Using High-Pressure Torsion to Achieve Superplasticity in an AZ91 Magnesium Alloy
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Kawasaki, M.; Figueiredo, R.B.; Langdon, T.G. The requirements for superplasticity with an emphasis on magnesium alloys. Adv. Eng. Mater. 2016, 18, 127–131. [Google Scholar] [CrossRef]
- Langdon, T.G. An evaluation of the strain contributed by grain boundary sliding in superplasticity. Mater. Sci. Eng. A 1994, 174, 225–230. [Google Scholar] [CrossRef]
- Langdon, T.G. A unified approach to grain boundary sliding in creep and superplasticity. Acta Metall. Mater. 1994, 42, 2437–2443. [Google Scholar] [CrossRef]
- Langdon, T.G. The mechanical properties of superplastic materials. Metall. Trans. A 1982, 13, 689–701. [Google Scholar] [CrossRef]
- Valiev, R.Z.; Islamgaliev, R.K.; Alexandrov, I.V. Bulk nanostructured materials from severe plastic deformation. Prog. Mater. Sci. 2000, 45, 103–187. [Google Scholar] [CrossRef]
- Valiev, R.Z.; Langdon, T.G. Principles of equal-channel angular pressing as a processing tool for grain refinement. Prog. Mater. Sci. 2006, 51, 881–981. [Google Scholar] [CrossRef]
- Zhilyaev, A.P.; Langdon, T.G. Using high-pressure torsion for metal processing: Fundamentals and applications. Prog. Mater. Sci. 2008, 53, 893–979. [Google Scholar] [CrossRef]
- Horita, Z.; Matsubara, K.; Makii, K.; Langdon, T.G. A two-step processing route for achieving a superplastic forming capability in dilute magnesium alloys. Scr. Mater. 2002, 47, 255–260. [Google Scholar] [CrossRef]
- Matsubara, K.; Miyahara, Y.; Horita, Z.; Langdon, T.G. Developing superplasticity in a magnesium alloy through a combination of extrusion and ECAP. Acta Mater. 2003, 51, 3073–3084. [Google Scholar] [CrossRef]
- Lin, H.K.; Huang, J.C.; Langdon, T.G. Relationship between texture and low temperature superplasticity in an extruded AZ31 Mg alloy processed by ECAP. Mater. Sci. Eng. A 2005, 402, 250–257. [Google Scholar] [CrossRef]
- Figueiredo, R.B.; Langdon, T.G. Developing superplasticity in a magnesium AZ31 alloy by ECAP. J. Mater. Sci. 2008, 43, 7366–7371. [Google Scholar] [CrossRef]
- Lapovok, R.; Estrin, Y.; Popov, M.V.; Langdon, T.G. Enhanced superplasticity in a magnesium alloy processed by equal-channel angular pressing with a back-pressure. Adv. Eng. Mater. 2008, 10, 429–433. [Google Scholar] [CrossRef]
- Mabuchi, M.; Iwasaki, H.; Yanase, K.; Higashi, K. Low temperature superplasticity in an AZ91 magnesium alloy processed by ECAE. Scr. Mater. 1997, 36, 681–686. [Google Scholar] [CrossRef]
- Mabuchi, M.; Ameyama, K.; Iwasaki, H.; Higashi, K. Low temperature superplasticity of AZ91 magnesium alloy with non-equilibrium grain boundaries. Acta Mater. 1999, 47, 2047–2057. [Google Scholar] [CrossRef]
- Chuvil’deev, V.N.; Nieh, T.G.; Gryaznov, M.Y.; Sysoev, A.N.; Kopylov, V.I. Low-temperature superplasticity and internal friction in microcrystalline Mg alloys processed by ECAP. Scr. Mater. 2004, 50, 861–865. [Google Scholar] [CrossRef]
- Mabuchi, M.; Iwasaki, H.; Higashi, K. Low temperature superplasticity of magnesium alloys processed by ECAE. Mater. Sci. Forum 1996, 243–245, 547–552. [Google Scholar] [CrossRef]
- Mabuchi, M.; Nakamura, M.; Ameyama, K.; Iwasaki, H.; Higashi, K. Superplastic behavior of magnesium alloy processed by ECAE. Mater. Sci. Forum 1999, 304–306, 67–72. [Google Scholar] [CrossRef]
