Effect of Partial Solution Treatment Temperature on Microstructure and Tensile Properties of 440C Martensitic Stainless Steel
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Microstructure and Hardness of As-Quenched 440C
3.2. Tensile Properties and Work-Hardening Behavior of As-Quenched 440C Steel
4. Conclusions
- After partial solution treatment, the phases that were present in the as-quenched sample included martensite, carbides and retained austenite. The sample heat treated at 1160 °C contained M7C3-type carbide and a high fraction of austenite. The sample heat treated at 950 °C contained M23C6 carbide, a high martensite content and a small amount of austenite.
- During the 950 °C partial solution treatment, the grain growth rate of austenite was less than that at 1160 °C. The growth of carbide particles was independent of the time of partial solution treatment for both temperatures, although the particle size for the sample treated at 950 °C was almost five times smaller than that at 1160 °C.
- The sample treated at 950 °C showed higher hardness and strength compared with that at 1160 °C. Both treatment temperatures resulted in improved strength relative to that of the as-received sample. The 950 °C treatment yielded an excellent strength–ductility balance, despite having a total elongation lower than that of the sample treated at 1160 °C. Therefore, the partial solution treatment improved the mechanical properties of 440C steel.
- The yield stress and the work-hardening behavior was influenced by the microstructures of the samples obtained upon the partial heat treatment and the quenching. The 950-sample showed high yield stress and work-hardening rate, owing to high fractions of martensite with dissolved carbon and of M23C6, whilst the 1160-sample has larger elongation, resulting from the transformation of the retained austenite to martensite.
Author Contributions
Funding
Conflicts of Interest
References
- Uenishi, A. Development of Future Automobile Design Concept, NSafeTM-AutoConcept. Nippon Steel Tech. Rep. 2019, 122, 7–12. [Google Scholar]
- Funakawa, Y.; Nagataki, Y. High strength steel sheets for weight reduction of automobiles. JFE Tech. Rep. 2019, 24, 1–5. [Google Scholar]
- Yamashita, T.; Toji, Y.; Kitahara, Y. Analysis technology of microsrtucture formation in high performance dual phase steel. JFE. Tech. Rep. 2017, 22, 25–29. [Google Scholar]
- Cojocaru, E.M.; Raducanu, D.; Nocivin, A.; Cinca, I.; Vintila, A.N.; Serban, N.; Angelescu, M.L.; Cojocaru, V.D. Influence of Aging Treatment on Microstructure and Tensile Properties of a Hot Deformed UNS S32750 Super Duplex Stainless Steel (SDSS) Alloy. Metals 2020, 10, 353. [Google Scholar] [CrossRef] [Green Version]
- Saeidi, K.; Alvi, S.; Lofaj, F.; Petkov, V.I.; Akhtar, F. Advanced mechanical strength in post heat treated SLM 2507 at room and high temperature promoted by hard/ductile sigma precipitates. Metals 2019, 9, 199. [Google Scholar] [CrossRef] [Green Version]
- Zai, L.; Zhang, C.; Wang, Y.; Guo, W.; Wellmann, D.; Tong, X.; Tian, Y. Laser Powder Bed Fusion of Precipitation-Hardened Martensitic Stainless Steels: A Review. Metals 2020, 10, 255. [Google Scholar] [CrossRef] [Green Version]
