Microstructural and Wear Properties of Annealed Medium Carbon Steel Plate (EN8) Cladded with Martensitic Stainless Steel (AISI410)
Abstract
:1. Introduction
2. Experimental Procedures
2.1. Sample Preparation and Specification
2.2. Material Deposition
2.3. Metallographic Analysis
2.4. Hardness Test
2.5. Wear Test
3. Results and Discussion
3.1. Metallographic Analysis and Hardness
3.2. Investigating the Wear Properties of the Clad
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Saha, M.K.; Das, S. Gas Metal Arc Weld Cladding and its Anti-Corrosive Performance—A Brief Review. Athens J. Technol. Eng. 2018, 5, 155–174. [Google Scholar] [CrossRef]
- Xi, Y.; Liu, D.; Han, D. Improvement of corrosion and wear resistances of AISI 420 martensitic stainless steel using plasma nitriding at low temperature. Surf. Coat. Technol. 2008, 202, 2577–2583. [Google Scholar] [CrossRef]
- Lippold, J.C.; Kotecki, D.J. Welding Metallurgy and Weldability of Stainless Steels; Wiley-Interscience: Hoboken, NJ, USA, 2005. [Google Scholar]
- Puli, R.; Janaki Ram, G.D. Wear and corrosion performance of AISI 410 martensitic stainless steel coatings produced using friction surfacing and manual metal arc welding. Surf. Coat. Technol. 2012, 209, 1–7. [Google Scholar] [CrossRef]
- Khadadad, A.; Koçak, M.; Ventzke, V. Mechanical and fracture characterization of a bi-material steel plate. Int. J. Press. Vessels Piping 2002, 79, 181–191. [Google Scholar] [CrossRef]
- Lee, J.E.; Bae, D.H.; Chung, W.S.; Kima, K.H.; Lee, J.H.; Cho, Y.R. Effects of annealing on the mechanical and interface properties of stainless steel/aluminum/copper clad-metal sheets. J. Mater. Proc. Technol. 2007, 187–188, 546–549. [Google Scholar] [CrossRef]
- Lee, K.S.; Yoon, D.H.; Lee, S.E.; Lee, Y.S. The effect of thermomechanical treatment on the interface microstructure and local mechanical properties of roll bonded pure Ti/439 stainless steel multilayered materials. Procedia Eng. 2011, 10, 3467–3472. [Google Scholar] [CrossRef] [Green Version]
- Kaushal, S.; Sirohi, V.; Gupta, D.; Bhowmick, H.; Singh, S. Processing and characterization of composite cladding through microwave heating on martensitic steel. J. Mater. Des. Appl. 2018, 232, 80–86. [Google Scholar] [CrossRef]
- Olson, D.L.; Siewert, T.A.; Liu, S.; Edwards, G.R. Metals handbook. Welding, brazing and soldering, 9th ed.; ASM: Metals Park, OH, USA, 1983. [Google Scholar]
- Lucas, W. Arc Surfacing and Cladding Processes to Enhance Performance in Service and to Repair Worn Components. Weld. Met. Fabric. 1994, 62, 55–60. [Google Scholar]
- Sreeraj, P.; Kannan, T. Modeling and prediction of stainless steel clad bead geometry deposited by GMAW using regression and Artificial Neural Network. Adv. Mech. Eng. 2012, 4, 237379. [Google Scholar] [CrossRef]
- Saha, M.K.; Mondal, A.; Hazra, R.; Das, S. An overview on cladding through gas metal arc welding. In Proceedings of the National Welding Seminar, Jamshedpur, India, 22 January 2015; Indian Institute of Welding and Tata Steel: Jamshedpur, India. [Google Scholar]
- Khara, B.; Mondal, N.D.; Sarkar, A.; Sarkar, M.; Chakrabarty, B.; Das, S. Weld cladding with austenite stainless steel for imparting corrosion resistance. Ind. Weld. J. 2016, 49, 74–81. [Google Scholar] [CrossRef]
- Verma, A.K.; Biswas, B.C.; Roy, P.; De, S.; Soren, S.; Das, S. An investigation on the anti-corrosion characteristics of stainless steel cladding. Ind. Weld. J. 2017, 50, 52–63. [Google Scholar] [CrossRef]
- Verma, A.K.; Biswas, B.C.; Roy, P.; De, S.; Saren, S.; Das, S. On The Effectiveness of Duplex Stainless Steel Cladding Deposited by Gas Metal Arc Welding. Ind Weld. J. 2014, 47, 24–32. [Google Scholar] [CrossRef]
- Dhib, Z.; Guermazi, N.; Ktari, A.; Gasperini, M.; Haddar, N. Mechanical bonding properties and interfacial morphologies of austenitic stainless steel clad composite. Mater. Sci. Eng. 2017, 696, 374–386. [Google Scholar] [CrossRef]