- Watanabe, H.; Mukai, T.; Ishikawa, K.; Higashi, K. Low temperature superplasticity of a fine-grained ZK60 magnesium alloy processed by equal-channel-angular extrusion. Scr. Mater. 2002, 46, 851–856. [Google Scholar] [CrossRef]
- Watanabe, H.; Mukai, T.; Ishikawa, K.; Higashi, K. Superplastic behavior of an ECAE processed ZK60 magnesium alloy. Mater. Sci. Forum 2003, 419–422, 557–564. [Google Scholar] [CrossRef]
- Lapovok, R.; Cottam, R.; Thomson, P.F.; Estrin, Y. Extraordinary superplastic ductility of magnesium alloy ZK60. J. Mater. Res. 2005, 20, 1375–1378. [Google Scholar] [CrossRef]
- Figueiredo, R.B.; Langdon, T.G. The development of superplastic ductilities and microstructural homogeneity in a magnesium ZK60 alloy processed by ECAP. Mater. Sci. Eng. A 2006, 430, 151–156. [Google Scholar] [CrossRef]
- Figueiredo, R.B.; Langdon, T.G. Strategies for achieving high strain rate superplasticity in magnesium alloys processed by equal-channel angular pressing. Scr. Mater. 2009, 61, 84–87. [Google Scholar] [CrossRef]
- Figueiredo, R.B.; Langdon, T.G. Record superplastic ductility in a magnesium alloy processed by equal-channel angular pressing. Adv. Eng. Mater. 2008, 10, 37–40. [Google Scholar] [CrossRef]
- Cetlin, P.R.; Aguilar, M.T.P.; Figueiredo, R.B.; Langdon, T.G. Avoiding cracks and inhomogeneities in billets processed by ECAP. J. Mater. Sci. 2010, 45, 4561–4570. [Google Scholar] [CrossRef]
- Pereira, P.H.R.; Figueiredo, R.B. Finite element modelling of high-pressure torsion: An overview. Mater. Trans. 2019, 60, 1139–1150. [Google Scholar] [CrossRef] [Green Version]
- Figueiredo, R.B.; Aguilar, M.T.P.; Cetlin, P.R.; Langdon, T.G. Analysis of plastic flow during high-pressure torsion. J. Mater. Sci. 2012, 47, 7807–7814. [Google Scholar] [CrossRef]
- Figueiredo, R.B.; Cetlin, P.R.; Langdon, T.G. Using finite element modeling to examine the flow processes in quasi-constrained high-pressure torsion. Mater. Sci. Eng. A 2011, 528, 8198–8204. [Google Scholar] [CrossRef]
- Figueiredo, R.B.; Langdon, T.G. Processing magnesium and its alloys by high-pressure torsion: An overview. Adv. Eng. Mater. 2019, 21, 1801039. [Google Scholar] [CrossRef] [Green Version]
- Barnes, A.J. Superplastic forming 40 years and still growing. J. Mater. Eng. Perform. 2007, 16, 440–454. [Google Scholar] [CrossRef]
- Figueiredo, R.B.; Pereira, P.H.R.; Aguilar, M.T.P.; Cetlin, P.R.; Langdon, T.G. Using finite element modeling to examine the temperature distribution in quasi-constrained high-pressure torsion. Acta Mater. 2012, 60, 3190–3198. [Google Scholar] [CrossRef]
- Silva, C.L.P.; Soares, R.B.; Pereira, P.H.R.; Figueiredo, R.B.; Lins, V.F.C.; Langdon, T.G. The effect of high-pressure torsion on microstructure, hardness and corrosion behavior for pure magnesium and different magnesium alloys. Adv. Eng. Mater. 2019, 21, 1801081. [Google Scholar] [CrossRef]
- Mohamed, F.A.; Langdon, T.G. Creep at low stress levels in the superplastic Zn-22% Al eutectoid. Acta Metall. 1975, 23, 117–124. [Google Scholar] [CrossRef]
- Figueiredo, R.B.; Langdon, T.G. Influence of number of passes in ECAP on superplastic behavior in a magnesium alloy. Mater. Sci. Forum 2008, 584–586, 170–175. [Google Scholar] [CrossRef]