- Lin, Y.; Lin, C.-C.; Tsai, T.-H.; Lai, H.-J. Microstructure and mechanical properties of 0.63 C-12.7 Cr martensitic stainless steel during various tempering treatments. Mater. Manuf. Process. 2010, 25, 246–248. [Google Scholar] [CrossRef]
- Huang, K.-T.; Chang, S.-H.; Wang, C.-K.; Chen, J.-K. Microstructures and mechanical properties of 440C stainless steel Strengthened with TaC via Vacuum sintering and heat Treatments. Mater. Trans. 2015, 56, 1585–1590. [Google Scholar] [CrossRef] [Green Version]
- Bush, R.; Gill, J.; Teakell, J. Heat Treatment Optimization and Fabrication of a 440C Stainless Steel Knife. JOM. 2016, 68, 3167–3173. [Google Scholar] [CrossRef]
- Lu, S.-Y.; Yao, K.-F.; Chen, Y.-B.; Wang, M.-H.; Shao, Y.; Ge, X.-Y. Effects of austenitizing temperature on the microstructure and electrochemical behavior of a martensitic stainless steel. J. Appl. Electrochem. 2015, 45, 375–383. [Google Scholar] [CrossRef]
- Zhou, M.; Xu, G.; Wang, L.; Yuan, Q. The varying effects of uniaxial compressive stress on the bainitic transformation under different austenitization temperatures. Metals 2016, 6, 119. [Google Scholar] [CrossRef] [Green Version]
- Jia, T.; Ni, R.; Wang, H.; Shen, J.; Wang, Z. Investigation on the Formation of Cr-Rich Precipitates at the Interphase Boundary in Type 430 Stainless Steel Based on Austenite–Ferrite Transformation Kinetics. Metals 2019, 9, 1045. [Google Scholar] [CrossRef] [Green Version]
- Choi, Y.-S.; Kim, J.-G.; Park, Y.-S.; Park, J.-Y. Austenitizing treatment influence on the electrochemical corrosion behavior of 0.3 C–14Cr–3Mo martensitic stainless steel. Mater. Lett. 2007, 61, 244–247. [Google Scholar] [CrossRef]
- Mohammed, M.N.; Omar, M.Z.; Syarif, J.; Sajuri, Z.; Salleh, M.S.; Alhawari, K.S. Microstructural properties of semisolid welded joints for AISI D2 tool steel. J. Kejuruter. 2014, 26, 31–34. [Google Scholar] [CrossRef]
- Kamimura, T.; Stratmann, M. The influence of chromium on the atmospheric corrosion of steel. Corros. Sci. 2001, 43, 429–447. [Google Scholar] [CrossRef]
- Jiang, Z.; Feng, H.; Li, H.; Zhu, H.; Zhang, S.; Zhang, B.; Han, Y.; Zhang, T.; Xu, D. Relationship between microstructure and corrosion behavior of martensitic high nitrogen stainless steel 30Cr15Mo1N at different austenitizing temperatures. Materials 2017, 10, 861. [Google Scholar] [CrossRef] [Green Version]
- Salleh, S.H.; Omar, M.Z.; Syarif, J.; Abdullah, S. Carbide formation during precipitation hardening of SS440C steel. Eur. J. Sci. Res. 2009, 34, 83–91. [Google Scholar]
- Pan, L.; Kwok, C.T.; Lo, K.H. Friction-stir processing of AISI 440C high-carbon martensitic stainless steel for improving hardness and corrosion resistance. J. Mater. Process. Technol. 2020, 277, 116448. [Google Scholar] [CrossRef]
- Vanherpe, L.; Moelans, N.; Blanpain, B.; Vandewalle, S. Pinning effect of spheroid second-phase particles on grain growth studied by three-dimensional phase-field simulations. Comput. Mater. Sci. 2010, 49, 340–350. [Google Scholar] [CrossRef]
- Ji, G.; Gao, X.; Liu, Z.; Zhang, K. In situ observation and modeling of austenite grain growth in a Nb–Ti-bearing high carbon steel. J. Iron Steel Res. Int. 2019, 26, 292–300. [Google Scholar] [CrossRef]