- Dhib, Z.; Guermazi, N.; Gaspérini, M.; Haddar, N. Cladding of low-carbon steel to austenitic stainless steel by hot-roll bonding: Microstructure and mechanical properties properties before and after welding. Mater. Sci. Eng. A. 2016, 656, 130–141. [Google Scholar] [CrossRef]
- Li, K.; Li, D.; Liu, D.; Pei, G.; Sun, L. Microstructure evolution and mechanical properties of multiple-layer laser cladding coating of 308L stainless steel. Appl. Surf. Sci. 2015, 340, 143–150. [Google Scholar] [CrossRef]
- Yang, K.; Zhang, Z.; Hu, W.; Bao, Y.; Jiang, Y. A new type of submerged-arc flux-cored wire used for hardfacing continuous casting rolls. J. Iron Steel Res. Int. 2011, 18, 74–79. [Google Scholar] [CrossRef]
- Vitanov, V.I.; Voutchkov, I.I.; Bedford, G.M. Neurofuzzy approach to process parameter selection for friction surfacing applications. Surf. Coat. Tech. 2001, 140, 256–262. [Google Scholar] [CrossRef] [Green Version]
- Li, J.Q.; Shinoda, T. Underwater friction surfacing. Surf. Eng. 2000, 16, 31–35. [Google Scholar] [CrossRef]
- Katayama, Y.; Takahashi, M.; Shinoda, T.; Nanbu, K. New Friction Surfacing Application for Stainless Steel Pipe. Weld. World 2009, 53, R272–R280. [Google Scholar]
- Hemmati, I.; Ocelík, V.; De Hosson, J.T.M. The effect of cladding speed on phase constitution and properties of AISI 431stainless steel laser deposited coatings. Surf. Coat. Tech. 2011, 205, 5235–5239. [Google Scholar] [CrossRef] [Green Version]
- Wen, P.; Cai, Z.; Feng, Z.; Wang, G. Microstructure and mechanical properties of hot wire laser clad layers for repairing precipitation hardening martensitic stainless steel. Opt. Laser Technol. 2015, 75, 207–213. [Google Scholar] [CrossRef]
- Wang, J.B.; Zhou, Y.F.; Xing, X.L.; Liu, S.; Zhao, C.C.; Yang, Y.L.; Yang, Q.X. The effect of nitrogen alloying to the microstructure and mechanical properties of martensitic stainless steel hardfacing. Surf. Coat. Tech. 2016, 294, 115–121. [Google Scholar] [CrossRef]
- Oo, H.Z.; Muangjunburee, P. Wear behavior of hardfacing on 3.5% chromium cast steel by submerged arc welding. Mat. Today Proc. 2018, 5, 9281–9289. [Google Scholar] [CrossRef]
- Balakrishnan, M.; Balasubramanian, V.; Madhusudhan Reddy, G. Effect of Hardfacing Consumables on Ballistic Performance of Q&T Steel Joints. Defence Technol. 2013, 9, 249–258. [Google Scholar]
- Venkateswara Rao, N.; Madhusudhan Reddy, G.; Nagarjuna, S. Weld overlay cladding of high strength low alloy steel with austenitic stainless steel—structute and properties. Mater. Des. 2011, 32, 2496–2506. [Google Scholar] [CrossRef]
- Mirshekaria, G.R.; Daeeb, S.; FatourehBonabib, S.; Tavakolic, M.R.; Shafyeib, A.; Safaeia, M. Effect of interlayers on the microstructure and wear resistance of Stellite 6 coatings deposited on AISI 420 stainless steel by GTAW technique. Surf. Interface 2017, 9, 79–92. [Google Scholar] [CrossRef]
- Rozumek, D.; Kwiatkwoski, G. The influence of heat treatment parameters on the cracks growth under cyclic bending in St-Ti clad obtained by explosive welding. Metals 2019, 9, 338. [Google Scholar] [CrossRef] [Green Version]
- Srivastava, S.C.; Murtaza, Q.; Kumar, P. Microwave cladding on metallic surfaces: A review. Mater. Today Proc. 2020, 21, 1533–1536. [Google Scholar] [CrossRef]
- Mondal, A.; Saha, M.K.; Hazra, R.; Das, S. Influence of heat input on weld bead geometry using duplex stainless steel wire electrode on low alloy steel specimens. Cogent Eng. 2016, 3, 1143598. [Google Scholar] [CrossRef]
- Saha, S.; Mukherjee, M.; Pal, T.K. Microstructure, Texture, and Mechanical Property Analysis of Gas Metal Arc Welded AISI 304 Austenitic Stainless Steel. J. Mater. Eng. Perform. 2015, 24, 1125–1139. [Google Scholar] [CrossRef]
- ArslanHafeez, M.; Usman, M.; Arshad, M.A.; AdeelUmer, M. Nanoindentation-Based Micro-Mechanical and Electrochemical Properties of Quench-Hardened. Crystals 2020, 10, 508. [Google Scholar] [CrossRef]
