10Dy during in vitro biodegradation. Acta Biomater. 2013, 9, 8475–8487. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tolnai, D.; Staron, P.; Staeck, A.; Eckerlebe, H.; Schell, N.; Müller, M.; Gröbner, J.; Hort, N. In Situ Synchrotron Radiation Diffraction of the Solidification of Mg-Dy(-Zr) Alloys. In Magnesium Technology 2016; Singh, A., Solanki, K., Manuel, M.V., Neelameggham, N.R., Eds.; Springer: Cham, Switzerland, 2016; pp. 17–21. [Google Scholar]
- Li, D.; Dong, J.; Zeng, X.; Lu, C. Transmission electron microscopic investigation of the β1→β phase transformation in a Mg–Dy-Nd alloy. Mater. Charact. 2010, 61, 818–823. [Google Scholar] [CrossRef]
- Smola, B.; Stulikova, I.; Cerna, J.; Cızek, J.; Vlach, M. Phase transformations in MgTbNd alloy. Phys. Status Solidi A 2011, 208, 2741–2748. [Google Scholar] [CrossRef]
- Jin, W.; Wu, G.; Feng, H.; Wang, W.; Zhang, X.; Chu, P.K. Improvement of corrosion resistance and biocompatibility of rare-earth WE43 magnesium alloy by neodymium self-ion implantation. Corros. Sci. 2015, 94, 142–155. [Google Scholar] [CrossRef]
- Zhang, T.; Meng, G.; Shao, Y.; Cui, Z.; Wang, F. Corrosion of hot extrusion AZ91 magnesium alloy. Part II: Effect of rare earth element neodymium (Nd) on the corrosion behavior of extruded alloy. Corros. Sci. 2011, 53, 2934–2942. [Google Scholar] [CrossRef]
- Arrabal, R.; Pardo, A.; Merino, M.C.; Mohedano, M.; Casajús, P.; Paucar, K.; Garcés, G. Effect of Nd on the corrosion behaviour of AM50 and AZ91D magnesium alloys in 3.5 wt.% NaCl solution. Corros. Sci. 2012, 55, 301–312. [Google Scholar] [CrossRef] [Green Version]
- Eifler, R.; Seitz, J.M.; Weber, C.M.; Grundke, S.; Reifenrath, J. MgNd2 alloy in contact with nasal mucosa: An in vivo and in vitro approach. J. Mater. Sci. 2016, 27, 25. [Google Scholar] [CrossRef]
- Durisin, M.; Reifenrath, J.; Weber, C.M.; Eifler, R.; Maier, H.J.; Lenarz, T.; Seitz, J.M. Biodegradable nasal stents (MgF2-coated Mg–2 wt% Nd alloy)—A long-term in vivo study. J. Biomed. Mater. Res. B 2017, 105, 350–365. [Google Scholar] [CrossRef] [PubMed]
- Kuncicka, L.; Kocich, R. Comprehensive Characterisation of a Newly Developed Mg–Dy–Al–Zn–Zr Alloy Structure. Metals 2018, 8, 73. [Google Scholar] [CrossRef] [Green Version]
- Yang, L.; Huang, Y.; Feyerabend, F.; Willumeit, R.; Mendis, C.; Kainer, K.U.; Hort, N. Microstructure, mechanical and corrosion properties of Mg–Dy–Gd–Zr alloys for medical applications. Acta Biomater. 2013, 9, 8499–8508. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- ASTM International. Standard Guide for Examination and Evaluation of Pitting Corrosion; ASTM G46-94(2018); ASTM International: West Conshohocken, PA, USA, 2018. [Google Scholar] [CrossRef]
- Maier, P.; Gentzsch, L.; Hort, N. Voltammetric Studies of Extruded Pure Magnesium in Different Electrolytes and Its Corrosion Morphology. In Magnesium Technology; Solanki, K., Orlov, D., Singh, A., Neelameggham, N., Eds.; Springer: Cham, Switzerland, 2017; pp. 429–437. [Google Scholar] [CrossRef]
- Winzer, N.; Atrens, A.; Song, G.; Ghali, E.; Dietzel, W.; Kainer, K.U.; Hort, N.; Blawert, C. Critical Review of the Stress Corrosion Cracking (SCC) of Magnesium Alloys. Adv. Eng. Mater. 2005, 7, 659–693. [Google Scholar] [CrossRef]
- Jafari, S.; Harandi, S.E.; Singh Raman, R.K. A Review of Stress-Corrosion Cracking and Corrosion Fatigue of Magnesium Alloys for Biodegradable Implant Applications. JOM 2015, 67, 1143–1153. [Google Scholar] [CrossRef]