- Syarif, J.; Merabtene, M.; Yousuf, H.Y.; Omar, M.Z. Change in microstructure and mechanical properties ss440c steel by partial solution treatment. In Proceedings of the 4th International Metallurgical Engineering Conference, Istanbul, Turkey, 3 November 2016; Dakam: Istanbul, Turkey, 2016; pp. 55–59. [Google Scholar]
- Salih, A.A.; Omar, M.Z.; Junaidi, S.; Sajuri, Z. Effect of different heat treatment on the SS440C martensitic stainless steel. Aust. J. Basic Appl. Sci. 2011, 5, 867–871. [Google Scholar]
- Salleh, S.H.; Omar, M.Z.; Syarif, J.; Ghazali, M.J.; Abdullah, S.; Sajuri, Z. Investigation of microstructures and properties of 440C martensitic stainless steel. Int. J. Mech. Mater. Eng. 2009, 4, 123–126. [Google Scholar]
- Solomon, N.; Solomon, I. Deformation induced martensite in AISI 316 stainless steel. Rev. Metal. 2010, 46, 121. [Google Scholar] [CrossRef]
- Cullity, B.D.; Stock, S.R. Elements of X-ray Diffraction; Pearson: London, UK, 2001. [Google Scholar]
- Schneider, C.A.; Rasband, W.S.; Eliceiri, K.W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 2012, 9, 671–675. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; van der Wolk, P.J.; van der Zwaag, S. Determination of martensite start temperature in engineering steels part I. Empirical relations describing the effect of steel chemistry. Mater. Trans. JIM 2000, 41, 761–768. [Google Scholar] [CrossRef] [Green Version]
- Peng, F.; Xu, Y.; Li, J.; Gu, X.; Wang, X. Interaction of martensite and bainite transformations and its dependence on quenching temperature in intercritical quenching and partitioning steels. Mater. Des. 2019, 181, 107921. [Google Scholar] [CrossRef]
- Kobasko, N.; Aronov, M.; Powell, J.; Vanas, J. Intensive Quenching of Steel Parts: Equipment and Method. In Proceedings of the 7th IASME/WSEAS International Conference on Health Transfer, Thermal Engineering and Environment, Moscow, Russia, 20–22 August 2009; pp. 20–22. [Google Scholar]
- Tsuchiyama, T.; Takaki, S.; Nakamura, S. Austenite grain size control by insoluble carbide in martensitic stainless steels. Tetsu--Hagané 1995, 81, 147–152. [Google Scholar] [CrossRef] [Green Version]
- Shan, G.B.; Chen, Y.Z.; Gong, M.M.; Dong, H.; Li, B.; Liu, F. Influence of Al2O3 particle pinning on thermal stability of nanocrystalline Fe. J. Mater. Sci. Technol. 2018, 34, 599–604. [Google Scholar] [CrossRef]
- Rodriguez-Ibabe, J.M.; López, B. Thermomechanical processing and role of microalloying in eutectoid steels. In Advanced Steels; Springer: Berlin, Germany, 2011; pp. 475–484. [Google Scholar]
- Takaki, S.; Fukunaga, K.; Syarif, J.; Tsuchiyama, T. Effect of grain refinement on thermal stability of metastable austenitic steel. Mater. Trans. 2004, 45, 2245–2251. [Google Scholar] [CrossRef] [Green Version]
- Zou, Y.; Xu, Y.B.; Hu, Z.P.; Gu, X.L.; Peng, F.; Tan, X.D.; Chen, S.Q.; Han, D.T.; Misra, R.D.K.; Wang, G.D. Austenite stability and its effect on the toughness of a high strength ultra-low carbon medium manganese steel plate. Mater. Sci. Eng. A 2016, 675, 153–163. [Google Scholar] [CrossRef]
- Nakada, N.; Syarif, J.; Tsuchiyama, T.; Takaki, S. Improvement of strength—Ductility balance by copper addition in 9% Ni steels. Mater. Sci. Eng. A 2004, 374, 137–144. [Google Scholar] [CrossRef]
- Niino, T.; Inoue, J.; Ojima, M.; Nambu, S.; Koseki, T. Effects of solute carbon on the work hardening behavior of lath martensite in low-carbon steel. ISIJ. Int. 2017, 57, 181–188. [Google Scholar] [CrossRef] [Green Version]
