Fatigue Design and Defects in Metals and Alloys
1. Introduction and Scope
2. Contributions
3. Conclusions and Outlook
Conflicts of Interest
References
- Bertini, L.; Bucchi, F.; Frendo, F.; Valentini, R. Microstructure and Fatigue Behavior of a Ni-Cu-Sn Alloy. Metals 2018, 8, 888. [Google Scholar] [CrossRef] [Green Version]
- Deng, H.; Liu, Q.; Liu, H.; Yu, H. Long-Life Fatigue of Carburized 12Cr2Ni Alloy Steel: Evaluation of Failure Characteristic and Prediction of Fatigue Strength. Metals 2018, 8, 1006. [Google Scholar] [CrossRef] [Green Version]
- Tridello, A. VHCF Response of Two AISI H13 Steels: Effect of Manufacturing Process and Size-Effect. Metals 2019, 9, 133. [Google Scholar] [CrossRef] [Green Version]
- Fontanari, V.; Molinari, A.; Marini, M.; Pahl, W.; Benedetti, M. Tooth Root Bending Fatigue Strength of High-Density Sintered Small-Module Spur Gears: The Effect of Porosity and Microstructure. Metals 2019, 9, 599. [Google Scholar] [CrossRef] [Green Version]
- Schäfer, B.J.; Sonnweber-Ribic, P.; ul Hassan, H.; Hartmaier, A. Micromechanical Modeling of Fatigue Crack Nucleation around Non-Metallic Inclusions in Martensitic High-Strength Steels. Metals 2019, 9, 1258. [Google Scholar] [CrossRef] [Green Version]
- Sun, C.; Song, Q. A Method for Predicting the Effects of Specimen Geometry and Loading Condition on Fatigue Strength. Metals 2018, 8, 811. [Google Scholar] [CrossRef] [Green Version]
- Hwang, J.H.; Lee, J.H.; Ahmad, H.W.; Ha, S.W.; Bae, D.H.; Kebede, H.Y. Assessing Corrosion Fatigue Characteristics of Dissimilar Material Weld between Alloy617 and 12Cr Steel Using Buttering Welding Technique. Metals 2018, 8, 826. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Zhang, W.; Zhang, T.; Gong, J.; Wahab, M.A. A New Empirical Life Prediction Model for 9–12%Cr Steels under Low Cycle Fatigue and Creep Fatigue Interaction Loadings. Metals 2019, 9, 183. [Google Scholar] [CrossRef] [Green Version]
- Algarni, M.; Bai, Y.; Zwawi, M.; Ghazali, S. Damage Evolution Due to Extremely Low-Cycle Fatigue for Inconel 718 Alloy. Metals 2019, 9, 1109. [Google Scholar] [CrossRef] [Green Version]
- Zhao, X.; Sun, Z.; Xu, D.; Liu, Y. Local Fatigue Strength Evaluation of Shot Peened 40Cr Notched Steel. Metals 2018, 8, 681. [Google Scholar] [CrossRef] [Green Version]
- Campagnolo, A.; Dabalà, M.; Meneghetti, G. Effect of Salt Bath Nitrocarburizing and Post-Oxidation on Static and Fatigue Behaviours of a Construction Steel. Metals 2019, 9, 1306. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Zhang, J.; Fan, G.; Zhang, H.; Zhu, W.; Zhu, Q.; Zheng, R. The Auto-Correlation of Ultrasonic Lamb Wave Phased Array Data for Damage Detection. Metals 2019, 9, 666. [Google Scholar] [CrossRef] [Green Version]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fontanari, V.; Benedetti, M. Fatigue Design and Defects in Metals and Alloys. Metals 2020, 10, 865. https://doi.org/10.3390/met10070865
Fontanari V, Benedetti M. Fatigue Design and Defects in Metals and Alloys. Metals. 2020; 10(7):865. https://doi.org/10.3390/met10070865
Chicago/Turabian StyleFontanari, Vigilio, and Matteo Benedetti. 2020. "Fatigue Design and Defects in Metals and Alloys" Metals 10, no. 7: 865. https://doi.org/10.3390/met10070865
APA StyleFontanari, V., & Benedetti, M. (2020). Fatigue Design and Defects in Metals and Alloys. Metals, 10(7), 865. https://doi.org/10.3390/met10070865