- Kannan, M.B.; Dietzel, W.; Blawert, C.; Atrens, A.; Lyon, P. Stress corrosion cracking of rare-earth-containing magnesium alloys ZE41, QE22 and Elektron 21 (EV31A) compared with AZ80. Mater. Sci. Eng. A 2007, 480, 529–539. [Google Scholar] [CrossRef] [Green Version]
- Padekar, B.S.; Singh Raman, R.K.; Raja, V.S.; Paul, P. Stress corrosion cracking of a recent rare-earth containing magnesium alloy, EV31A, and a common Al-containing alloy, AZ91E. Corros. Sci. 2013, 71, 1–9. [Google Scholar] [CrossRef]
- Koch, G.H. Tests for Stress-Corrosion. Adv. Mater. Process. 2001, 159, 36–38. [Google Scholar]
- Singh, R. Corrosion evaluation and monitoring practices. In Training Programme on Industrial Corrosion: Evaluation and Mitigation; NML: Jamshedpur, India, 2017; pp. 48–67. [Google Scholar]
- Rutkowski, B.; Malzbender, J.; Beck, T.; Steinbrech, R.W.; Singheiser, L. Creep behaviour of tubular Ba0.5Sr0.5Co0.8Fe0.2O3−δ gas separation membranes. J. Eur. Ceram. Soc. 2011, 31, 493–499. [Google Scholar] [CrossRef]
- ASTM International. Standard Practice for Making and Using C-Ring Stress-Corrosion Test Specimens; ASTM G38-01(2013); ASTM International: West Conshohocken, PA, USA, 2013. [Google Scholar] [CrossRef]
- Procopio, A.T.; Zavaliangos, A.; Cunningham, J.C. Analysis of the diametrical compression test and the applicability to plastically deforming materials. J. Mat. Sci. 2003, 38, 3629–3639. [Google Scholar] [CrossRef]
- Gillen, C.; Garner, A.; Plowman, A.; Race, C.P.; Lowe, T.; Jones, C.; Moore, K.L.; Frankel, P. Advanced 3D characterisation of iodine induced stress corrosion cracks in zirconium alloys. Mater. Charact. 2018, 141, 348–361. [Google Scholar] [CrossRef]
- Wilczynska, K.; Bono, M.; Le Boulch, D.; Fregonese, M.; Chabretou, V.; Mozzani, N.; Rautenberg, M. Simulation of C-Ring, O-Ring and tensile ring specimens for Iodine induced Stress Corrosion Cracking experiments on zirconium alloy. In Proceedings of EUROCORR Congress; European Federation of Corrosion: Krakau, Polen, 2018; p. 110972. [Google Scholar]
- Jacobsen, G.M.; Stone, J.D.; Khalifa, H.E.; Deck, C.P.; Back, C.A. Investigation of the C-ring test for measuring hoop tensile strength of nuclear grade ceramic composites. J. Nucl. Mater. 2014, 452, 125–132. [Google Scholar] [CrossRef]
- McIntyre, N.S.; Ulaganathan, J.; Simpson, T.; Qin, J.; Sherry, N.; Bauer, M.; Carcea, A.G.; Newman, R.C.; Kunz, M.; Tamura, N. Mapping of Microscopic Strain Distributions in an Alloy 600 C-Ring After Application of Hoop Stresses and Stress Corrosion Cracking. Corrosion 2014, 70, 66–73. [Google Scholar] [CrossRef]
- Chao, J.; Suominen-Fuller, M.L.; McIntyre, N.S.; Carcea, A.G.; Newman, R.C.; Kunz, M.; Tamura, N. The study of stress application and corrosion cracking on Ni–16 Cr–9 Fe (Alloy 600) C-ring samples by polychromatic X-ray microdiffraction. Acta Mater. 2012, 60, 781–792. [Google Scholar] [CrossRef]
- Feliu, S.; Veleva, L.; García-Galvan, F. Effect of Temperature on the Corrosion Behavior of Biodegradable AZ31B Magnesium Alloy in Ringer’s Physiological Solution. Metals 2019, 9, 591. [Google Scholar] [CrossRef] [Green Version]
- Mueller, W.D. Electrochemical techniques for assessment of corrosion behaviour of Mg and Mg-alloys. BIO Nano Mater. 2015, 16, 31–39. [Google Scholar] [CrossRef]