- Higashi, K.; Mabuchi, M.; Langdon, T.G. High-strain-rate superplasticity in metallic materials and the potential for ceramic materials. ISIJ Int. 1996, 36, 1423–1438. [Google Scholar] [CrossRef]
- Langdon, T.G. Fracture processes in superplastic flow. Met. Sci. 1982, 16, 175–183. [Google Scholar] [CrossRef]
- Chinh, N.Q.; Valiev, R.Z.; Sauvage, X.; Varga, G.; Havancsák, K.; Kawasaki, M.; Straumal, B.B.; Langdon, T.G. Grain boundary phenomena in an ultrafine-grained Al–Zn alloy with improved mechanical behavior for micro-devices. Adv. Eng. Mater. 2014, 16, 1000–1009. [Google Scholar] [CrossRef]
- Spigarelli, S.; Regev, M.; Evangelista, E.; Rosen, A. Review of creep behaviour of AZ91 magnesium alloy produced by different technologies. Mater. Sci. Technol. 2001, 17, 627–638. [Google Scholar] [CrossRef]
- Al-Zubaydi, A.S.J.; Zhilyaev, A.P.; Wang, S.C.; Reed, P.A.S. Superplastic behaviour of AZ91 magnesium alloy processed by high-pressure torsion. Mater. Sci. Eng. A 2015, 637, 1–11. [Google Scholar] [CrossRef]
- Srinivasan, A.; Ajithkumar, K.K.; Swaminathan, J.; Pillai, U.T.S.; Pai, B.C. Creep Behavior of AZ91 Magnesium Alloy. In Proceedings of the 6th International Conference on Creep, Fatigue and Creep-Fatigue Interaction, Kalpakkam, India, 22–25 January 2012; Chetal, S.C., Jayakumar, T., Sandhya, R., Laha, K., Mathew, M.D., Eds.; Volume 55, pp. 109–113. [Google Scholar]
- Somekawa, H.; Hirai, K.; Watanabe, H.; Takigawa, Y.; Higashi, K. Dislocation creep behavior in Mg–Al–Zn alloys. Mater. Sci. Eng. A 2005, 407, 53–61. [Google Scholar] [CrossRef]
- Wei, Y.H.; Wang, Q.D.; Zhu, Y.P.; Zhou, H.T.; Ding, W.J.; Chino, Y.; Mabuchi, M. Superplasticity and grain boundary sliding in rolled AZ91 magnesium alloy at high strain rates. Mater. Sci. Eng. A 2003, 360, 107–115. [Google Scholar] [CrossRef]
- Figueiredo, R.B.; Langdon, T.G. Evaluating the superplastic flow of a magnesium AZ31 alloy processed by equal-channel angular pressing. Metall. Mater. Trans. A 2014, 45, 3197–3204. [Google Scholar] [CrossRef]
- Mabuchi, M.; Asahina, T.; Iwasaki, H.; Higashi, K. Experimental investigation of superplastic behaviour in magnesium alloys. Mater. Sci. Technol. 1997, 13, 825–831. [Google Scholar] [CrossRef]
- Figueiredo, R.B.; Langdon, T.G. Analysis of the creep behavior of fine-grained AZ31 magnesium alloy. Mater. Sci. Eng. A 2020, 787, 139489. [Google Scholar] [CrossRef]
- Dessolier, T.; Lhuissier, P.; Roussel-Dherbey, F.; Charlot, F.; Josserond, C.; Blandin, J.-J.; Martin, G. Effect of temperature on deformation mechanisms of AZ31 Mg-alloy under tensile loading. Mater. Sci. Eng. A 2020, 775, 138957. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Figueiredo, R.B.; Langdon, T.G. Using High-Pressure Torsion to Achieve Superplasticity in an AZ91 Magnesium Alloy. Metals 2020, 10, 681. https://doi.org/10.3390/met10050681
Figueiredo RB, Langdon TG. Using High-Pressure Torsion to Achieve Superplasticity in an AZ91 Magnesium Alloy. Metals. 2020; 10(5):681. https://doi.org/10.3390/met10050681
Chicago/Turabian StyleFigueiredo, Roberto B., and Terence G. Langdon. 2020. "Using High-Pressure Torsion to Achieve Superplasticity in an AZ91 Magnesium Alloy" Metals 10, no. 5: 681. https://doi.org/10.3390/met10050681
APA StyleFigueiredo, R. B., & Langdon, T. G. (2020). Using High-Pressure Torsion to Achieve Superplasticity in an AZ91 Magnesium Alloy. Metals, 10(5), 681. https://doi.org/10.3390/met10050681