- Nakashima, K.; Futamura, Y.; Tsuchiyama, T.; Takaki, S. Interaction between dislocation and copper particles in Fe-Cu alloys. ISIJ. Int. 2002, 42, 1541–1545. [Google Scholar] [CrossRef] [Green Version]
- Guo, Z.; Sha, W. Quantification of precipitation hardening and evolution of precipitates. Mater. Trans. 2002, 43, 1273–1282. [Google Scholar] [CrossRef] [Green Version]
- Nakada, N.; Yamashita, T.; Syarif, J.; Tsuchiyama, T.; Takaki, S. Effect of Cu addition on formation of reversed austenite and hardness in 9% Ni steels. J. Iron. Steel Res. Int. 2003, 89, 1050–1056. [Google Scholar] [CrossRef]
- Bleck, W.; Guo, X.; Ma, Y. The TRIP effect and its application in cold formable sheet steels. Steel Res. Int. 2017, 88, 1700218. [Google Scholar] [CrossRef]
- Fischer, F.D.; Sun, Q.-P.; Tanaka, K. Transformation-induced plasticity (TRIP). Appl. Mech. Rev. 1996. [Google Scholar] [CrossRef]
- Syarif, J.; Handra, N.; Sajuri, Z.; Omar, M.Z. Change in Tensile Properties of Dual-Phase Steels by Cu Addition. Trans. Indian Inst. Met. 2018, 71, 513–519. [Google Scholar] [CrossRef]
- Cao, Y.; Ahlström, J.; Karlsson, B. The influence of temperatures and strain rates on the mechanical behavior of dual phase steel in different conditions. J. Mater. Res. Technol. 2015, 4, 68–74. [Google Scholar] [CrossRef] [Green Version]
- Takaki, S.; Ngo-Huynh, K.-L.; Nakada, N.; Tsuchiyama, T. Strengthening mechanism in ultra low carbon martensitic steel. ISIJ Int. 2012, 52, 710–716. [Google Scholar] [CrossRef] [Green Version]
- Zhuang, X.; Ma, S.; Zhao, Z. Effect of particle size, fraction and carbide banding on deformation and damage behavior of ferrite–cementite steel under tensile/shear loads. Model. Simul. Mater. Sci. Eng. 2016, 25, 15007. [Google Scholar] [CrossRef]
C | Cr | Mo | Mn | Si | Ni | Cu | P | S | Fe |
---|---|---|---|---|---|---|---|---|---|
1.04 | 16.5 | 0.43 | 0.34 | 0.33 | 0.2 | 0.08 | 0.028 | 0.016 | bal. |
Phase | 1160 °C | 950 °C |
---|---|---|
M7C3 | 8 | 0 |
M23C6 | 0 | 29 |
BCC | 53 | 68 |
FCC | 39 | 3 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Syarif, J.; H. Yousuf, M.; Sajuri, Z.; Baghdadi, A.H.; Merabtene, M.; Omar, M.Z. Effect of Partial Solution Treatment Temperature on Microstructure and Tensile Properties of 440C Martensitic Stainless Steel. Metals 2020, 10, 694. https://doi.org/10.3390/met10050694
Syarif J, H. Yousuf M, Sajuri Z, Baghdadi AH, Merabtene M, Omar MZ. Effect of Partial Solution Treatment Temperature on Microstructure and Tensile Properties of 440C Martensitic Stainless Steel. Metals. 2020; 10(5):694. https://doi.org/10.3390/met10050694
Chicago/Turabian StyleSyarif, Junaidi, Mohammad H. Yousuf, Zainuddin Sajuri, Amir Hossein Baghdadi, Mahdi Merabtene, and Mohd Zaidi Omar. 2020. "Effect of Partial Solution Treatment Temperature on Microstructure and Tensile Properties of 440C Martensitic Stainless Steel" Metals 10, no. 5: 694. https://doi.org/10.3390/met10050694
APA StyleSyarif, J., H. Yousuf, M., Sajuri, Z., Baghdadi, A. H., Merabtene, M., & Omar, M. Z. (2020). Effect of Partial Solution Treatment Temperature on Microstructure and Tensile Properties of 440C Martensitic Stainless Steel. Metals, 10(5), 694. https://doi.org/10.3390/met10050694