- Song, G.; Atrens, A. Understanding Magnesium Corrosion: A Framework for improved alloy performance. Adv. Eng. Mater. 2003, 5, 837–858. [Google Scholar] [CrossRef]
- Sozańska, M.; Mościcki, A.; Czujko, T. The Characterization of Stress Corrosion Cracking in the AE44 Magnesium Casting Alloy Using Quantitative Fractography Methods. Materials 2019, 12, 4125. [Google Scholar] [CrossRef] [Green Version]
- Luo, Z.C.; Liu, R.D.; Wang, X.; Huang, M.X. The effect of deformation twins on the quasi-cleavage crack propagation in twinning-induced plasticity steels. Acta Mater. 2018, 150, 59–68. [Google Scholar] [CrossRef]
- Arul Kumar, M.; Capolungo, L.; McCabe, R.J.; Tomé, C.N. Characterizing the role of adjoining twins at grain boundaries in hexagonal close packed materials. Sci. Rep. 2019, 9, 3846. [Google Scholar] [CrossRef]
- Maier, P.; Mendis, C.L.; Wolff, M.; Hort, N. Twinning assisted crack propagation of Magnesium-Rare Earth casting and wrought alloys under bending. Mater. Sci. Forum 2015, 828, 217–311. [Google Scholar] [CrossRef] [Green Version]
- Koyama, M.; Akiyama, E.; Tsuzaki, K.; Raabe, D. Hydrogen-assisted failure in a twinning-induced plasticity steel studied under in situ hydrogen charging by electron channeling contrast imaging. Acta Mater. 2013, 61, 4607–4618. [Google Scholar] [CrossRef]
- Wang, S.D.; Xu, D.K.; Chen, X.B.; Han, E.H.; Dong, C. Effect of heat treatment on the corrosion resistance and mechanical properties of an as-forged Mg–Zn–Y–Zr alloy. Corros. Sci. 2015, 92, 228–236. [Google Scholar] [CrossRef]
- Smida, T.; Bosansky, J. Micromechanism of cleavage fracture in ferritic steels. Kov. Mater. 2002, 40, 146–160. [Google Scholar]
Alloy | Dy | Nd | Fe | Cu | Ni | Mg |
---|---|---|---|---|---|---|
Mg1Nd | - | 0.96 | 0.003 | 0.0006 | 0.0001 | balance |
Mg10Dy | 12.43 | - | 0.004 | 0.0010 | 0.0004 | balance |
Mg10Dy1Nd | 13.07 | 0.90 | 0.006 | 0.0011 | 0.0002 | balance |
Alloy | TYS (0.1%) (MPa) | TYS (0.2%) (MPa) | UTS (MPa) | El. (%) | CYS (0.1%) (MPa) | CYS (0.2%) (MPa) | UCS (MPa) | CS (%) | CYS/ TYS (0.2%) |
---|---|---|---|---|---|---|---|---|---|
Mg1Nd | 60.5 | 71.3 | 178.7 | 29.7 | 62.9 | 66.4 | 301.8 | 24.3 | 0.93 |
± 6.2 | ± 4.9 | ± 3.3 | ± 2.5 | ± 2.7 | ± 1.4 | ± 9.9 | ± 1.3 | ||
Mg10Dy | 83.5 | 109.5 | 215.0 | 16.5 | 119.1 | 131.8 | 351.9 | 24.1 | 1.20 |
± 2.7 | ± 2.6 | ± 2.9 | ± 2.0 | ± 16.6 | ± 9.4 | ± 24.0 | ± 2.1 | ||
Mg10Dy1Nd | 86.4 | 105.9 | 216.9 | 14.5 | 114.6 | 129.9 | 347.8 | 20.1 | 1.23 |
± 4.1 | ± 3.7 | ± 3.9 | ± 2.2 | ± 11.4 | ± 6.0 | ± 11.9 | ± 0.4 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maier, P.; Clausius, B.; Wicke, J.; Hort, N. Characterization of an Extruded Mg-Dy-Nd Alloy during Stress Corrosion with C-Ring Tests. Metals 2020, 10, 584. https://doi.org/10.3390/met10050584
Maier P, Clausius B, Wicke J, Hort N. Characterization of an Extruded Mg-Dy-Nd Alloy during Stress Corrosion with C-Ring Tests. Metals. 2020; 10(5):584. https://doi.org/10.3390/met10050584
Chicago/Turabian StyleMaier, Petra, Benjamin Clausius, Jens Wicke, and Norbert Hort. 2020. "Characterization of an Extruded Mg-Dy-Nd Alloy during Stress Corrosion with C-Ring Tests" Metals 10, no. 5: 584. https://doi.org/10.3390/met10050584
APA StyleMaier, P., Clausius, B., Wicke, J., & Hort, N. (2020). Characterization of an Extruded Mg-Dy-Nd Alloy during Stress Corrosion with C-Ring Tests. Metals, 10(5), 584. https://doi.org/10.3390/met10050584