- Kou, S. Welding Metallurgy, 2nd ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2003. [Google Scholar]
- Bjarbo, A.; Hatterstrand, M. Complex carbides growth, dissolution, and coarsening in a modified 12 pct chromium steel—an experimental and theoretical study. Metall. Mater. Trans. A 2001, 32, 19–27. [Google Scholar] [CrossRef]
- Clark, D.S.; Varney, W.R. Metallurgy for Engineers; D. Van Nostrand Company: New York, NY, USA, 1965; pp. 206–333. [Google Scholar]
- Muddle, B.C.; Nie, J.F. Encyclopedia of Materials: Science and Technology, 2nd ed.; Pergamon−Elsevier: Oxford, UK, 2001. [Google Scholar] [CrossRef]
- Ezechidelu, J.C.; Enibe, S.O.; Obikwelu, D.O.; Nnamchi, P.S.; Obayi, C.S. Effect of heat treatment on the microstructure and mechanical properties of a welded AISI 410 martensitic stainless steel. Int. Adv. Res. J. Sci. Eng. Tech. 2016, 3, 6–12. [Google Scholar] [CrossRef]
- Rajasekhar, A.; Medhusudhan, G.R.; Mohandas, T.; Murti, V.S.R. Influence of austenitizng temperature on microstructure and mechanical properties of AISI 431 martensitic stainless steel electron beam welds. Mater. Des. 2009, 30, 1612–1624. [Google Scholar] [CrossRef]
- Firdus, A.M.H.; Rizam, S.S.; Shamsul, J.B.; Derman, M.N.; Fitri, M.W.M.; Ruhiyudin, M.Z. The effect of heat treatment on the open circuit potential of magnesium sacrificial anode. In Proceedings of the Malaysian Metallurgical Conference, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia, 3–4 December 2008. [Google Scholar] [CrossRef]
- Bhaumik, S.; Chowdhury, D.; Batham, A.; Sehgal, U.; Ghosh, C.; Bhattacharya, B.; Datta, S. Analysing the frictional properties of micro dimpled surface created by milling machine under lubricated condition. Tribol. Int. 2020, 146, 106260–106278. [Google Scholar] [CrossRef]
- Ramalho, A.; Miranda, J.C. The relationship between wear and dissipated energy in sliding systems. Wear 2006, 260, 361–367. [Google Scholar] [CrossRef] [Green Version]
C | Si | Mn | S | P |
---|---|---|---|---|
0.41% | 0.35% | <1.00% | 0.06% | 0.06% |
C | Mn | S | P | S | Ch | Ni |
---|---|---|---|---|---|---|
<0.15% | <1% | <1% | 0.04% | 0.03% | 13.5% | 0.75% |
Layer | Average Grain Size (μm) |
---|---|
Top | 3.42 ± 1.13 |
Middle | 2.10 ± 0.92 |
Bottom | 4.03 ± 0.59 |
Base metal | 5.02 ± 1.37 |
Layer of Clad | Hardness (HRC) |
---|---|
Top layer of clad | 51.5 ± 2.35 |
Middle layer of clad | 58 ± 0.6 |
Bottom layer of clad | 53 ± 2.17 |
Base metal | 23 ± 1.2 |
Element | Average Scar Width (µm) | Average Scar Depth (µm) |
---|---|---|
Base metal (uncladded) (after 478 s) | 46.93 ± 11.01 | 2.360 ± 0.38 |
AISI 410 cladded sample (after 3600 s) | 38.03 ± 19.57 | 3.379 ± 0.35 |
Element | Volumetric Loss (mm3) |
---|---|
Base metal | 48.80 |
AISI 410 clad | 17.9 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bhaumik, S.; Mukherjee, M.; Sarkar, P.; Nayek, A.; Paleu, V. Microstructural and Wear Properties of Annealed Medium Carbon Steel Plate (EN8) Cladded with Martensitic Stainless Steel (AISI410). Metals 2020, 10, 958. https://doi.org/10.3390/met10070958
Bhaumik S, Mukherjee M, Sarkar P, Nayek A, Paleu V. Microstructural and Wear Properties of Annealed Medium Carbon Steel Plate (EN8) Cladded with Martensitic Stainless Steel (AISI410). Metals. 2020; 10(7):958. https://doi.org/10.3390/met10070958
Chicago/Turabian StyleBhaumik, Shubrajit, Manidipto Mukherjee, Parijat Sarkar, Anish Nayek, and Viorel Paleu. 2020. "Microstructural and Wear Properties of Annealed Medium Carbon Steel Plate (EN8) Cladded with Martensitic Stainless Steel (AISI410)" Metals 10, no. 7: 958. https://doi.org/10.3390/met10070958
APA StyleBhaumik, S., Mukherjee, M., Sarkar, P., Nayek, A., & Paleu, V. (2020). Microstructural and Wear Properties of Annealed Medium Carbon Steel Plate (EN8) Cladded with Martensitic Stainless Steel (AISI410). Metals, 10(7), 958. https://doi.org/10.3390/met10070958